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Figure S1. Annotation and classification of transposable elements (TEs) in the Fragaria vesca v4.0.a2
reference genome. (A) Representation of the pipeline used in this work for transposon annotation. Software
employed are highlighted in blue boxes, while input and output files are shown in pink boxes, with their formats
in parentheses. (B) Distribution of TE superfamilies as annotated by EDTA (left), by DeepTE (center), and by
their combined pipeline (right) for the F. vesca v4.0 genome.
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Figure S2. The average length of intact TEs and all annotated TEs in F. vesca genome (including
fragmented TES).
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Figure S3. Distribution of intact TE superfamilies in the Fragaria vesca v4.0.a2 annotation based on their

distance from a gene. Categories include: within a gene (‘intragenic’), within 1 kb (‘1000’), between 1 and 3 kb
(‘3000’), and more than 3 kb (*>3000’). Left: Total counts by superfamily. Right: Proportion by superfamily.



2.8%

2.5% )
Superfamily

2.3%
[ DNA Helitron

[l ONANMITE
2 [l DNA nMITE CACTA
1.8% I DNA nMITE Harbinger
1.6% 1.6% DNA nMITE hAT

[ ONA nMITE Mutator
I ONA nMITE TeMar
B LTR Copia

LTR Gypsy
0.9% LTR unknown

[ ~LTRLINE L1
. nLTR PLE
0.5% nLTR SINE tRNA
0.3% unknown

0% || 0.1%

Percentage

1.0%

0,
0.4% 0.3%
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Figure S5. (A) Metagene profile of 24-nt siRNAs mapping to MITEs and IRs located at different ranges of
distance to the closest protein-coding gene, in leaf (green), and immature (gray) and ripe fruits (pink). Plots show
MITEs/IRs scaled from the start to the end plus 2,000 bp to each side. sSRNA-seq replicates are plotted together.
(B) Metagene profile of CpG, CHG, and CHH DNA methylation at MITES/IRs located at different ranges of
distance to the closest protein-coding gene, in leaf (green), and immature (gray) and ripe fruits (pink). Plots show
MITEs/IRs scaled from the start to the end plus 2,000 bp to each side. Individual BS-seq replicates are plotted.
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Figure S6. (A) Differential accumulation analysis of 24-nt siRNAs derived from IRs (left) and MITEs (right)
elements across leaf tissue, immature and ripe fruits, using thresholds of log2-fold change (FC) 20.5 and
adjusted p-value (padj) <0.05. The percentages of elements located within 3000 bp of either differentially
expressed genes (DE) or non-DE genes are shown. (B) Volcano plots showing the log2FC of the differential
expression analysis for IRs (left) and MITEs (right) between immature and ripe stages. Red points represent
elements with an adjusted p-value <0.05. One element from each analysis, which had an extremely low adjusted

p-value, was removed only for clarity.
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F.vesca 101 AACAAATATTTTCTATTTTTTGTGAAATGACATTCATGGGTATTTAGCAA 150 F.vesca 101 AACAAATATTTTCTATTTTTTGTGAAATGACATTCATGGGTATTTAGCAA 150
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F.chiloensis 101 AACAAATATTTTCTAT GTGAAATGACATTCATGGGTATTTAGCAA 150 F.ananassa 101 AACAAATG CTA GTGAAATGACATTCATGGGTATTTAGCAA 150
F.vesca 151 GTTCAAATTAGGGTCTAGGGTATAGGGTTTAAAGTTTAGGGTTAGAGTTT 200 F.vesca 151 GTTCAAATTAGGGTCTAGGGTATAGGGTTTAAAGTTTAGGGTTAGAGTTT 200
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F.chiloensis 151 GTTCAAACTAGGGTCTAGGGTATAAGGTTTAAAGTTTAGGGTTAGAGTTT 200 F.ananassa 151 GTTCAAACTAGGGTCTAGGGTATAGGGTTTAAAGTTTAGGGTTAGAGTTT 200
F.vesca 201 AGGGTATAGGGTTTAGGGTTTAGGGTTTAGGGTTTGGGGTTTAGGGTTTA 250 F.vesca 201 AGGGTATAGGGTTTAGGGTTTAGGGTTTAGGGTTTGGGGTTTAGGGTTTA 250
(ARRRNRN] (A RRRRRRARNAN FEEEREEEET R e e e e e e e INNRNAN
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F.vesca 251 GGGCTTAGGGTTTAGTATTAAAAAAACAACAAAAAATCTAAAATGGTCTT 300 F.vesca 251 GGGCTTAGGGTTTAGTATTAAAAAAACAACAAAAAATCTAAAATGGTCTT 300
FEEERERREEEE e et e e e e e e e e e e e e e e (RN RN AR RN RN RN RN RRRRRRRARAER]
F.chiloensis 223 GGGCTTAGGGTTTAGTATTAAAAAAACAACAAAAAATCTAAAATGGTCTT 272 F.ananassa 244 GGGCTTAGGGTTTAGTATTAAAAAAACAACAAAAAATCTAAAATGGTCTT 293
F.vesca 301 TGACAAAATAGCTGAAATAATTTTTCGTAAAGAAAATCTACATGTCTAAA 350 F.vesca 301 TGACAAAATAGCTGAAATAATTTTTCGTAAAGAAAATCTACATGTCTAAA 350
FEEEREEREEE e e e e e e e e e e e e e e e (RN RN RN RN RN NN AR RRRRRRRRAAAR]
F.chiloensis 273 TGACAAAATAGCTGAAATAA CGTAAAGAAAATCTATATGTCTAAA 322 F.ananassa 294 TGACAAAATAGCTGAAATAATTTTTCGTAAAGAAAATCTACATGTCTAAA 343
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S SRR A A A AR A RN AR S RN N A AR NN NN AN AN AN
F.chiloensis 323 TTTGATCGGAAAAAAGGACCACGTCAGACTGTCATGTGGTCCTCCCGTAA 372 T — 344 TTTGATCGGAAAGAAAGACCACGTCAGACTGCCACGTGGTCCTCCCGTAG 393
F.vesca 401 CACTGAAAAATTTCTC 416 F.vesca 401 CACTGAAAAATTTCTC 416
(NRRRRRRRRRRRRN PELLEELEELL LN
F.chiloensis 373 CACTGAAAAATTTCTC 388 Fananassa 394 CACTGAAAAATTTCTC 409

F. vesca

F. chiloensis

F. x ananassa

Figure S7. Conservation of IR_9195 from Fragaria vesca in the orthologous genomic regions of
commercial strawberry species Fragaria chiloensis and Fragaria x ananassa. (A) Local alignment of F.
vesca IR_9195 with the IR located near the FvH4_7g18570 ortholog in F. chiloensis (left) and F. x ananassa
(right). (B) Minimum free energy (MFE) RNA secondary structure predicted by RNAfold server of each IR. The
color scale shows base-pairing probability O (purple) to 1 (red).
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Figure S8. Region of the F. vesca v4.0.a2 reference genome containing the FvH4_6946420 (A), FvH4_29g30230
(B), and FvH4_5g23180 (C) loci displaying the IR and MITE elements annotated in the region and expression
and epigenetic profiles. (I) 24-nt siRNAs mapping to the genomic regions as determined by sRNA sequencing
of leaf (green), immature (gray) and ripe (pink) tissues. Replicates are plotted together. (Il) Expression of each
gene in leaf (green), immature (gray) and ripe (pink) tissues as well as strawberries treated with 5-azacytidine
(5-AZA) and its control, measured by RNA-seq. (Ill) Cytosine DNA methylation in CG, CHG, and CHH contexts
in leaf (green), immature (gray) and ripe (pink) fruits. The average of individual BS-seq replicates is plotted for
each condition.
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Figure S9. (A) Representation of the pipeline used in this study. The main inputs are shown at the top, while
the main outputs are placed at the bottom. File formats are indicated in parentheses. (B) Representation of the
TEPID pipeline used for identifying transposable element insertion polymorphisms (TIPs) and absence
polymorphisms (TAPS).
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Figure S10. Association between a MITE deletion polymorphism and the relative amounts of volatile
compounds in the H16 and H17 harvests. Manhattan plots illustrate the association between the deletion
polymorphism ‘MITE_8692_d1’ and the relative amount of 1-decanol, 2-heptanone, 2-pentanone, decyl acetate,
methyl decanoate, methyl hexanoate and octyl acetate, for the H16 and H17 harvests as indicated. A gray line
indicates the significance threshold determined via the Bonferroni test (threshold = 3.47), and the polymorphism
with a significant association is labeled.
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Figure S11. TE polymorphisms linked to phenotypic characteristics of woodland strawberry fruits. (A)
Association between the TE deletion polymorphism ‘TE_00001968 9 d1’ and the relative quantity of (Z2)-3-
hexenyl acetate in the H16 harvest. Top: Manhattan plot showing the association between TE deletion
polymorphisms and the relative quantity of (Z)-3-hexenyl acetate. A dotted gray line indicates the significance
threshold calculated using the Bonferroni test (threshold = 4.05), and the polymorphism with a significant
association is labeled. Bottom: Box plot of the relative quantity of (Z)-3-hexenyl acetate for accessions carrying
the polymorphism (light blue) versus non-carriers (red). The p-value from t-test is shown. (B) Association
between the TE deletion polymorphism ‘TE_00000043_1_d1’ and average fruit volume in the H16 harvest. Top:
Manhattan plot showing the association between TE deletion polymorphisms and average strawberry fruit
volume. The significance threshold calculated via the Bonferroni test (threshold = 4.05) is indicated by a dotted
gray line, and the polymorphism with significant association is labeled. Bottom: Box plot of average fruit volume

for accessions carrying the polymorphism (light blue) and non-carriers (red). The p-value from Wilcoxon test is
shown.



