
## Extended Data Figure 3: Assignment of vibrations

Using QM/MM vibrations for *all-trans* (ground state) and *13-cis* retinal (K intermediate) were calculated in protein surrounding (see supporting information). With a scaling factor of 0.955 we found the  $\nu(C=NH^+)$  at 1641 and 1607 cm<sup>-1</sup> and the  $\nu(C=C)$  at 1525 and 1518 cm<sup>-1</sup> for GS, and K, respectively. This matches well with the observed peaks in H<sub>2</sub>O (see EDF 6), and D<sub>2</sub>O, where the  $\nu(C=ND^+)$  vibration is red-shifted by 20 cm<sup>-1</sup> (Figure below). These are the two strongest retinal vibrations. A weaker  $\nu(C_7-C_8, C_{11}-C_{12})$  retinal vibration is found at 1599 and 1586 cm<sup>-1</sup> for GS, and K, respectively. From our calculations we found two adjacent CH bending vibrations of lysine and retinal at 1441 and 1429 cm<sup>-1</sup> and 1425 and 1416 cm<sup>-1</sup> for GS and K, respectively. Another retinal  $\nu(C-C) \& \delta(CH)$  vibration was found at 1343 and 1348 cm<sup>-1</sup> for GS and K, respectively. We assigned these vibrations in the figure below (absolute accuracy 4 cm<sup>-1</sup>).

Protein contributions are observed in the ES prior isomerization. We observe a broad continuum band (CB) above 1700 cm<sup>-1</sup> that extends up to the OH/OD stretching vibration. Moreover, amide band pairs at 1676(+)/1664(-) cm<sup>-1</sup> and at 1654(-)/1643(+) cm<sup>-1</sup>, as well as Trp vibrations at 1554(-)/1540(+) cm<sup>-1</sup> are observed from protein groups. Additionally, contributions from carboxylic acid side chains are traced around 1700 cm<sup>-1</sup> (see Fig. 5). The CB decays with or faster than the ES, while the other protein contributions persist in the K intermediate. Our assignment is in line with previous investigations. 16,44-48



Upon photoexcitation the shift of the negative charge along the retinal backbone reduces the C=C double bond character in the ES, resulting in a red-shifted  $\nu(C=C)^*$  stretching vibration. The  $\nu(C=C)^*$  appears instantaneously in Fig. 4, strongly red-shifted, from  $\sim 1515$  cm<sup>-1</sup> to  $\sim 1460$  cm<sup>-1</sup> at 0.2 ps. With the decay of the ES and formation of 13-cis retinal photoproduct J the  $\nu(C=C)$  band narrows and blue-shifts significantly. Relaxation from J to K intermediate with 3 ps is followed by a further narrowing and blue-shift of the  $\nu(C=C)$  stretching vibration absorption band. The  $\nu(C=ND^+)$  vibration is found around 1578 cm<sup>-1</sup> in the J and K intermediate, also narrowing and blue-shifting from J $\rightarrow$ K transition.