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Supplementary Fig. 1: Monthly wildfire carbon (FIRE) emissions and error reduction (ER)
across 14 global regions in the OSSE experiment. Regional classifications follow the GFED4s
framework: BONA (Boreal North America), TENA (Temperate North America), CEAM (Central
America), NHSA (Northern Hemisphere South America), SHSA (Southern Hemisphere South
America), EURO (Europe), MIDE (Middle East), NHAF (Northern Hemisphere Africa), SHAF
(Southern Hemisphere Africa), BOAS (Boreal Asia), CEAS (Central Asia), SEAS (Southeast Asia),
EQAS (Equatorial Asia), and AUST (Australia). Orange shading highlights wildfire seasons, while

green shading represents the vegetation growing season.
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Supplementary Fig. 2: Monthly net ecosystem exchange (NEE) and corresponding error

reduction (ER) across 14 global regions in 2015 and 2016 from the OSSE experiment. Regional

classifications follow the GFED4s framework, consistent with Fig.1. Orange shading highlights

wildfire seasons, while green shading represents the vegetation growing season.
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Supplementary Fig. 3: Comparison

and 2016 in the inversion experiments. Panels (a) and (d) represent total emissions across sub-

Saharan Africa, (b) and (e) correspond to NHAF region, and (c) and (f) correspond to SHAF.
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Supplementary Fig. 5: Comparison of OCO-2 XCO; observations and simulations for NHAF
(January and December 2015-2016) and SHAF (July and August 2015, June and July 2016)

during months of greatest FIRE variability. The first row corresponds to NHAF, and the second

row represents SHAF.
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Supplementary Fig. 6: The setup of CMAQ model. (a) CMAQ simulation domain and the

GFED4s wildfire carbon emissions for sub-Saharan Africa in 2016 August, with ATom-1 aircraft

routes shown in orange. (b) Wildfire plume injection heights over SHAF from CAMS-GFAS.
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Supplementary Fig. 7: Evaluation of simulated CO; mixing ratios against the Atom-1

Airborne observations. (a) ATom-1 CO; mixing ratio observations; (b) ATom-1 HCN mixing ratio

observations; (c, d) simulated CO, mixing ratios in experiment TIN1 before and after optimization;

(e, f) simulated CO, mixing ratios in experiment TIN2 before and after optimization. All data are

sampled at a horizontal resolution of 27 km resolution and vertically binned into 50 hPa pressure

intervals.
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Supplementary Fig. 8: Landscape characteristic of Africa. (a) Land cover classification from

MODIS MCD12Q1 (IGBP scheme) and (b) tree cover fraction derived from MOD44B. Both maps

are presented at 0.05° spatial resolution.
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Supplementary Fig. 9: Burned area (BA) across different land cover classes in the NHAF and
SHAF regions for 2015 and 2016. The data derived from MODIS MCD64A1 collection 6 products.
Land cover classes include evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF),

mixed forests (MF), woody savannas (WSAVA), savannas (SAVA), grasslands (GRASS), croplands

(CROP), and other types (other).
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Supplementary Fig. 10: Spatial distributions and comparative analysis of burned area (BA)
estimates across Africa at 0.25° in 2016. (a) GFED4s-derived BA. (b) FireCCISFD11-derived BA.
(c) Difference between FireCCISFD11 and GFED4s BA estimates (FireCCIS51 minus GFED4s).
(d) Relationship between tree cover (%) and difference in BA estimates (ABA) between

FireCCISFD11 and GFED¢4s.
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Supplementary Fig. 11: Comparison of posterior and prior wildfire carbon (FIRE) emissions
from GFAS across different landscapes in NHAF and SHAF. (a) Total adjustments in FIRE
emissions (AFIRE [TgC/yr]) between posterior and prior estimates from GFED4s, aggregated by
major land cover types in NHAF and SHAF: tropical rainforest (Trp-RF), woody savannas (W-
SAVA), open savannas (O-SAVA), grasslands (GRASS) and cropland (CROP). The Trp-RF
category includes evergreen broadleaf forest and deciduous broadleaf forest. (b) Relationship
between relative FIRE emission adjustment (AFIRE [%]) and tree cover, categorized into 5%

intervals up to 40%.
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Supplementary Fig. 12: Comparison of wildfire carbon (FIRE) emissions between our
inversion results and GFEDS. Panels (a, b) illustrate the monthly evolution of prior and posterior
FIRE emissions from our inversion alongside GFEDS wildfire Carbon emissions in NHAF and
SHATF, respectively. Panels (c, d) presents the annual GFEDS FIRE emissions and the corresponding

differences between our inversion estimates and GFEDS5, respectively.



