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Functional Trait

Trait type

Categories

Link to ecosystem functions.

1) Morphology

2) Coloniality

3) Maximum
longevity

4)  Size

5) Epibiosis

6) Energetic
resource

7) Major photos.

pigment

8) Feeding strategy

9) Potential of
asexual
reproduction

10) Growth rates

11) Defences

12) Propagules

Categorical

Ordinal

Ordinal

Ordinal

Ordinal

Ordinal

Categorical

Categorical

Ordinal

Ordinal

Categorical

Categorical

(a) Boring; (b) Encrusting; (c) Filaments; (d) Stolonial;
(e) Foliose Erect; (f) Articulated; (g) Coarsely branched,
(h) Cup-like; (i) Mass.-Encr.; (j) Mass.-Erect; (k) Mass.-

Hem.; (1), Tree-like; (m) Globose-lobate

(1) Solitary; (2) Gregarious; (3) Colonial

(1) Very low (weeks); (2) Low (months; < 12); (3)
Medium (1-3 years); (4) High (3-20 years); (5) Very
High (>20 years)

(1) Very low (< 1 cm/ lem); (2) Low (2-5 cm); (3)
Medium (5-20 cm); (4) High (20-50 cm); (5) Very
High (>50 cm)

(1) Never; (2) Facultative; (3) Obligate

(1) Autotroph; (2) Auto-heterotroph; (3) Heterotroph

(a) None; (b) Chl a/b (e.g. green algae); (c) Chl a/c,
Fucoxanthin, (e.g. brown algae); (d) Chl a,
Phycocyanin, Phycoerythrin (e.g. red algae); (e) Chl a,
Phycocyanin (Cyanobacteria); (f) Dinoflagellathed; (g)
Mix. (e.g. turf)

(a) Primary producer; (b) Active filter feeder w. cilia;
(c) Active filter feeder by pumping; (d) Passive filter
feeder; (e) Mixture; (f) Saprophytic

(1) No; (2) Yes

(1) Slow (< lem/year); (2) Moderate (1-5 cm/year); (3)
High (5-10 cm/year); (4) Very High (> 10 cm/year)

(a) None; (b) Physical; (c) Chemical; (d) Physical and
chemical

(a) Spores; (b) Planktotrophic; (c) Lecitotrophic

Indicator of three-dimensional
spatial complexity and habitat
provision.

Modifies mortality risk and
spatial competition dynamics,
thus influencing ecosystem
resistance and resilience.

Indicator of community stability
and long-term maintenance of
ecosystem functions.

Influences competition for space
and resources, predation risk,
and energy requirements.

Indicator of stress to the
basibiont due to natural or
anthropogenic pressures.

Describes the energy fluxes
within food webs.

Defines the light harvesting
capability and influences the
primary production of the
ecosystem.

Describes trophic interactions,
benthic-pelagic coupling,
nutrient cycling, and energy
transfer within food webs.

Implications to energy
investment and population
resilience.

Affects genetic variability and
dispersal strategies.

Influences the biomass
production, the habitat resilience
and its long-term stability.

Determines the stability of
assemblages by preventing
predation.

Indicator of community
connectivity and resilience of
ecosystems to environmental

changes.

Table S1: Description of the 12 traits used to measure functional diversity of benthic species. For

each trait, the type (i.e. categorical/ordinal), category and link to ecosystem functions are reported.



Location Site Density Biomass

10
11

12

13

(colonies/m?) (g dw/m?) Height (¢cm) Skewness Kurtosis Skew. Sig. Kurt. Sig.

A 273+59 228.8+198.2 156+69 22+£04 5+0.7 59 6.9
Ischia

B 30.0+15.9 188.7+163.9 121+64 21+£04 48+0.7 6.0 6.8

A 53.3+194 208.3 +127.2 101+23 22+£03 52+05 8.3 9.8
Procida

B 347+9.6 251.9+194.9 147+5.0 2+03 44=x07 6.1 6.8

A 29.3+6.0 121.1+72.0 128+35 19+£04 39+0.7 53 5.6
Penna

B 30.7+26.6 107.1+£75.7 121+38 12+£04 13+0.7 3.6 1.9

A 42.7+20.5 100.1 £ 89.7 9.1+£22 21+03 44+0.6 6.9 7.4
Capri

B 36.0+13.1 505.4 +367.7 169+6.7 23+£03 56+0.6 7.2 8.7

A 30.7+14.5 338.6 £ 246.7 132+12.7 23+04 54+0.7 6.5 7.8
Vervece

B 33.3+259 198.2 £ 149.6 10.5+13.5 24+03 57+0.7 7.1 8.6

A 65.3+27.1 488.5+141.8 13.7+40 23+£02 54+05 9.4 11.1
Banco

B 347+ 149 355.0+181.1 185+52 06+03 -12+0.7 1.9 -1.8

Table S2: Characteristics of P. clavata forests. Skewness and kurtosis are significant if the absolute

value of coefficient/standard error (s.e.m.) is greater than 2.
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Fig. S1: Self-thinning process. Relationship between the log mean density and log mean biomass

across all sites.



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Source df SS MS  Pseudo-F P(perm) Unique perms

Lo 5 219.18 43.837  2.1964  0.217 818

Co 1 135 135 19.424  0.012 997

Si(Lo) 6 119.75  19.958 32704 0.002" 998
Sp  LoxCo 5 34.75 6.95  0.56313  0.746 999

Si(Lo)xCo 6 7405 12342 2.0223  0.06 998

Res 216 13182  6.1028

Total 239 1900.9

Lo 5 22547  45.094 24469  0.165 840

Co 1 10534 10534 24569 0.009" 991

Si(Lo) 6 110.58 18.429  3.5143  0.004" 999
FEs LoxCo 5 21.437 42875 036502  0.841 998

Si(Lo)xCo 6 70475 11.746 22399  0.058 996

Res 216 11327 5.244

Total 239 1666

Lo 5 0.5336  0.10672 0.6986  0.596 950

Co 1 0.32264 032264 5.1653  0.042 995

Si(Lo) 6 091657 0.15276  2.818  0.002" 999
FRic LoxCo 5 031232 0.062463 1.115  0.416 999

Si(Lo)xCo 6  0.33613 0.056021 1.0334  0.423 999

Res 216  11.709 0.054209

Total 239 14.13

Table S3: Three-way univariate analyses of variance. PERMANOVA test based on Euclidean
distance matrix of species richness (Sp), number of functional entities (FEs) and functional richness

(FRic). Significant differences are shown as follow * P<0.05; ** P<0.01; *** P<0.001.



49

50
51
52
53

54

55

56
57
58

59

Source  df SS MS  Pseudo-F P(perm) Unique perms

Lo 5 74027 14805 3.7219 0.001 959

Co 1 93342 93342 3.0975 0.039" 976

Si(Lo) 6 23868 3978  6.6403 0.001° 998
Taxonomic structure LoxCo 5 15067 3013.5 1.8164 0.043" 997

Si(Lo)xCo 6 99543 1659.1 2.7694 0.001"" 995

Res 216 1.29E+05 599.07

Total 239 2.62E+05

Lo 5 68803 13761 3.1305 0.0017" 940

Co 1 10504 10504 3.6706 0.045 973

Si(Lo) 6 26374 43957 6.9482 0.001° 996
Functional structure LoxCo 5 14309 2861.7 1.8973 0.04" 997

Si(Lo)xCo 6  9049.7 1508.3 2.3841 0.001"" 997

Res 216 1.37E+05 632.63

Total 239 2.66E+05

Table S4: Multivariate analyses. PERMANOVA test on Bray-Curtis distance of fourth root data of

the taxonomic structure and the functional structure in terms of composition and relative abundance

of FEs.

Taxonomic structure Functional structure
Groups t P(perm) Unique perms t P(perm) Unique perms

Kehia A 1.4788 0.016:* 994 13001 0.076 987
B 2.3655  0.002 992 2.3681 0.005 993
Procida A 3.2086 0.001:: 997 2.984 0.001*: 994
B 1.9479 0.001 993 1.9623  0.002 991
perma A 2.7198 0.001:: 992 3.0773 0.001*:* 992
B gy, 17278 0.001 990 13792 0.018" 996
Capri A " 2.9452 0.001"" 994 2.6357 0.001"" 990
B 2.8301 0.001 994 2.9608 0.001 989
Vervece A 0.86616  0.667 992 0.82211 0.749 991
B 1.5775 0.014 995 1.4479  0.04 995
Banco A 1.8105 0.002: 992 1.9484 0.001***: 994
B 1.7738  0.006 994 1.9515 0.003 992

Table S5: A posteriori pairwise comparisons for the term 'Si(Lo)xCo' for pairs of levels of factor

'Co' on the taxonomic structure and the composition and relative abundance of FEs.



60

61
62
63

64

65

66
67
68

Source df SS MS  Pseudo-F P(perm) Unique perms

Lo 5 15004 300.08 3.6647  0.005 957

Co 1 14923 14923 29214 0.05" 982
Si(Lo) 6 49131 81.884 51642 0.001 999
LoxCo 5 25541 51.082 1.7258  0.102 999
Si(Lo)xCo 6  177.6  29.6 1.8668  0.012" 998

Res 216 3425 15.856

Total 239 5998.9

Table S6: multivariate analysis on CWM. PERMANOVA test on Bray-Curtis distance matrix of

fourth root transformed data of CWM.

Groups t P(perm) Unique perms
Ischia A L151 0.254 992
B 2.4209 0.003 993
Procida A 2.5797 0.001"" 995
B 1.4684  0.069 996
Penna A 1.6767 0.019: 995
B outln 14767 0047 991
Capri A ’ 1.8418  0.002” 997
B 3.0066 0.001 992
Vervece A 1.8892  0.01°° 992
B 1.1637  0.221 995
Banco A 1.3703  0.119 994
B 1.1236  0.307 991

Table S7: 4 posteriori pairwise comparisons for the interaction term 'Si(Lo)xCo' for pairs of levels

of factor 'Co'.
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