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Functional Trait Trait type Categories Link to ecosystem functions. 

1) Morphology Categorical 

 
(a) Boring; (b) Encrusting; (c) Filaments; (d) Stolonial; 

(e) Foliose Erect; (f) Articulated; (g) Coarsely branched; 
(h) Cup-like; (i) Mass.-Encr.; (j) Mass.-Erect; (k) Mass.-

Hem.; (l), Tree-like; (m) Globose-lobate 

 
Indicator of three-dimensional 
spatial complexity and habitat 

provision. 
 

2) Coloniality Ordinal (1) Solitary; (2) Gregarious; (3) Colonial 

Modifies mortality risk and 
spatial competition dynamics, 

thus influencing ecosystem 
resistance and resilience. 

 

3) Maximum 
longevity 

Ordinal 
(1) Very low (weeks); (2) Low (months; < 12); (3) 

Medium (1–3 years); (4) High (3–20 years); (5) Very 
High (>20 years) 

Indicator of community stability 
and long-term maintenance of 

ecosystem functions. 
 

4) Size Ordinal 
(1) Very low (< 1 cm / 1cm); (2) Low (2–5 cm); (3) 
Medium (5–20 cm); (4) High (20–50 cm); (5) Very 

High (>50 cm) 

Influences competition for space 
and resources, predation risk, 

and energy requirements. 
 

5) Epibiosis Ordinal (1) Never; (2) Facultative; (3) Obligate 

Indicator of stress to the 
basibiont due to natural or 
anthropogenic pressures. 

 

6) Energetic 
resource 

Ordinal (1) Autotroph; (2) Auto-heterotroph; (3) Heterotroph 
Describes the energy fluxes 

within food webs. 
 

7) Major photos. 
pigment 

Categorical 

(a) None; (b) Chl a/b (e.g. green algae); (c) Chl a/c, 
Fucoxanthin, (e.g. brown algae); (d) Chl a, 

Phycocyanin, Phycoerythrin (e.g. red algae); (e) Chl a, 
Phycocyanin (Cyanobacteria); (f) Dinoflagellathed; (g) 

Mix. (e.g. turf) 

Defines the light harvesting 
capability and influences the 

primary production of the 
ecosystem. 

 

8) Feeding strategy Categorical 
(a) Primary producer; (b) Active filter feeder w. cilia; 
(c) Active filter feeder by pumping; (d) Passive filter 

feeder; (e) Mixture; (f) Saprophytic 

Describes trophic interactions, 
benthic-pelagic coupling, 

nutrient cycling, and energy 
transfer within food webs. 

 

9) Potential of 
asexual 
reproduction 

Ordinal (1) No; (2) Yes 

Implications to energy 
investment and population 

resilience. 
 

Affects genetic variability and 
dispersal strategies. 

 

10) Growth rates Ordinal 
(1) Slow (≤ 1cm/year); (2) Moderate (1–5 cm/year); (3) 

High (5–10 cm/year); (4) Very High (> 10 cm/year) 

Influences the biomass 
production, the habitat resilience 

and its long-term stability. 
 

11) Defences Categorical 
(a) None; (b) Physical; (c) Chemical; (d) Physical and 

chemical 

Determines the stability of 
assemblages by preventing 

predation. 
 

12) Propagules Categorical (a) Spores; (b) Planktotrophic; (c) Lecitotrophic 

Indicator of community 
connectivity and resilience of 
ecosystems to environmental 

changes. 
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Table S1: Description of the 12 traits used to measure functional diversity of benthic species. For 4 

each trait, the type (i.e. categorical/ordinal), category and link to ecosystem functions are reported. 5 

 6 
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Location Site 
Density 

(colonies/m2) 
Biomass  

(g dw/m²) 
Height (cm) Skewness Kurtosis Skew. Sig. Kurt. Sig. 

Ischia 

A 27.3 ± 5.9 228.8 ± 198.2 15.6 ± 6.9 2.2 ± 0.4 5 ± 0.7 5.9 6.9 

B 30.0 ± 15.9 188.7 ± 163.9 12.1 ± 6.4 2.1 ± 0.4 4.8 ± 0.7 6.0 6.8 

Procida 

A 53.3 ± 19.4 208.3 ± 127.2 10.1 ± 2.3 2.2 ± 0.3 5.2 ± 0.5 8.3 9.8 

B 34.7 ± 9.6 251.9 ± 194.9 14.7 ± 5.0 2 ± 0.3 4.4 ± 0.7 6.1 6.8 

Penna 

A 29.3 ± 6.0 121.1 ± 72.0 12.8 ± 3.5 1.9 ± 0.4 3.9 ± 0.7 5.3 5.6 

B 30.7 ± 26.6 107.1 ± 75.7 12.1 ± 3.8 1.2 ± 0.4 1.3 ± 0.7 3.6 1.9 

Capri 

A 42.7 ± 20.5 100.1 ± 89.7 9.1 ± 2.2 2.1 ± 0.3 4.4 ± 0.6 6.9 7.4 

B 36.0 ± 13.1 505.4 ± 367.7 16.9 ± 6.7 2.3 ± 0.3 5.6 ± 0.6 7.2 8.7 

Vervece 

A 30.7 ± 14.5 338.6 ± 246.7 13.2 ± 12.7 2.3 ± 0.4 5.4 ± 0.7 6.5 7.8 

B 33.3 ± 25.9 198.2 ± 149.6 10.5 ± 13.5 2.4 ± 0.3 5.7 ± 0.7 7.1 8.6 

Banco 

A 65.3 ± 27.1 488.5 ± 141.8 13.7 ± 4.0 2.3 ± 0.2 5.4 ± 0.5 9.4 11.1 

B 34.7 ± 14.9 355.0 ± 181.1 18.5 ± 5.2 0.6 ± 0.3 -1.2 ± 0.7 1.9 -1.8 
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Table S2: Characteristics of P. clavata forests. Skewness and kurtosis are significant if the absolute 9 

value of coefficient/standard error (s.e.m.) is greater than 2. 10 

 11 
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Fig. S1: Self-thinning process. Relationship between the log mean density and log mean biomass 15 

across all sites.  16 
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Relationship between the log mean density and log mean biomass 

 

Relationship between the log mean density and log mean biomass 



  Source  df         SS     MS Pseudo-F P(perm) Unique perms 

Sp 

Lo 5 219.18 43.837 2.1964 0.217 818 
Co 1 135 135 19.424 0.012* 997 
Si(Lo) 6 119.75 19.958 3.2704 0.002** 998 
Lo×Co 5 34.75 6.95 0.56313 0.746 999 
Si(Lo)×Co 6 74.05 12.342 2.0223 0.06 998 
Res 216 1318.2 6.1028                         
Total 239 1900.9                                

        

FEs 

Lo 5 225.47 45.094 2.4469 0.165 840 
Co 1 105.34 105.34 24.569 0.009** 991 
Si(Lo) 6 110.58 18.429 3.5143 0.004** 999 
Lo×Co 5 21.437 4.2875 0.36502 0.841 998 
Si(Lo)×Co 6 70.475 11.746 2.2399 0.058 996 
Res 216 1132.7 5.244                         
Total 239 1666                                

FRic 

Lo 5 0.5336 0.10672 0.6986 0.596 950 
Co 1 0.32264 0.32264 5.1653 0.042* 995 
Si(Lo) 6 0.91657 0.15276 2.818 0.002** 999 
Lo×Co 5 0.31232 0.062463 1.115 0.416 999 
Si(Lo)×Co 6 0.33613 0.056021 1.0334 0.423 999 
Res 216 11.709 0.054209                         
Total 239 14.13                                  

 32 

Table S3: Three-way univariate analyses of variance. PERMANOVA test based on Euclidean 33 

distance matrix of species richness (Sp), number of functional entities (FEs) and functional richness 34 

(FRic). Significant differences are shown as follow * P≤0.05; ** P≤0.01; *** P≤0.001. 35 

 36 
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Source df SS MS Pseudo-F P(perm) Unique perms 

Taxonomic structure 

Lo 5 74027 14805 3.7219 0.001*** 959 
Co 1 9334.2 9334.2 3.0975 0.039* 976 
Si(Lo) 6 23868 3978 6.6403 0.001*** 998 
Lo×Co 5 15067 3013.5 1.8164 0.043* 997 
Si(Lo)×Co 6 9954.3 1659.1 2.7694 0.001*** 995 
Res 216 1.29E+05 599.07 

   
Total 239 2.62E+05 

    
        

Functional structure 

Lo 5 68803 13761 3.1305 0.001*** 940 
Co 1 10504 10504 3.6706 0.045* 973 
Si(Lo) 6 26374 4395.7 6.9482 0.001*** 996 
Lo×Co 5 14309 2861.7 1.8973 0.04* 997 
Si(Lo)×Co 6 9049.7 1508.3 2.3841 0.001*** 997 
Res 216 1.37E+05 632.63 

   
Total 239 2.66E+05 

    
 49 

Table S4: Multivariate analyses. PERMANOVA test on Bray-Curtis distance of fourth root data of 50 

the taxonomic structure and the functional structure in terms of composition and relative abundance 51 

of FEs. 52 

 53 

 54 

   
Taxonomic structure 

 
Functional structure 

  
Groups t P(perm) Unique perms 

 
t P(perm) Unique perms 

Ischia 
A 

Out,In 

1.4788 0.016* 994 
 

1.3001 0.076 987 
B 2.3655 0.002** 992 

 
2.3681 0.005** 993 

Procida 
A 3.2086 0.001*** 997 

 
2.984 0.001*** 994 

B 1.9479 0.001*** 993 
 

1.9623 0.002** 991 

Penna 
A 2.7198 0.001*** 992 

 
3.0773 0.001*** 992 

B 1.7278 0.001*** 990 
 

1.3792 0.018* 996 

Capri 
A 2.9452 0.001*** 994 

 
2.6357 0.001*** 990 

B 2.8301 0.001*** 994 
 

2.9608 0.001*** 989 

Vervece 
A 0.86616 0.667 992 

 
0.82211 0.749 991 

B 1.5775 0.014* 995 
 

1.4479 0.04* 995 

Banco 
A 1.8105 0.002** 992 

 
1.9484 0.001*** 994 

B 1.7738 0.006** 994 
 

1.9515 0.003** 992 
 55 

Table S5: A posteriori pairwise comparisons for the term 'Si(Lo)×Co' for pairs of levels of factor 56 

'Co' on the taxonomic structure and the composition and relative abundance of FEs. 57 

 58 

 59 



Source  df     SS     MS Pseudo-F P(perm)  Unique perms 
Lo 5 1500.4 300.08 3.6647 0.005** 957 
Co 1 149.23 149.23 2.9214 0.05* 982 
Si(Lo) 6 491.31 81.884 5.1642 0.001*** 999 
Lo×Co 5 255.41 51.082 1.7258 0.102 999 
Si(Lo)×Co 6 177.6 29.6 1.8668 0.012* 998 
Res 216 3425 15.856                         
Total 239 5998.9                                

 60 

Table S6: multivariate analysis on CWM. PERMANOVA test on Bray-Curtis distance matrix of 61 

fourth root transformed data of CWM. 62 

 63 

 64 

  
Groups     t P(perm)  Unique perms 

Ischia 
A 

Out,In 

1.151 0.254 992 
B 2.4209 0.003** 993 

Procida 
A 2.5797 0.001*** 995 
B 1.4684 0.069 996 

Penna 
A 1.6767 0.019* 995 
B 1.4767 0.047* 991 

Capri 
A 1.8418 0.002** 997 
B 3.0066 0.001*** 992 

Vervece 
A 1.8892 0.01** 992 
B 1.1637 0.221 995 

Banco 
A 1.3703 0.119 994 
B 1.1236 0.307 991 

 65 

Table S7: A posteriori pairwise comparisons for the interaction term 'Si(Lo)×Co' for pairs of levels 66 

of factor 'Co'.    67 

 68 



69 

Fig. S2: Community-Weighted Mean70 

on Bray-Curtis dissimilarity measure for the CWM inside (red) 71 

each site. Vectors indicate the functional categories that most drive differences between conditions.72 

Weighted Mean across site. Non-metric multidimensional scaling ordinations 

Curtis dissimilarity measure for the CWM inside (red) vs. outside (green) the forests for 

each site. Vectors indicate the functional categories that most drive differences between conditions.

 

metric multidimensional scaling ordinations 

outside (green) the forests for 

each site. Vectors indicate the functional categories that most drive differences between conditions. 
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