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METHODS

Spinal Injections, Tissue Clearing, and Imaging

Data and methods related to Fig. 1A-C were provided and reanalyzed with permission from a previous publication'. The
images were subjected to individual contrast enhancement. The data of Extended Data Fig. 1 and Supplementary Video 1 were
performed using a wild-type mouse in the following steps.

AAV Injections  All the experimental procedures were performed in accordance with the ARRIVE guidelines and the Council
of the European Union (86/609/EEC). The study was approved by the Danish Veterinary and Food Administration (animal
research permission number 2024-15-0201-01739). Wild-type mice (C57BL/6) were injected with an adeno-associated virus
(Addgene viral prep # 50465-AAV9) that carried the fluorescent reporter EGFP, driven by a neuron-specific promoter (hSyn),
into the lumbar spinal cord. The animals were sacrificed 4 weeks later via a lethal dose of anesthesia followed by a transcardiac
perfusion with 20 ml of phosphate buffered saline (PBS) followed by 20 ml of 4% paraformaldehyde (PFA) solution. The
tissue was post-fixed overnight at 4°C and then washed with PBS-azide and kept at 4°C until the start of the tissue clearing and
immunolabeling protocol.

Tissue Clearing and immuno labeling To enable imaging of the entire central nervous system (CNS), tissue clearing and
antibody labeling protocols were optimized to enhance the visualization of fluorescent signals throughout the CNS. The tissues
were processed using a modified iDISCO+ protocol”. The samples were pretreated with 25% quadrol (v / v) in water for 2 days
at 37°C, followed by 5% ammonium hydroxide (v/v) in water for 1 day at 37°C. Residual chemicals were removed through
multiple washes in PBS containing 0.02% sodium azide at room temperature (RT). Dehydration was performed using a series of
graded methanol (20%, 40%, 60%, 80%, 100% v/v in water) for 1 hour each at RT, with two additional steps of 100% methanol.
Lipids were removed by incubating the tissues in 2:1 dichloromethane (DCM) / methanol overnight (O / N) in RT, followed by
multiple washes in 100% methanol. Samples were bleached with 5% hydrogen peroxide (H2 O2) in methanol O/N at 4°C,
rehydrated stepwise (60%, 40%, 20% methanol solutions in water for 1 hour each at RT), and washed in PBS for 1 hour at RT.

Permeabilization was performed in a solution containing PBS, 0.02% sodium azide, 0.2% Triton X-100, 10 pg/mL heparin,
2.3% glycine, and 20% dimethyl sulfoxide (DMSO) for 1 day at 37°C, followed by blocking in PBS with 0.02% sodium
azide, 0.2% Triton X-100, 10 pg/mL heparin, and 3% donkey serum for 1 day at 37°C. Samples were incubated with primary
antibodies (GFP: GFP-1020, Aves; RFP: 600-401-379, Rockland) at dilutions of 1:3000 (GFP) and 1:1000 (RFP) in antibody
incubation solution (PBS containing 0.02% sodium azide, 10% w/v CHAPS, 1% w/v cyclodextrin, 1% w/v glycine, 10% v/v
DMSO, and 2% v/v Triton X-100) for 10 days at 37°. After extensive washing in PTwH solution (PBS with 0.02% sodium
azide, 0.2% Tween-20, and 10 ug/mL heparin) at RT and a final extended wash for 1 day, tissues were incubated with secondary
antibodies (647 donkey anti-rabbit: 711-605-152, Jackson Immuno; 647 donkey anti-chicken: A78952, Thermo Fisher) at
1:1000 dilution (diluted in PBS with 0.02% sodium azide, 0.2% Triton X-100, 3% donkey serum, and 10 pg/mL heparin) for
7 days at 37°C. Following an overnight wash in PTwH at RT, samples were re-dehydrated through a graded methanol series
(20%, 40%, 60%, 80%, 100% v/v in water) for 1 hour each at RT, with two additional 100% methanol steps. Lipid removal was
completed by incubating tissues in 66% DCM/33% methanol O/N at RT, followed by two washes in 100% DCM for 3045
minutes each. Finally, tissues were cleared in ethyl cinnamate (ECi) for long-term storage and imaging.

Imaging Acquisitions were performed with a 3i Cleared tissue lightsheet microscope and an Ultramicroscope Blaze (Miltenyi
Biotec) lightsheet microscope. The microscope was installed on an air table to reduce vibration artifacts.

Light sheet microscope type 1: 3i Two 5x illumination objectives (0.14NA) were used to generate dual side illumination of
the sample, together with a 1x detection objective (Carl Ziess, 1.0x/0.25NA, WD 18mm) and a 3.25 axio zoom (2 pm/pixel).
The images were acquired with a Hamamatsu ORCA-Fusion BT C15440 sCMOS camera with pixel number 2304x2304,
pixel size 6.5um, 95% QE using Slidebook software. The laser line used to capture either the RFP or GFP signal (which was
enhanced with an Alexa Fluor® 647 secondary antibody) was a 637 nm, 140 mW solid-state diode laser.

Light sheet microscope type 2:Blaze Two illumination objectives (0.0135-0.135 NA) that generate 3 bidirectional light
sheets together with a 4x and 12x detection objective (MI PLAN 4x: 0.35NA, WD 16mm and MI PLAN 12x: 0.53NA, WD
10.9mm) without zoom. The images were acquired with a 5.5 Mpx sCMOS camera, pixel size 6.5um using ImSpector software.
The laser line used to capture either the RFP or GFP signal (which was enhanced with an Alexa Fluor® 647 secondary antibody)
was a 639 nm, diode laser.
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Whole-spinal-cord segmentation of neuronal projections Axonal projection segmentation was performed using a workflow
inspired by the DeepTRACE pipeline. The 3D images were processed using open access software (TRAILMAP)® with default
parameters, and another open access analysis tool for light sheet microscopy files and which is optimized for the pretrained
model 3 from DeepTrace, DeepTrace). This processing generated a 3D probability map of axons, which was projected onto
the longitudinal axis to quantify local, rostral, and caudal projections. The 640-nm spinal cord scans, acquired at 2 um
isotropic resolution, were divided into overlapping chunks (~2 mm per chunk, with 10% overlap) along the rostro-caudal axis.
Each chunk was segmented using the three models from the DeepTRACE pipeline. The output of the respective models was
combined by selecting the highest probability value for each voxel across all models. The combined probability maps were then
subjected to iterative binarization at eight thresholds ranging from 20% to 90% of the maximum intensity value. The binarized
segmentations were skeletonized, and the resulting skeletons were weighted by their respective probability thresholds before
being summed together. Small disconnected components (<100 voxels) were subsequently removed from the skeletonized data.
Finally, the cleaned skeletons of all data chunks were merged to reconstruct the entire spinal cord skeleton, and projection
density was estimated throughout the rostro-caudal extent of the specimen.

Immunohistochemistry All immunohistochemistry images were adapted from the Allen brain Atlas of the Mouse Spinal
Cord (Allen Brain Atlas)*.We exported images from the expression mask, inverted their color and converted them to gray scales.
Some linear transformations (shearing, scaling) were applied to fit our layout.

Models and simulations

In all simulations presented in this report, we employed a rate model formalism governed by the following differential equation:
TiXi(t) = —x;(t ZWU (xj (1)) +Ii(t) + &(2)

where

T- tanh(g( ))+T forx <0

F(x)= e T)
fmax - tanh ( ) +T, forx>0

Here, the subscripts i and j denote the neuron index. The parameter 7 (set to 50 ms) represents the integration time constant,
x;(r) is the potential of neuron i, and X;(¢) is its time derivative. w;; is the synaptic weight of neuron j impinging on neuron i.
I;(1) is the external input to neuron i, and &(¢) ~ .#(0,0.4mV) is a Gaussian noise term with a mean of 0 mV and standard
deviation of 0.4 mV. The function F(x) is a compound tanh activation function that maps input potential to firing rate, with
T as a threshold parameter, an intrinsic gain g and fin.x as the maximum firing rate (Extended Data Fig. 2B). This function
ensures non-negative firing rates in all neurons. We numerically integrated this equation for each neuron in the network using
the Euler method with a time step of Ar = 1 ms. The output of each simulation was a matrix that represents the firing rate of
every neuron over time.

Random Networks

100 random networks of size N = 500 were generated. In all networks, excitatory (inhibitory) neurons constituted 1,/2 of the
N units. A synapse from neuron j to neuron i was placed in an N x N matrix W (Extended Data Fig. 2), where columns
denote source neurons and rows denote target neurons, using a binomial draw over the synapse probability, psynapse = 0.1.
Synaptic weights w;; were sampled from a Gaussian distribution w;; ~ 4" (i = 1,0 = 0.1). According to Dale’s principle,
inhibitory synapses were multiplied with —1 so that the inhibitory and excitatory columns in W were strictly nonpositive and
nonnegative, respectively. A detailed balance between excitation and inhibition>~” was imposed on W such that Z’j\':l w;ij =0
for each row i. Finally, the diagonal of W was set to zero, i.e. removing self-synapses. Random oscillatory networks were
assigned a 1D spatial coordinate based on a phase-space coherence rule (Extended Data Fig. 2F). From the connectivity W
and the coordinates, the synapse-weighted relative distances at which excitatory and inhibitory units tended to project was
averaged over all (n=50) networks (Extended Data Fig. 2G).

Spatial Unfolding

The Balanced Sequence Generator (BSG) model of rotational dynamics consists of a sparse network With randomly coupled
excitatory and inhibitory neurons subject to local balance between excitatory and inhibitory synapses®. The dynamics of
such networks may be predicted by linear stability analysis, where one examines the spectrum of eigenvalues belonging to
the network connectivity matrix W (see Mathematical Note: Spectral analysis). The BSG model was proposed as a motor
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generating circuit in the spinal cord®, as it is so far the only model capable of generating rhythms without pacemaker cells and
generating rotational dynamics (Extended Data Fig. 2A-D), i.e. exhibit sequential activity with a continuous distribution of
phases (Extended Data Fig. 2D). It also allows independent control of amplitude and frequency and explains other essential
features of movement. However, the BSG model also has limitations. One limitation is that only some network instantiations
have the rhythmogenic property. A second limitation is that the frequency is related to the size of the network (Extended Data
Fig. 2E). The dominant frequency decreases as the size of the network increases. Both effects are small-size effects due to some
random networks having a dominant eigenvalue (i.e. the rightmost eigenvalue) above the stability line with a nonzero imaginary
part (red arrows Extended Data Fig. 2A). For larger networks, the eigenvalue distribution approaches the unitary circle’.
Hence, the dominant mode moves close to the x-axis and the frequency decreases. In addition, large random networks exhibit a
sharp transition from quiescence to chaos, effectively prohibiting the rhythmic state from emerging'®!'. To circumvent these
problems, we aim to pinpoint the features of small networks that give rise to rhythms and use them to build a more detailed
model involving space and cell types, which can be directly tested in experiments. We start by unfolding the BSG model, i.e.
assign spatial location to neurons in the network, to identify features that enriched the network with rhythmogenic properties.

The oscillatory networks were unfolded on a line according to their phase, i.e. assuming that correlation in phase reflects
spatial proximity (Extended Data Fig. 2F-G). Examining the relative distances at which excitatory and inhibitory units tended
to project revealed an asymmetric "Mexican Hat", that is, where excitation dominates locally with inhibition at longer ranges
(Fig. 1E-F and Extended Data Fig. 2G-H). We then adapted such an asymmetric "Mexican Hat" structure and imposed it
on networks through subpopulations with distinct distance-based projection biases. This gave rise to consistent sequential
activity at stable frequencies across network sizes (Extended Data Fig. 2H-J). Although asymmetry is not sufficient for rhythm
generation, it is necessary. It is possible, as we can see in a simulation (Supplementary Video 2), to stop the propagation of a
wave by adjusting the projectome where it is not symmetric in this case.

Scaling of Networks

To investigate the dependence of network size, compared to their ability to generate rhythms, we constructed networks of
varying sizes (N = 200, N = 500, N = 1000, N = 2000, N = 5000, and N = 10000). These networks had the imposed structure
based on asymmetric Mexican Hat profiles (Extended Data Fig. 2A-G). First, the N neurons in each network were divided into
five subpopulations: spl, sp2, sp3, sp4, and sp5 (Extended Data Fig. 2H). Second, regardless of type, each neuron was assigned
a 1D spatial coordinate x, evenly spaced and drawn uniformly from [0, Ly], where Ly is the length of the network. This ensured
equal representation of subpopulations along the line. We use probabilistic connections between the pre- and post-synaptic
neurons, where the spatial location of the post-synaptic neuron, i.e. the distance between two neurons, is the input variable.
To instantiate connections, a Gaussian distribution 4" (u”, 6”) was fit to each bump on the unfolded Mexican hat profile and
assigned to each subpopulation as a projection probability distribution over relative distances, d;; = x; —x; € [—Ly, Ly]. Thus,
a synapse from neuron j to neuron i was placed with probability

Psyn(iaj) = GP‘/V(dij‘up(j)a Gp(j))

where u? (/) and o) are mean and standard deviation of projection distances of subpopulation p neurons, respectively. G, is
a scaling parameter to adjust network sparsity. Subsequently, the binary adjacency matrix A was built through the binomial
sampling process

A(i, j) ~ Binomial(1, Py, (i, j))

where A (i, j) = 1 indicates a synaptic connection between neurons i and j. Synaptic weights were obtained by element-wise
multiplication (Hadamard product) of A with the synaptic gain matrix G(i, j) ~ .#7(1,0.1), where the columns belonging
to excitatory spl, sp3 and sp5 and those belonging to the inhibitory sp2 and sp4 were strictly nonnegative and nonpositive,
respectively. This yielded the full connectivity matrix W of the network as the Hadamard product of G and A:

W=GoA

Finally, a local excitatory / inhibitory balance was imposed on connectivity such that Z}Jy:l w;; = 0 for all target neurons i. Based
on these conditions, we built networks with the imposed Mexican hat-like structure. The connectivity matrix had diagonal
bands indicating this projection structure (Extended Data Fig. 2I). Having such a blue-print structure all the instantiations of
networks both had oscillatory properties with a stable frequency (Extended Data Fig. 2J). Next, we manipulate the gain of the
individual subpopulations to see how we can control the activity and propagation of waves.

Wave Propagation Mechanism
Classical work on spatially structured networks with homogeneous projections have demonstrated their pattern-generating
properties in space!>"'*. To motivate the mechanism by which our network theory produces rhythms and patterns, consider a
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variant of Amari’s one-dimensional field model

W) — it [ =P Gty i

where the spatial domain Q = [0, 27] is periodic, u(x,t) is the average activity of neurons at position x at time 7 , w the Mexican
Hat coupling function and F is sigmoid nonlinearity. If w(x) is symmetric, meaning that w(x) = w(—x), networks following
(1) support the emergence of spatially periodic patterns - the neural analog of Turing patterns in reaction-diffusion systems.
Such instabilities can arise in the linear regime, where small perturbations v(x,t) = u(x,t) — ug to the uniform fixed point
up = fow(x—y)F (up)dy are governed by

8\/;3;,2‘) _ _v+F’(uo)/g;W(x—y)v(y,t)dy. o

We look for eigensolutions of the form v(x,7) = ¢*v(x) . Substituting into equation (2) yields the eigenvalue equation:

(A Dv() = F'(w) [ wix=y)v()ds @)

Since w is symmetric, spatially periodic perturbations v(x) = e/** constitute eigenfunctions of (3) with A (k) = —1 4 F'(u,)w(k).
Hence, the growth and decay of Fourier modes with spatial frequency & is determined by the intrinsic network gain F’(ug)
and the magnitude of the kernel Fourier transform w(k).15’17. If, however, projections are asymmetric in space such that
w(x)#w(—x), resting state instabilities can give rise to patterns that propagate over space in time, much like flow or advection
in pattern forming systems'> 8. Such asymmetries serve as candidate mechanisms for generating spatio-temporal activity
sequences in spatially distributed networks'?. Spatially linear Mexican Hat networks can be realized from five underlying
subpopulations, sp1,sp2,sp3,spa and sps, each contributing to the five distinct lobes on the projectome via their projection
biases (Extended Data Fig. 3). Varying these biases (Extended Data Fig. 3A-C), or the subpopulation gains (Extended Data
Fig. 3D), impacts the asymmetry of the projectome in a manner which efficiently controls 1) the frequency of spatio-temporal
sequences and 2) the direction of the travelling bump pattern. We conjecture that spinal locomotor networks function with this
mechanism. In our theory, adjusting the effective asymmetry of Mexican Hat connectivity along the rostro-caudal spinal axis
provides a parsimonious mechanism for rhythm- and pattern generation in animals. It also provides a straightforward means for
the descending input to control the rhythm and motor activity. The next step is to include the spatial distribution of cell types
in the transverse plane to match these to the sub-populations in the model, i.e. which cell types that play which role in the
projectome. The purpose of this is to investigate a potential link between cell type and function and how that can be explained
in our framework.

Estimation of 2D Spatial cell type distributions

To determine the spatial distributions of cell-types unbiasedly, we used a combination of spatial omics data. Curated and
annotated single cell / nucleus RNA sequencing and spatial trasncriptomics data sets of the lumbar spinal cord were obtained
from the Gene Expression Omnibus: GSE184370 (single nucleus'), GSE184369 (spatial transcriptomics'), and the SeqSeek
repository?’. Our primary single-cell data set was the SeqSeek-labeled data, which classifies neurons into 69 genetically distinct
populations: 28 inhibitory, 38 excitatory and 3 motoneuron-related (Extended Data Fig. 4A). We used the developmental
lineage labels from?° as a coarser grouping to define our cell types for further analysis.

We deconvolved the spatial transcriptomics data with the labeled single nucleus RNA sequencing data using robust cell-type
decomposition (RCTD)?!. We applied default parameters, with the doublet mode disabled, yielding a matrix of 9755 2D
spatial locations x 69 populations. This matrix assigns a weight to each population for each spatial location. After logarithmic
normalizing and scaling the matrix columns to a range [0,1], we applied a cutoff at the mean weight to sharpen the spatial
densities. The resulting distributions of each cell type closely aligned with their known locations as verified through other
methods, e.g. immunostaining and in situ hybridization (Extended Data Fig. 4). The distributions of the cell types of the
sample are shown (left side) and compared to the hybridization in situ (right side, based on Allen mouse spinal cord Atlas) of a
prominent genetic marker of the particular cell type (Extended Data Fig. 4B). Genetic markers, which are associated with
long-range rostro-caudal projections, Zfhx3 and Foxp2 (left, Extended Data Fig. 4C) or local projections, Nfib and Neurod2
(right), seemed to agree closely with those previously reported”.

Mouse Network Construction and Connectivity

Now, we have established spatial distributions of the most generic cell types in the lumbar spinal cord. Next, we will match
locations of neurons with the synaptic target somewhere else in the spinal cord based on probabilities. We first defined the
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spatial arrangement of the neurons based on single cell RNA sequencing and spatial transcriptomics. This defined the spatial
probability distributions of various cell types (Extended Data Fig. 5A). We then extend this in the longitudinal direction
assuming the distribution is preserved (right). Now, we have neuronal populations distributed in the spinal cord. The next step
is to connect these neuronal population under the assumption that cells connect probabilistically based on bias in projection
which is different for each cell type (Extended Data Fig. 5SB). For each neuron population p, we used the 2D probability
matrix P, (x,y) derived from transcriptomics data to sample neuron locations. Specifically, we binomially sampled the 2D
spatial density P, (x,y) (Extended Data Fig. 5C) to obtain a binary matrix M, (x,y) where:

M, (x,y) ~ Binomial(1,P,(x,y))

Here, a value of M, (x,y) = 1 indicates the presence of a neuron at coordinates (x,y). Each neuron was then assigned a
z-coordinate by sampling from a uniform distribution over the range [1, L], where L is the network’s longitudinal length:

(xi,yi52i) = (xi,yi, % (1,L))

For motoneurons, we adapted this approach by using a refined longitudinal distribution P"°°(z) based on known motor column
locations:

zi ~ P°(z), for motoneurons

Given a density parameter D, we repeated these operations D times in order to control the overall number of neurons in the
network. To determine synaptic connectivity, we computed the pairwise distances between neurons in each spatial dimension
independently:

dyij=xi—xj, dyij=Yi—Yj, dzjj=2z—2%j

We then modeled the probability of a synaptic connection between neurons i and j using Gaussian distributions for each
dimension:

P)[()(dx,l])'\"/’/(ujl()vc)l())a P}e(dY,tj)N'/V(.uﬁaog)7 P;(dZ,l])Nf/V(.ugadg)

where u¥, puf, and 2 are the means, and o%, 6/, and o, are the standard deviations estimated from axonal projection data.
The overall synaptic probability was computed as:
. 1/3
Py (i /) = (Pf(dx,ij) - P (dv,ig) - PL(dzi1) "
This combines the probabilities from each dimension into a single measure of connection likelihood. We then binarized this
probability to create a binary adjacency matrix A:

A(i, j) ~ Binomial(1,Pyy, (i, j))

where A (i, j) = | indicates a synaptic connection between neurons i and j. To finalize the connectivity matrix, each neuron
population p was assigned a synaptic strength parameter g, (Extended Data Fig. 5C). The final connectivity matrix W was
obtained by scaling the binary adjacency matrix A with these gains:

W(i,j) = gp-A(i,j), forneurons iin population p

This approach ensures that each neuron’s connectivity is appropriately scaled according to its population-specific gain. For
most simulations and analyses, we set g, = 1. Finally, a local excitatory / inhibitory balance is imposed on connectivity in a
similar way as previously described. The participation of cell types can now be identified as sub population in the projectome,
both the ipsi- and contralateral projectome (Extended Data Fig. 5D).

Once the ventral spinal cord network model is constructed, we can carefully examine the network and compare it with
empirical observations. First, the cell types are assigned colors and their projection biases are listed (Extended Data Fig. 6A).
The locations of the cell somata are distributed in the transverse and longitudinal directions (Extended Data Fig. 6B). The
fractional distribution between cell types, both excitatory and inhibitory, as well as their genetic identity are listed (Extended
Data Fig. 6C). The connectivity matrix has diagonal lines characteristic for the Mexican hat topology, with local excitation
and longer range inhibition (Extended Data Fig. 6D). The network is very sparse (0.97) in agreement with the experimental
observations??. The normalized density of synapses per cell type is shown in the rostrocaudal direction (Extended Data Fig.
6E). The fraction of cells in space and cell types is also shown (Extended Data Fig. 6C). The axonal trajectories originating
from a spot (L6) have a reassuring similarity to the experiment (cf. left and right, Extended Data Fig. 6F). For a fly-through of
the experimental tracing see Supplementary Video 1.
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Networks and simulations analyses

Principal Component Analysis

Principal component analysis (PCA) was performed on the multidimensional firing rate of the neuronal population. The
principal components, denoted as U,, , were obtained as the eigenvectors of the empirical covariance matrix C derived from the
n firing rate traces.

CU, = LU,

PCA was performed on the 7 x N rate matrix using data processing software (pca () , MATLAB™). The neuronal population
activity is visualized in principal component space over time by projecting the population vector P onto the principal components,
resulting in the population vector in the newly defined coordinates Ppc:

Prc=U"P
where U7 is the transpose of the matrix containing the principal components.

Oscillation Frequency and amplitude
The oscillatory frequency (measured in oscillations per second, Hz) was estimated by calculating the inter-peak interval within
the firing rates projected onto the first principal component.

1

= 1p1

where f is the oscillatory frequency in Hz and IPI is the average inter-peak interval (in seconds) between successive peaks in
the first principal component. Oscillatory amplitude was estimated as the mean root mean square (RMS) over firing rates of all
units in a simulation,

1 N

amplitude = N Z

I
-

with N denoting the size of the network, T the simulation duration and 7;, the mean-subtracted firing rate of neuron i at time ?.

Cell type - cell type connectivity

The connectivity between cell types within the network was calculated as the sum of the synaptic weights from all cells of type
i to all cells of type j, normalized by the total sum of the synaptic weights from all cells of type i. This relationship can be
mathematically expressed as:

o Zij Wij
’ Liwi

where C;; denotes the connectivity metric from all cells of type i to all cells of type j, w;; represents the synaptic weight
from cells of type i to a specific cell of type j, and w; is the total synaptic weight from all cells of type i.

G

Nerve and Muscular readout
The nerve and muscular activity were estimated as the aggregate firing activity of all motoneurons of interest, whether from a
pool of motoneurons or from a specific segment.

N
A=LE
j=1

where A represents the total nerve or muscular activity, F; denotes the firing activity of the j-th motoneuron, and N is the total
number of motoneurons included in the analysis.

Distribution of Premotor interneurons in model

The spatial location of interneurons that project to motoneurons have been an area of interest and experimental investigation
The interneurons projecting to the motoneurons were also possible to identify in the model for comparison. We chose two
motoneuron pools of samples (tibialis anterior (TA) and gastrocnemius medialis (GM)) since these were also investigated in
previous investigations using a retrograde transsynaptic approach (modified Rabies virus)>*23. Premotor interneurons where
identified by inspecting the connectivity and identifying the non-zeros elements in the rows corresponding to motoneurons
of interest. Each nonzero entry represents an active synapse from a source neuron, which can be represented in space. The
distributions of TA and GM (Extended Data Fig. 7) appeared realistic and were similar to those seen experimentally>*.

24,25
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Neuronal position and relation to dynamics

One of the proposed principles of thythm and pattern generation and descending control is the importance of spatial location
of cell types in the transverse plane, as well as the shape of the projectome in the longitudinal direction. Hence, an obvious
computational experiment to do is to probe the effect of the scrambling position of various neuronal positions.

First, we take the connectivity matrix from above and perform the linear systems analysis procedure to estimate the spatial
structure of the emergent dynamics (Extended Data Fig. 8A). Every network instantiation has a connectivity matrix (left). We
compute the eigenspectrum of the gain-scaled connectivity matrix (effective connectivity matrix) and identify the dominant
eigenvalues (i.e the eigenvalue with the largest real component) which represent dynamical modes of the network (middle
panel, Extended Data Fig. 8A). Each eigenvalue has an associated eigenmode (mode) and eigenvector that carries information
about the phase and amplitude of every neuron (conceptual sketch of modes 1 and 2 in the third panel). We represent the
mode by plotting the eigenvectors in space (right panel). Mode 1 corresponds to the most dominant eigenvalue (i.e. the most
amplified dynamical mode of the network). Mode 2 corresponds to the second dominant mode (i.e. the second most likely
to be expressed by the network). The first mode expresses alternation between the right and left side. The second mode has
right-left synchrony. The distinction can be interpreted as walking (mode 1) and bound locomotion, e.g. gallop (mode 2). The
precise right-left phase lag can be adjusted by gain modulation of the contralateral projectome, e.g. by adjusting gain of the
commissural projecting cell type VO (Supplementary Video 4 and Extended Data Fig. 9C).

The location of neurons in transverse plane can now be scrambled (cf. Extended Data Fig. 8b-C). Cell type connectivity
(middle, Extended Data Fig. 8B), the two dominant eigenmodes (right), and the output of the motoneuron pool (bottom, lateral
tibialis and soleus) are shown in the control situation, where they have clear rhythmic alternating activity. When scrambling
the position of interneurons in the transverse plane, the cell type connectivity matrix is radically affected (left and middle,
Extended Data Fig. 8C). Nevertheless, the first and second eigenmodes still contained alternating rhythms and synchrony
(right panel), and the motoneuron pool output looked similar, albeit with reduced amplitude (bottom). Hence, the motor rhythm
and pattern generation of the model are remarkably resilient to structural changes in the interneuron population.

However, when the motoneuron pools were scrambled in the rostrocaudal direction, there was a dramatic effect (cf.
Extended Data Fig. 8D-E). The location of the motoneuron pools in the lumbo-sacral region of the cord (segments T13-S4)
were extracted from anatomical studies*® and placed in the model (Extended Data Fig. 8D). The spatial pattern of activity in
the first mode has a convenient almost one-to-one correspondence with the distribution of motoneuron pools (compare broken
and colored lines, right, Extended Data Fig. 8D). The motoneurons receive input like any other spinal neuron, hence from
near and far. Since the Mexican hat topology provides mainly excitatory input from local interneurons, the main activation
of motoneurons occurs when the bump of activity overlaps with the motoneuron pool. Hence, the large overlap of the bump
and the pool results in a clear rhythmic motor nerve activity (bottom). This also means that when the rostrocaudal position of
motoneurons is scrambled, the overlap with the propagating bump is poor and the motor nerve output is largely non-rhythmic
(Extended Data Fig. 8E). In conclusion, the position of interneurons is not crucial for the generation of rhythms and patterns,
whereas the position of motoneuron pools is. Next, the question is what features of the rostrocaudal projections, i.e. the
projectome, that is important for rhythm and pattern generation.

Various forms of projectome and relation to dynamics
The projectome is made up of synaptic projections from various cell types at a given point to various other locations in the spinal
cord. We have some general experimental information of the projection directions of various neurons (Table S1), but details and
statistics are still unknown. Therefore, it is interesting to investigate how sensitive the activity of the model is to various forms
of projection patterns - whether there is a unique projection solution to generate the appropriate outcome or whether many
different solutions exist. Specifically, we asked whether different projectome features give rise to similar underlying emergent
activity? We did this by varying the structure of the projectome in a systematic and objective manner. First, we arbitrarily assign
projection bias, that is, having an asymmetric distribution of synaptic targets in the rostrocaudal and mediolateral directions, of
a given cell type, and then calculate the dominant activity mode (first and second panel, Extended Data Fig. 9A). Then we
randomly changed the projection biases, again calculated the dominant mode and extracted the RC activity profile for left and
right hemicord, hence called "hemimodes". This was repeated 500 times, each with a new random projection bias. We preserved
the ipsi-contra biases established from the literature. The right side hemimodes were concatenated, plotted, and hierarchically
clustered, using UMAP?’ and Louvain method for community detection®® (third and fourth panel). The hemimodes were then
divided into eigtheen clusters, with two highly different clusters selected for illustration (cyan and magenta, Extended Data
Fig. 9B). Once the right hemimodes were identified, we performed a subgrouping employing the left hemimodes (Extended
Data Fig. 9C). This leads to subclusters with highly similar hemimodes (compare transparent and solid colors, C).

As can be seen (Extended Data Fig. 9C right) projectomes can be radically different, yet generating very similar motor
output patterns (cf. Phase plots right). The ipsilateral projectomes are shaped as a Mexican hat (top two projectomes) or
have inverted Mexican hat topology (bottom two). The effective dynamical mode in space is visualized with the phase of
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rhythmic activity for the right and left hemicord (right, shown in gray scale). The difference between the top and the second
top is the right-left synchrony (top) and the alternation (second top). As can be seen in the contralateral projectome, the only
qualitative difference is that there is a local minimum in the contralateral projectome. For the magenta case, the shape is an
inverted Mexican hat in the ipsilateral projectome, and the shape of the contralateral projectome have different options: If
the contralateral projectome has a local maximum, there is right/left alternation, whereas if there is a local miminum there
is right/left synchrony. Hence, we conclude that rhythm and patterning can be achieved in two ways: First, rhythms can be
generated by a Mexican hat or an inverted Mexican hat projectome. The right / left synchrony can be achieved if the local
extremum at the origin of the contralateral projectome is pointed in the same direction as the ipsilateral projectome, regardless
of whether it is a Mexican hat or an inverted Mexican hat. Similarly, a right/left alternation arises if the local extremum of the
contralateral projectome points in the opposite direction to the ipsilateral projectome.

Next, we investigate how the topology of the Mexican hat can be realized. We tried different combinations of cell types in
different network models. It turned out that there are multiple solutions to form an ipsilateral projectome shaped like a Mexican
hat, with a local maximum in the controlateral projectome (Extended Data Fig. 9D). Both combinations are a distinctly
different combination of cell types yet the generated rhythm and pattern are qualitatively similar (cf. right-phase hemimodes).
This illustrates an important point: The rhythm and pattern generation is robust to various configurations and not dependent on
cell types per se, but crucially dependent on the spatial projection profile of the whole population. What is the role of cell types
then? As we will see below, it is about descending control (see below Section "Roles of descending control of motor activity").

Finally, we try a non-Mexican hat shape, the symmetric purely excitatory ipsilateral projectome with the symmetric
reciprocal inhibitory projectome (Extended Data Fig. 9E, right). Such a projectome was incapable of generating rhythms or
patterns in the rostro-caudal direction. This suggests that two features are important for rhythm- and pattern generation: First,
there must be an asymmetry in the rostrocaudal direction. Second, there must be either a Mexican hat topology (although with
asymmetry) or an inverted Mexican hat topology. Looking closer at the latter case, while an inverted Mexican hat is able to
generate rhythms and patterns, it is difficult to slow down and stop the bump of activity, because sustained local activity is
unstable. Therefore, we suggest that vertebrate species that have to be able to arrest the progression of movement, for instance,
a cat stopping the locomotion when seeing a mouse, is only possible if the projectome has a regular Mexican hat topology. In
other invertebrates species where motor arrest is not required for any posture, for instance a swimming movement where the
stop has a straight spinal cord, an inverted Mexican hat topology could also generate appropriate motor behaviors. However,
since the regular Mexican hat topology can serve movements in any species, we propose this as the most universally conserved.

In conclusion, this analysis first shows that the asymmetrical Mexican Hat topology is the most common profile to produce
rhythms and patterns among random generated networks. Second, while the longitudinal position of motoneurons is crucial
for proper motor output, the position of the interneurons is not crucial. This raises an intriguing question: is the position of
interneurons important for something else and, if so, what? As we shall see, the position of the internurons is important for the
descending control of all aspects of motor generation.

Role of interneuron position and descending control of motor generation

To investigate the role of the position of interneurons in the transverse plane we consider two situations: first, the situation
where the position is based on empirical data, the single cell RNA sequencing and spatial transcriptomics (control condition,
(Extended Data Fig. 10A)); second, a condition in which the soma positions are randomly scrambled (Extended Data Fig.
10B). The cell type correlation matrix in the two situations has the same configuration as earlier (middle, Extended Data Fig.
8B). The change in cell type connectivity is visible by having more even distribution, except for the connection to motoneurons,
which is kept (vertical black row). Next, we provide two types of descending input: A well-known descending excitatory
input (associated with vGlut2), which comes from the caudal brain stem?® (the lateral paragigantocellular nucleus, LPGI,
middle panel). When the positions of cell types were scrambled, rhythm and pattern generation was disrupted and replaced
by a tonic activity (cf. A and B, middle Extended Data Fig. 10). The cell type target specificity is indicated by a half-circle
polar distribution. When the descending input was aiming globally, the scrambling had no effect (cf. bottom, Extended Data
Fig. 10A-B). This observation delineates a possible role for spinal cell types. The descending control of motor activity is
only possible due to the spatial segregation that cell types represent combined with their specific and dissimilar rostrocaudal
projection patterns.

Modifying projectome by descending input and hence gait

The projectome is defined as the sum of the excitatory and synpatic input as a function of the rostrocaudal distance from a given
point. If the gain of a certain cell type is changed by e.g. descending input, the firing rate of this cell type may change and hence
the synaptic input to the target (Extended Data Fig. 11A). This can be viewed as a change in the connectivity, also called
"effective connectivity". Once the connectivity is changed to a new effective connectivity by gain modulation of individual
cell types by descending input, the projectome is also changed and therefore also the eigenvalue spectrum and hemimodes
(right, Extended Data Fig. 11A). To investigate this further, we considered three different values of gain (Extended Data
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Fig. 11B). Gain modulation in this model is accomplished by descending input from glutamatergic neuron in the caudal brain
stem (LPGi) or serotonergic cells located in the caudal Raphe nucleus (bottom). The population dynamics is simulated with a
ramping up of these descending fibers (Extended Data Fig. 11C). The size of the effective projectomes increases as the gain
increases (second-bottom panels), which also results in a faster frequency and wave propagation due to stronger asymmetry in
the projectomes. The eigenvalue spectra for the three situations also demonstrate that there are two dominant modes, which
swab places as the descending drive increases (arrows). The consequence is that the right-left activity switches from alternation
to synchrony (cf. hemimodes, bottom-right).

Stability of the rhythmic activity

An important issue with modeling is how much the parameters of the model need to be optimized to induce a certain behavior.
In our case, behaviors are the generation of rhythms and patterns. The issue to investigate is the sensitivity to the length of
axonal projections and the spread of the projections (left and middle panels, Extended Data Fig. 12A). Next, we define two
metrics to characterize the effect of the parameters and hence the robustness of the model (Extended Data Fig. 12A). First,
we define the distance of the eigenvalue from the linear stability line as the "Margin of stability", M. Second, we define the
variability of the position of the dominant mode normalized by the position, AR/R. Using these two metrics, we first inspect the
effects of neuronal density, i.e. how densely populated the cord is, on the robustness of the modes. As the density increase, the
variability decrease and the margin of stability increase (Extended Data Fig. 12B). Three sample densities are shown (right).
Hence, having more cells in the cord generally stabilizes dynamical modes, which perhaps could explain the large number of
spinal interneurons that participate in the relatively simple low-dimensional rhythmic locomotor activity. Finally, we inspect the
impact of the width of projection distributions on the robustness. There is an optimal in both the variability and the margin of
stability. The variability has a minimum around 700um (red bar), which is the same place where the margin of stability has a
maximum (Extended Data Fig. 12C). This optimum depends on the density. Spinal network instantiations shown for three
projection widths (100, 900, and 1700 pum, right).

Mathematical Note: Spectral Analysis
Spectral analysis of the connectivity matrix W allows prediction of network dynamics. To see how, consider our rate-based
network model

X = —X+WF(X)+Iext (l)

where x is a vector that holds the momentary inputs of the N neurons, X its time derivative, F' the neuron gain function mapping
the input to the firing rate and Ly is the vector of external inputs. For simplicity, the variables are unitless and the system time
constant is set to 1. For balanced networks with constant, homogeneous external inputs, a uniform fixed point solution to (1)
exists where X* = Iext.

The dynamics of a small perturbation §(¢) = x(z) — x* follows the dynamics:

§=—8()+WF(x +8(1)). 2)
Taylor expanding around x* yields

§=—8(t)+W(F(x")+F (x)8(1)) 3)
where we’ve neglected higher order terms. Since WF (x*) =0, we obtain

5=—8(t)+gWé(r) “4)

where we identify g as the gain, i.e. the slope of F evaluated at the fixed point x*. Rearranging the now linear (4), we arrive at
the standard form

§=A5 ®)

where A = gW — I and I is the identity matrix. Previously, A was referred to as "the effective connectivity matrix"®, since it is
the connectivity matrix scaled by the neuronal gain. As with any system of linear ordinary differential equations, a general
solution to (5) is given by

8(1) = c1eM'vi+, ..., +eye™ vy 6)

where v; is the iy, eigenvector of A and 4; its corresponding eigenvalue. By examining the spectrum of eigenvalues belonging
to the connectivity matrix W, we can predict the response of the network to perturbations in the uniform state. If R(A;) < 1 for
all i, all perturbations will decay in time and the fixed point is stable. If the leading mode has R(A;..y) > 1, the fixed point is
unstable and any perturbation along v;.,; will grow in time and characterize the dynamics. Finally, if the fixed point is unstable
and S(Ajeqq) # 0, the perturbation response will oscillate, leading to rotations in neural space.
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Extended Data Table 1  Experimental information on cell types (most left colomn), rostrocaudal, dorsoventral and mediolateral
projections. The approximate location of the somata in the spinal layers (right) and their references (most of the right column).

Table S1: Cell type Projections and References

Population RC DV ML | Layers Ref.
Chx10/V2a-1 | Local Ventral n/a | VI, VII, VIII & IX 1,30-32
Chx10/V2a-2 | bidirectional, caudal bias, 5000 pm Ventral n/a | VL VI, VII & IX 1,30-32
Vi Rostral bias Ventral n/a | VI, VII, VIII & IX 33,34
V2b Caudal bias Ventral nfa | VI& X 32

V3 Caudal bias, commissural n/a n/a | VII, VIII & IX 35,36
DI6 Caudal bias, 3 segments, 4000 ym Ventral n/a | VI, VII, VIII & IX 37-39
vod Local, commissural Ventral n/a | VIII 37
VOv Rostral bias, 1-4 segments, commissural Ventral n/a | VIII 37,40

Supplementary Video 1 Interneuron projections in the mouse spinal cord Tissue cleared (iDisco+) mouse spinal cord
imaged on a light sheet microscope (Ultramicroscope Blaze, Miltenyi Biotec). A virus had been injected in the lumbar spinal
cord at one spot to nonspecifically and sparsely infect the interneurons there, for the purpose of partially tracing the projectome.
The cells that expressed fluorescent reporter, have their fluorescence enhanced with immunohisochemistry after clearing. Many
axons appear bright fluorescent. Many cross over and both ascend and descend. Other fibers stay ipsilaterally and also ascend
or descend. Since the labeling is sparse, there are many more projection fibers than are visible in the video.

Supplementary Video 2 Spinal network simulation demonstrating the slowdown and halt of rhythmic activity. Here, a
one-dimensional network model and simulation of the activity are shown. The projectome comprises five subpopulations, each
representing one of the five lobes of the projectome. The top left panel shows the firing rate activity of all neurons at a given
longitudinal location. The top right panel shows the projectome, i.e., the net synaptic input to locations from fibers originating
from a given location, i.e., at the origin. The lower five panels represent the firing rate activity of subpopulations 1-5 in the
shaded region in the top left panel. The open space in the histograms is due to other cell types taking these locations. First,
there is a global input of constant input, resulting in rhythm and pattern generation. Sometime later, the gains of some of the
subpopulations are modulated: Subpopulation 2 (corresponding to V1) is decreased, and subpopulation 4 (corresponding to
V2b) is increased. As a consequence, there is a slow-down of the rhythm spatial propagation.

Supplementary Video 3 Building the projectome out of cell types The rostro-caudal projection of different cell types
constitutes the projectome. Here are some of the cell types that make up the spinal projectome. First, DI6, then motoneurons
(MN), then VOd, VOv, V1, V2a-1 (short-range projecting) and V2a-2 (long-range projecting), and V3. In the end, the projection
pattern of all of them is shown in the projectome.

Supplementary Video 4 Network model of rodent spinal cord and simulation of motor activity The right and left side of
the lumbar spinal cord of a mouse is modeled and simulated. First, all cells receive a global constant input, which is transformed
into spatiotemporal rhythms and patterns. The dots represent the neuronal soma and the size of the dots represents the firing
rate of that neuron. Bumps of activity emerge at the rostral end and travel toward the caudal end. This occurs in both the right
and left side of the spinal cord, although in alternation due to and orchestrated by the commissural connections. Halfway
through the simulation, the gain of a subset of commissurally projecting interneurons, VO, is changed. As a consequence, the
right-left rhythms are now synchronized. The right-left phase difference can assume any value depending on how much the
gain is modulated. Here, a phase difference of zero is shown at the end.
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Extended Data Fig. 1. | Mapping of projections from a specific location using virus injection in the mouse spinal cord.
A, On the left, a top view of the raw data from an entire spinal cord stained for red fluorescent protein (RFP) is shown, with the
injection site highlighted in red (red arrows point to RFP+ cells). Due to the large data size ( 400GB), the segmentation pipeline
was run on segments of the data ( 25GB per segment). Each model in the pipeline is sensitive to different aspects of the data:
Model 1 is more sensitive to well-delineated structures, Model 2 to marginal objects, and Model 3 to indistinct and diffuse
signals. B, software (DeepTRACE) predictions from the models are then combined, as previously described!. A stepwise
skeletonization is applied to the combined predictions. The binary skeleton outputs are weighted based on the initial probability
thresholds used in their generation and subsequently summed. This approach preserves prediction confidence while avoiding
the fragmentation of connected structures due to threshold-based segmentation. Truncated and disconnected objects are then
removed to produce the final segmentation mask. The resulting segmentation mask aligns well with the raw data, although
some projections remain undetected (indicated by red arrows). C, The "skeletonization" panel demonstrates the segmentation
quality along the entire spinal cord for an example sample (entire spinal cord stained for GFP is shown). The projection density
graphs show the segmented voxel count along the rostro-caudal, dorso-ventral, and medial-lateral axis (proxi of the projection
density). While most projections are localized near the injection site, many are detected at the extreme ends of the spinal cord.
Additionally, a noticeable ipsilateral/contralateral bias in projection distribution relative to the injection site is observed, though
further analysis is required to fully characterize these differences.
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Extended Data Fig. 2. | Spatial embedding of balanced sequence generator networks reveals a Mexican Hat
projectome. A, Example of a balanced sequence generator (BSG), consisting of N randomly coupled neurons with balanced
excitatory and inhibitory recurrent inputs receiving a global external input. The network N x N connectivity matrix W has a
circular spectrum of eigenvalues, and a dominant complex mode (red) beyond the stability line (red dashed), predicting
sequence-generating properties. B, The synaptic input to each neuron is converted to a momentary firing rate by a hyperbolic
tangent activation function. C, When subjected to a global drive and simulated according to dynamical equations in the firing
rate formalism, BSG networks oscillate in time with a frequency proportional to the imaginary part of the dominant eigenvalue.
D, BSG networks oscillate with a quasi-continuous distribution of phases, a phenomenon termed "rotational dynamics". E, Of
random, balanced networks, only approx. half exhibit oscillatory properties across sizes N = [200, 500, 1000, 2000, 5000] (100
networks/size) (left). Predicted frequency tends to decline as BSG networks grow (right). F,G, BSG networks (n=50) were
embedded on a linear space according to a phase-space coherence rule, such that the phase-position of a neuron in an arbitrarily
chosen reference period reflected its position on the line. From the connectivity and spatial positions, the net synaptic strength
over the relative distances revealed an asymmetric Mexican Hat projectome with local excitation and broader inhibition. H,I,
The unfolded projectome was recapitulated in spatial 1D networks through five subpopulations, each with a projection bias
matching one of the five lobes of the Mexican Hat. This yielded a spatially ordered connectivity matrix where excitatory (red)
and inhibitory (black) synapses were visible as diagonal bands. J, Across sizes, all networks (100 networks/size) were
predicted to oscillate with stable frequency.
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Extended Data Fig. 3. | Different projectome asymmetries efficiently controls direction and velocity of wave
propagation in 1D networks A, 1D networks (n=34, size=2000) constructed according to Extended Data Fig. 2H with
non-overlapping projection distributions for the five subpopulations. As the mean projection distance of the local excitatory
subpopulation, u*?3 | was moved away from zero point, the velocity of wave propagation (oscillatory frequency) linearly
increased with a propagation direction reflecting the bias direction (left). When u*”3 approached zero, yielding a near
symmetric projectome, wave propagation terminated and a static bump pattern characterized the dynamics (right). B, Networks
(n=21, size=2000) constructed as in A. As u*?? and u*P* (left and right projecting inhibition, respectively) were shifted
together away from symmetry, propagation velocity increased with a direction that reflected the direction of least inhibition
(left). Again, at symmetry, only the static bump emerged (right). C, Networks (n=21, size=1000) with overlapping projection
distributions for subpopulation 2, 3 and 4. Bump velocity as a function of ©*73 and the spatiotemporal pattern matched that in
A . D, Networks (n=100, size=1000) constructed with overlapping projection distributions, as in C. Instead of varying
projection biases, asymmetry was induced by modulating the weight of sp2 synapses (and sp4 synapses, inversely). Bump
velocity was controlled near linearly by gain modulation with propagation direction reflecting the direction of least inhibition.
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Extended Data Fig. 4. | Spatial transcriptomics delineates the transverse location of cardinal cell types A, Tree
representation of all ventral cell types from an harmonized cell atlas.”’ . The coarse cell types considered in this study are
highlighted in colors and correspond to group of subtypes from similar developmental lineage. B, Lamniar organisation of cell
types in the mouse lumbar (L4) segments. For each spinal cord representation, the left side corresponds to the transverse
location of the specified cell type, derived from deconvolution of spatial transcriptomics with single cell RNA sequencing (see
Methods). The right side shows the location of the primary marker gene of the cell type derived from in-situ hybridization
(Allen Mouse Spinal Cord Atlas). C, Differential expression of marker genes for long range and locally projecting neurons?>
Each panels shows spatial regions where genes are differentially expressed, on the left, and a polar plot of relative gene
expression level for each cell type, on the right. Radius size is indicated for each plot. Central dashed line is half-radius. The
spatial regions are in close agreement with those reported previously?>. This analysis suggests specific projection patterns for
most of the cell types considered. D16, V2b, V1, V2a, VOv and V3 express long ranges marker. V2a-Vsx2+, MN and VOd
express short ranges markers. This is in good agreement with exsiting morphological data (see Table S1) and corroborates most

projections used in our model, except for V3.
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Extended Data Fig. 5. | Construction of ventral spinal cord motor network connectivity and projectome from
empirically inferred cell type location and projection biases. A, The cell type spatial probability distributions in transverse
plane are derived from combined single cell RNA sequencing and spatial transcriptomics in mouse lumbar spinal cord (L5).
Somas of cell types are generated from these probability distributions and extended in the longitudinal axis. B, neurons of a
given cell type (presynaptic neuron, red) are targeting other cells of various identity (postsynaptic neurons, black) based on
their rostrocaudal (RC), mediolateral (ML) and dorsoventral projection probability, which means (dgrc, dyr, and dpy) are
inferred and estimated from literature. C, The effective connectivity matrix is formed first by binomial sampling of the spatial
probability matrices which is then multiplied by the population gain matrix, where different cell types can be modulated by
descending input (colors). Next, the weights are adjusted to maintain a row-wise balanced of excitation and inhibition. The
matrix row and columns are sorted to match the longitudinal location (right). D, Different cell types are located at their
preferred transversal locations, and they have their preferred projection directions. The longitudinal projections can be
collapsed and divided into ipsi- and contralateral projections from a given spot (vertical broken lines, right), depending on their
cell type (colored distributions). The sum of excitation and inhibition for a given set of gains constitutes the effective ipsi- and
contralateral projectomes (right).

16/25



i Segments T13-S4
A Axis | RC DV ML | dl rob. of syn g -
MN | Local | 0 |Ventral 1000 |Lateral 1000 | Ipsi il 4 —
[
I
Vov | 'E |Rostral | 3400 | Local 100 |Medial 1000 | Contra [
13 14
2 5
vod | % | Local | 0 |Ventral 1000 |Medial 1000 | Contra e |
s, 8
512
wl £ 1 5, |Rostral | 2000 |Ventral 1000 |Lateral 1000 | Ipsi _
9 g s '
vz%zmgh‘ S 15 | tocal | 500 |ventral 1000 | Medial 1000 | Ipsi £
2.5 =
Vaag,,, |© 15| B | 7000 |Ventral 1000 |Lateral 1000 | lpsi 5‘
e gld
v2b :5 Caudal ' 4000 |Ventral 1000 |Lateral 1000 | Ipsi N <
= S
| — Ipsilateral - caudal 123
V3 : Local | 500 |Ventral 1000 |Lateral 1000 | Contra excitatory 1 " ——— Contralatera| Rostro ’ [Og
aoaumal o
dl6| || caudal| 5000 | Dorsal 1000 | Medial 1000 | Contra inh‘;:my — RN ,/l""”/ -
200um S
1 segment ~= 1300 um 2000um
B Distribution of somas Fraction of network %
Left Right T3 L1 L2 L3 L4 L5/ L6 1 ST 1S2:S3:54
I i i
e 7| dsn &
n_ e : Tt ! 60 50
W ) Bty R HE 50 25 40
Y- i i 30
VL ! 30 15 2
X iR i 20
VIL- Sk Rt 10 II 5 .Il 10 II
\&u’ > : N [ ] sling o) HE
e - & &
S I SRR RN &S
D Network Distributions of synapses A RS 2
Sparsity: 0.97 _ B
Vi
- _ 14
v = V22, g | 40 "
= 12
2 10 30
z
2 E
g3 - 8 20
< 6
4 10
’ |||
L1 L6 sS4 A 0 III 0
Presynaptic 5 T

1000um

L5 L4 L3

L6

R
' Injection Site

S1

S4 S3 S2

Extended Data Fig. 6. | Spatial features of the spinal model A, Left: Table of projection biases on the 3 axis of space
(Rostro-Caudal RC, Dorso-Ventral DV, medio-lateral ML and Contr-Ispi lateral CI) for each population. Right: Spatial
representation of projection biases and terminal likelihood distributions. B, Laminar and longitudinal neuron distributions in
the model. C, Fractions of neurons transmitter types (Excitatory/Inhibitory), celltypes, and spatial locations (left/right,
segments and laminae). A star indicates where values are intentionally overestimated for technical reasons requiring inclusion
of a larger number of motoneurons in the model. D, Connectivity matrix and network sparsity. E, Normalized densities of
synapses per celltype along the rostro-caudal axis. Synaptic densities are non-uniform as a consequence of the projection
biases. F, Left: Simulated axonal projections emanating from a single segment (L6) in the model. Right: Cleared spinal cord
showing viral axonal tracing of all neurons infected at the injection site (AAV9 HSyn promoter).
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Extended Data Fig. 8.
dynamics and spatial activity: From the connectivity matrix (left) the eigenspectrum is computed (2nd panel) to identify the
dominant eigenvalues (i.e with the largest real value). The associated eigenvector with values of every neuron (eigenvector 1
and 2 sketched in third panel). These eigenvectors are mapped onto the spinal network to show spatial activity (Mode 1 and 2).
Mode 2, i.e. the second most likely to be expressed by the network, has right-left (right panel). B, For networks with projection
biases and length as established in Fig. 3 and Extended Data Fig. 6, the linear analysis for normal (i.e. from spatial
transcriptomics) interneurons (i.e. non-motoneurons) somas distributions predicts a dominant left-right and flexion extension
alternation. A second instantiation, where somas position are randomized in the whole grey matter is shown in C. Cell type
specific spatial projection biases are preserved but the resulting cell type to cell type connectivity is altered. Nevertheless, the
predicted dominant mode preserve their structure along the rostrocaudal axis. D, The linear analysis for normal motoneuron
pools distributions (left side) predicts left-right and flexion-extension alternation E, For a randomized position of the
motoneurons, the predicted dominant mode remains unaltered but the muscular output show poor rhythmicity and alternation.
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Extended Data Fig. 9. | Impact of projectome structure on emergent dynamics. A, Unbiased procedure to identify
projectome features underlying similar emergent dynamics. We randomly generate 500 networks in which we arbitrarily assign
rostro-caudal and medio-lateral biases (directions) and lengths (means of synaptic distributions, in a [0, 5000um] range) to
celltypes . We preserved the ipsi-contra biases established from literature. For each network, we predict the spatial structure of
the dominant mode following the procedure in Extended Data Fig. 8A. We separate the left/right components and collapse the
hemimodes along the rostro-caudal axis (L and R). We concatenate all rights hemimodes in a matrix. We reduce the
dimensionality of this matrix to 2 dimensions using UMAP. In the 2D space, we identify clusters of network with similar right
hemimodes and proceed to a subclustering employing the left hemimodes. This leads to subclusters with highly similar
dynamical modes in space. B, Diversity in spatial structure of collapsed dynamical modes after clustering on the right
hemimodes. Two highly different clusters are highlighted (blue and pink). C, Left: UMAP representation of the 2 selected
clusters of panel B (C1 and C13). Middle: Spatial structure and UMAP of the subclusters of C1 and C13. Selected subclusters
are highlighted. Right: Mean projectomes (ipsilatareral and contraleteral components) and effective dynamical mode in space.
D, Sample of 2 networks from subcluster C1-1 with similar projectome shape and dynamical mode, but dissimilar celltype
projections. E, Example of a network without a projectome (i.e. null network, all celltypes project locally). Linear analysis
predicts no emergent structured dynamics and all cells are synchronized.
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Extended Data Fig. 10. | Impact of cell type position in the transversal plane on descending control. A, Columns
illustrate the transversal cell distribution and its corresponding population-based connectivity matrix for the nine populations
modelled in the case of normal (left) and randomized (right) cell positions. Rows illustrate the areal distribution of descending
lateral paragigantocellularis (LPGI) terminals (top) and global input terminals (bottom). When the transversal cell distribution
is normal, LPGI fibers synapse onto a large fraction of excitatory and inhibitory classes and external drive from these fibers is
sufficient to initiate spatiotemporal sequences down the rostrocaudal spinal axis as well as flexor-extensor alternation in soleus
(Sol) and tibialis anterior (TA) muscles. When neuron positions are randomized, only a small fraction of cell populations
receive input from LPGI fibers, and descending drive is insufficient to generate sequences or locomotor-like muscle activity.
When the descending input is global however, all neurons receive external drive and sequences emerge for both normal and
randomized transversal positions (bottom row).
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Extended Data Fig. 11. | Impact of input and gain modulation on the projectome and emergent dynamics. A,
Procedure to continuously estimate an effective projectome when varying input parameters. In simulations, we modulate the
gain and/or the input to the network. This effectively results in changes in firing rates. We apply a centered sliding mean of 500
ms to each neurons to estimate the mean firing rate at all times. For one window, this results in a vector of length N (i.e. the
number of neurons in the network). We multiply the columns of the connectivity matrix with the mean rate vector, elementwise.
The result is an effective connectivity matrix at a time t. We compute the spectrum and the projectome of this matrix. B, Top:
the activation function (hyperbolic tangent, see Methods) of the neurons in the model. Middle: Location of the terminals of the
LPGi fibers and targeted cell types. Bottom: Location of the terminals of the Raphe Obscurus fibers and targeted cell types.
Radius is 100 percents. Stars indicate a significant differential expression of 5-HT7 receptor. C,
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Extended Data Fig. 12.

Impact of parameters on model stability and emergent dynamics. A, Procedure to assess

model stability. We enforce our choices of projection length and biases as established in Fig. 3 and Extended Data Fig. 6. We
modulate independently two open parameters of the model (synaptic distribution width or network density) and generate
several model instantiations for the same set of parameters. For each set of parameters, we compute two metrics on the
eigenspectrum of network, reflecting the stability of the dominant mode. (M, distance of the dominant mode to the stability line
and AR/R, the variability of the dominant mode position. B, Quantification of stability metrics for increasing densities (left).
Linearly predicted modes for 3 densities (right). While the variability of the dominant mode decreases, its margin to stability
increases and the linearly predicted mode is preserved. C, Quantifications for increasing projection width (left) and associated
modes. There is a optimal width, maximizing the margin to stability and minimizing mode variability (highlighted in red).
Instantiations of three projection widths shown right (100, 900, and 1700 pm, right).
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