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JUNIPER: Reconstructing Transmission Events from
Next-Generation Sequencing Data at Scale

Supplementary Text

A Intrahost Evolutionary Model

A.1 Viral Population Size at First Mutation Event

To determine the probability density function (PDF) of an iSNV exhibiting a certain frequency, we
model within-host viral replication as a pure-birth process in which the the viral population at time
t after inoculation is:

n(t) := et

for some parameter 5. Our first goal is to compute the total evolutionary time elapsed within the
host between the time of inoculation and time ¢ past inoculation. For any s > 0 and small As > 0,
the approximately n(s) virions to exist in the time interval (s, s+ As) contribute a factor of n(s)As
to the total evolutionary time. Taking the limit as As — 0, the total evolutionary time at t—that
is, the total amount of time that all lineages in the population have been extant—is given by

n(t) —1
— 5

Here the —1 in the numerator is the constant of integration, chosen such that N(0) = 0. Now,
under a Jukes Cantor model, the amount of evolutionary time 7" until the first mutation event at a
given site on the genome is distributed as Expo(u), i.e. the Exponential distribution with a mean
of 1/u. Setting

T— n(t) —1
B
and rearranging, we obtain
n(t) =1+ pBT.
Treating 1" as random, we have that
1
BT ~ Expo <>
B

and hence the population size at the time ¢ of the first mutation also approximately follows this
distribution, assuming u/f is small. To simplify notation moving forward, let r = p/j.
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A.2 Proportion of Mutated Particles

Given n(t), we model the proportion z of viral particles in sequencing data to exhibit the new
mutation as Beta(1,n(t)). Hence, the marginal PDF f of this proportion is obtained by the integral

f(l‘;’l“) = /loo fBeta(x; 1, U)fExpo(U -1 T) du

where fgeta(; a,b) denotes the Beta(a, b) PDF evaluated at  and fgxpo(; ) denotes the Expo(a)
PDF evaluated at x. While the resulting PDF admits an analytic form, its corresponding CDF
(which we will need later) does not. For this reason, we approximate n(t) as following a discrete
Geom(r) distribution, leveraging the fact that r is very close to 0. The above equation then becomes

r) & ZfBeta(x; L k) faeom(k — 1;7) = ( " 5,

= r4+x—rx)

a highly tractable PDF whose CDF and moments admit analytic forms. In particular, the CDF F
is given by

x
(z;7) := /ftr
T r4z—rz

a function which often arises in computing the likelihood of within-host variation data. Finally, we
note that the probability density function of the frequency of a specific within-host variant, i.e. a
within host variant arising from an A to C substitution as opposed to a substitution from A to any
other nucleotide, is given by

T
3(r+x—rx)?’

assuming the Jukes-Cantor model.

A.3 Likelihood of Within-Host Variation Data

While the previous section defines a probability density function for de novo within-host variant
frequencies, two adjustments must be made when using it to compute the likelihood of NGS data
observed in an outbreak. First, in practice, NGS can reliably detect within-host variants that
comprise a fraction of the viral population exceeding some threshhold, usually 3% in practice. If
variants with frequencies below some threshhold value B are masked, the likelihood L;s(x;7) of a
specific de novo variant within host ¢ at some site s on the viral genome exhibiting frequency x
becomes

B
— s < B
B—-rB
Lis(z;7) = {H— . 7 >B
3(r+z—rx)?? T =

This function accounts for a lower threshhold on iSNV frequencies by integrating the PDF of x
over all undetectable frequencies, resulting in the x < B piece of the piecewise function. It applies
to all iSNVs in a given host at positions on the genome that do not mutate on the part of the
global phylogeny contained within said host, where global phylogeny means the phylogenetic tree
connecting the bottlenecks of all hosts in our proposed transmission network as described in the
Global FEvolutionary Model subsection of the main text. Now, consider the case that position s
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exhibits within-host variation in a host ¢, and that the portion of the global phylogeny contained
within host ¢ also exhibits a mutation at site s. Since the distribution of the frequency of a de novo
iSNV at site s depends on the population size at the first mutation event at site s, we handle this
case by conditioning on whether the mutation at site s on the global phylogeny within ¢ is indeed
the first to occur at that site within host 7. Let ¢ be the time at which such a mutation occurs,
measured in time units post inoculation of 7. Take the mutation on the global phylogeny at site
s within host 7 be a substitution from nucleotide X to nucleotide Y, and let the two nucleotides
observed as within-host variants at site s in host ¢ be X and Z. First consider the case Y = Z. If
the mutation on the globaly phylogeny is the first to occur at site s in host i, the likelihood of
the frequency x of that mutation follows a Beta(1,n(t)) distribution, as per the previous section.
If not, its density function is obtained by restricting population size at the time of first mutation
to have support [0,7(¢)] and then applying the same Geometric approximation to the Exponential
distribution as before:

n(t)
7ZfBeta € 1 k)fGeom( - ;T) =

r(n(t)(r — 1)z —n(t)r — 1)((r — 1)(xz — 1))*® 4
3(r(—z) + 7+ x)? :

While the left-hand side of the above only makes sense when n(t) is an integer, the right-hand side
is defined for any real n(t), and hence we allow n(t) to take on continuous values in practice. The
case Y #£ Z is analogous, except that if the first mutation to occur at site s within host ¢ is the one
on the global phylogeny, the probability of observing a within-host mutation from X to Z is 0 under
our model.

Once again, in the presence of a lower threshhold B for iSNV frequencies, our observed frequencies
will either be greater than B or will be reported as being below the limit of detection. In the latter
case, as before, the likelihood is computed by integrating the above density function from 0 to B,
and ignoring the 1/3 term in front because any substitution whose frequency stays below the limit
of detection is possible. Again, this integral admits an analytic form:

(1—r)"® (—r(1-=B)"W+* _Br+ B+r)—B
/0 Z:fBeta x;1 k)fGeom( - ;7") dr = ( B(T‘ — 1) — )

We are now ready to write down the complete likelihood L of observing a within-host substitution
from X to Z with frequency z at site s in a host ¢, considering both the limit of detecting for NGS
as well as the possibility of a substitution at site s from X to Y on the part of the global phylogeny
within host i. Let G equal 1 if such a substitution occurs on the global phylogeny, and 0, otherwise.
Let Sgeom(k;7) denote the Geom(r) survival function, i.e.

SGeorn k; T Z fGeom J; T
j=k+1

and let Fpeta(z; o, B) denote the Beta(a, ) CDF, i.e.

FBeta(x;aaﬁ) = Ax fBeta(t;aHB) dt



93 Then

m%ma x < B, G=0
3(r+xr—rw)2’ v25,6=0
(1=r)"®(—r(1-B)"O+'—Br4B+r)—B
o Lis(x;r) = ISV + SGeom (n(t); 1) FBeta(x; 1,n(t)), < B,G=1 .

r(n(t)(r—1)z—n(t)r—1)((r—1)(z—1))"®) 4r

00 De-n(ir D1 Osr t>B.G=1Y42
r(n(t)(r—1)z—n(t)r—1)((r—1)(z—1))"®) 4r

=(@(r=1) 3(7§€)—m)27(~(—&-m)12)( D hs + SGeom(”(ﬂ% T)fBeta(-r? 1, n(t)), r>B,G=1Y=12

o5 Finally, to compute the likelihood L of all within-host variants observed across all hosts, let x;5 to
96 be the frequency of a de novo within-host variant at site s in host 7. Letting X denote the collection
o7 of all such z;s over ¢ and s, we define

% L(X;r) = HHLZ'S(.I‘Z'S;T).
i S
99 Note that if no within-host variation data is available for site s in host i, we take L;s(x;s;7) = 1.

10 A.4 Within-Host Likelihood Adjustment for Incomplete Bottlenecks

101 Recall that our within-host variation model assumes transmission bottlenecks are always complete,
102 i.e. that each host is first infected by a single virion. In this section, we present a modification to
103 the function L;s presented above that can incorporate incomplete bottlenecks, though it requires
104 making several additional assumptions and approximations. Modeling incomplete bottlenecks is
105 particularly challenging because it drastically enlarges the space of plausible phylogenetic trees,
106 given a transmission network: even if we maintain the assumption that all coalescences occur at the
107 time of inoculation, we must infer both the number of bottleneck particles to inoculate each host
108 as well as which is ancestral to each lineage.

109 Given this challenge, we propose an approximate model under the assumptions that every bottleneck
110 consists of one or two viral particles. Note that even with this assumption, any number of shared
111 polymorphic sites between a donor and recipient are possible. Moreover, we only ever model a
112 host as being inoculated with two virions if (1) the two ends of the branch terminating at said
113 host both represent observed (sampled and sequenced) hosts, (2) those two hosts share at least one
112 polymorphic site with the same two alleles, and (3) adding a second branch of the phylogenetic tree
115 linking the two hosts decreases the total number of mutation events required to realize the genetic
16 diversity observed in both hosts. These conditions are met when, for instance, a donor and recipient
117 have identical consensus genomes, a shared iSNV at one site, and no other polymorphic sites. This
118 scenario may occur if two virions—one with one genotype at the polymorphic site and one with the
119 other—inoculate the recipient. It may also occur if the polymorphism arises de novo in both the
120 donor and recipient, but this latter scenario requires two mutation events, as opposed to one in the
121 former.

122 Consider the case that conditions (1), (2), and (3) are met for a given two hosts h and i with h
123 ancestral to ¢. First, suppose s is a shared polymorphic site for A and 7. In this case, we model
124 the inoculum of host ¢ as consisting of two virions, one with each of the two shared alleles at site s.
125 Hence, we model the fraction of reads in i at site s exhibiting one of the alleles is Beta(1, 1), which is
126 the same as the uniform distribution on [0, 1]. The probability density function of this distribution is
127 1 on [0,1] and 0 elsewhere, so its contribution to the within-host evolutionary likelihood is constant.
128 If s is not a shared polymorphic site, then we model both particles to infect host i as having the
129 same genotype, and we revert to the previously-defined L;s to compute the likelihood for that site.
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We also need to account for the fact that there now exists an additional branch on the phylogenetic
tree linking h to i. This branch needs no additional mutations, since whatever mutation led to the
shared polymorphic site has already been accounted for in the within-host evolutionary likelihood
function calculated for host i. Moreover, under the assumption of rapid exponential growth of
the within-host effective population size immediately after inoculation, said mutation must have
occurred just after host h was infected (or was already present in the bottleneck of h). Since the
new branch extends from the time of mutation in A to the time of inoculation of 4, its length is
approximately the difference in times of inoculation of h and i—i.e. the same length as the existing
branch from A to i.

We now have what we need to define our modified within-host likelihood function, which we will
call L(X;r). Let H; = 1 if conditions (1), (2), and (3) hold in 4, and 0, otherwise. To account for
shared polymorphic sites in h and 1, let

Lis(z;7r) ==

~ 1, H; =1 and s is a shared polymorphic site between h and 7
Lis(x;r), otherwise '

Then, to account for the additional branch from A to i, let ¢, and t; denote the times of inoculation
of h and i respectively, and set

L(X:r) = [lexp(—pu(ts — i) [] Lis(isi r)-

i

The term exp(—pu(t; — tz)) is the Jukes-Cantor likelihood of a branch of length ¢; — ), exhibiting
zero mutations.

Because of the additional assumptions and approximations required here, we recommend using this
optional adjustment to the likelihood function only in scenarios with little to no consensus-level
diversity. Note that it only aids in inferring transmission links based on shared polymorphic sites
in the absence of consensus-level changes; the instance of a minor allele being transmitted from
a donor and reaching fixation in the recipient is already accounted for without any need for this
modification.

A.5 Complete Posterior Density

Having defined the intrahost evolutionary model, we can now write the complete posterior density
from which we sample using MCMC. To do so, we first establish some notation. Let

Y =(G,Z,s)
denote our data, where:

e G is an neps X Npases Matrix with entries in {A, C, G, T} whose entry g;s is the nucleotide
at site s on the consensus genome collected from host i, where ngpg is the number of observed
hosts and npages is the length of the viral genome.

o 7 is an ngpg X Npases Matrix whose entry z;5 is the proportion of the viral population exhibiting
a minor allele at site s in host 7. Note that in practice, we mask all multiallelic sites, so z;s
is well-defined. Depending on the contents of the bottleneck infecting host i, the de novo
within-host variant to arise at site s in host 7 may have frequency z;s or 1 — z;5, hence the
need to distinguish between Z defined here and X as defined in Section A.3.
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e s is a vector of length nyps whose ith entry is the time that a genome was sampled from case

1. By convention, we set max; s; = 0, and all other entries of s relative to its maximum. As a
result, all entries of s are non-positive.

Next, let

0 = (Tl, h7t7M7X7 1y Rawa ,8,71',&9, )‘g7a57 AS)

where:

e 1 is the total number of hosts in the network.

h is the length-n vector of ancestors, whose ith entry h; is equal to the infector of a host i.
By convention, the index ¢ = 1 denotes the root of the cluster, and we set h; to be undefined
(NA in computer terms).

t is a vector of length n whose ith entry ¢; is the time at which host 7 becomes infected.

M is a list of all mutations to occur on the global phylogeny. We organize M as a list of lists,
where the ith entry enumerates the mutations along the branch of the phylogeny starting at
the bottleneck of host h; and ending at the bottleneck of host ¢. Each mutation consists of
the nucleotide being mutated away from, the position on the genome of the mutation, the
nucleotide being mutated into, and the time at which the mutation occurs e.g. C123T at time
—10. Let | M| denote the total number of mutation events in all of M.

X is an Nghs X Npases Matrix whose entry z; is the proportion of the viral population exhibiting
a de movo within-host variant site s in host i. Depending on the contents of the bottleneck
infecting 7 (which may be deduced from M), ;s is equal to either z;5 or 1 — 2.

1 is the mutation rate, in substitutions per site per unit time.
R is the reproductive number, i.e. the mean of the offspring distribution.

1) is the second parameter of the offspring distribution, which is modeled as Negative Binomial

with parameters % and v (to ensure the mean equals R).

[ is the within-host effective population size growth rate, as defined in Section A.1.
7 is the probability that a host is sampled.

ag is the shape parameter of the generation interval, which we assume to follow a Gamma
distribution.

Mg is the rate parameter of the generation interval, which we assume to follow a Gamma
distribution.

as is the shape parameter of the sojourn interval (the time between inoculation and sampling),
which we assume to follow a Gamma distribution.

As is the rate parameter of the sojourn interval, which we assume to follow a Gamma distri-
bution.



201 Using the definitions of Y and 6, the likelihood 7(Y|@) is given by:

n

202 71'(Y’|0) = H |:(1 - Fti)l(iéz()bs) (ﬂ'tifGamma(Si —t;; as, )\s)ﬂ(iGObs))ati (dz)
i=1
203 X H fGamma(tj —t3; a4, )\g)] X
Jihj=1
n
N\ IMI

204 €XP | —HMbases Z Z '(tj =) | x (g) X

i=1 j:hj=i
205 L(X; u1/B),
206 where:
207 e 1(A) is the indicator function of an event A.
208 e obs is the set of observed (i.e. sampled and sequenced) hosts.
209 ® fGamma(%;a, ) is the probability density function of a Gamma distribution with shape pa-
210 rameter a and rate parameter A evaluated at x.
211 o Ty =T j;? fGamma(Z; as, As) dx is the probability that host i is sampled by the time 0, i.e. the
212 time of the last sample collection and hence the time at which data collection ends.
213 e d; is the number of people infected by host i, i.e. the cardinality |{j : h; = i}|.

214 o ay,(di) =272, (!Z)fNBin(k'; %; ¢)@Z_di, where

— fnBin(k; 7, p) is the probability mass function of the Negative Binomial distribution with
parameters r and p evaluated at k, i.e.

in(K; =————p"(1—p)~.
fxgin(k;7,p) TR P (1-p)
215 - a)fi ~%i is the probability that k—d; of the offspring of ¢ are unsampled and have no sampled
216 descendants by time 0. This quantity may be calculated numerically using equation 9 of
217 TransPhylo (Didelot et al. 2017).

218 o L(X;u/B) is defined in Section A.3. It may optionally be replaced by L(X; w/B) as defined
219 in Section A.4.

220 The first two lines of the likelihood 7(Y|@) and all associated definitions, which account for the
221 probability associated with the transmission network, are adapted from TransPhylo (Didelot et
222 al. 2017), equations 8-11. The third line is the Jukes-Cantor model for an explicit mutation
223 representation of a phylogeny (Jukes & Cantor 1969). The final line is the within-host variant
224 frequency model developed in this paper.

225 Additionally, there are several conditions @ must satisfy, else we set the value of 7(Y|@) to 0. These
226 conditions are:
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e If a position s on the genome in host ¢ is observed, meaning that g;s € {A, C, G, T} (as
opposed to N or - or another designator of missing data), then we require that either (a) if no
iSNV is observed at site s in host ¢, the bottleneck infecting 7 must have allele g;5 at site s, or
(b) if an iSNV is observed at site s in host ¢, the bottleneck infecting ¢ must have one of the
two alleles observed at site s.

e The global phylogeny must obey local parsimony. This means that for each host ¢, the genotype
of the bottleneck infecting host 7 must be selected to minimize the number of mutations among
the portion of the global phylogeny connecting host ¢ to host h; and hosts j such that h; = 4,
subject to all bottlenecks in the global phylogeny satisfying the previous condition.

Finally, we must define our prior on 6. In accordance with TransPhylo (Didelot et al. 2017), the
only non-uniform prior we assign is R ~ Expo(1), i.e.

m(6) = exp(—R).

Having defined our prior and likelihood, we may now compute the posterior 7(€|Y) up to a constant
of proportionality via Bayes’ Theorem:

7(0)Y) x 7 (Y|0)7(6).

B MCMC Implementation

B.1 Moves

We draw samples from the joint posterior distribution of transmission networks, phylogenies, and
their underlying parameters using a Metropolis-Hastings sampler with a custom moveset. We sep-
arate our MCMC moves into two categories: global moves, which affect every node’s contribution
to the likelihood function, and local moves, which only affect the contributions of a few nodes. The
global moves are:

1. Adjust the value of the mutation rate p by adding a Normal random variable with mean 0
and standard deviation po/10, where pg is a user-specified initial guess of the mutation rate
(defaults to g = 2 x 1079).

2. Adjust the value of the sampling rate = by adding a Normal random variable with mean 0
and standard deviation 0.05.

3. Adjust the value of the reproductive number R by adding a Normal random variable with
mean 0 and standard deviation 0.1.

All of these moves require updating the likelihood function associated with the global phylogeny,
the likelihood of the transmission network, and the likelihood function of the within-host evolution
at every host. As such, they are relatively expensive, in contrast to the local moves to follow. Before
enumerating them, we establish some notation: let an observed host refer to a host that is sampled
and sequenced, and let an unobserved host refer any other host. Let an explicit host refer to any
host that is either (a) observed, (b) has at least two offspring, or (c) is the root, i.e. the first case
to be infected. For an explicit host 7, we use the notation h; to mean the most recent explicit host
that is ancestral to i. Let the implicit hosts leading to i refer to the non-explicit hosts along the
transmission chain from h; to ¢ (noting that the set of implicit hosts leading to ¢ may be empty).
See Figure 1.
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Figure 1: Let boxes represent hosts and arrows represent transmissions. Here, h; and ¢ are explicit
hosts, and the two unlabeled hosts along the transmission chain from h; to i are referred as the
implicit hosts leading to 3.

For an explicit host 7, let t; denote the times of inoculation for ¢ and the implicit hosts leading to
i, in decreasing order. For an observed host i, let s; denote the time of sampling. Throughout, we
use the notation x[k] to denote the kth element of the vector x, with 1-based indexing. Let a4 and
Ag be the shape and rate parameters of the Gamma-distributed generation interval; let a, and A
be the shape and rate parameters of the Gamma-distributed sojourn interval. For ease of notation,
let 11y and ps denote the means of the generation and sojourn intervals, respectively.

Using this notation, we may define our local moves. As some of them are quite complex and
notation-heavy, we provide a simple descriptor of each move in the list below.

4. Resample the times of infection along a branch.
5. Resample the times of infection and mutation along a branch.
6. Resample the times of infection for a host ¢ and all hosts along the branches connected to .

7. Resample the times of infection for a host ¢, its ancestors, and all hosts along the branches
connected to ¢ and its ancestors.

8. Update the genotype of a host .
9. Resample the ancestor h; of ¢ to be either the ancestor or an offspring of h;.
10. Resample the ancestor h; of ¢ to be anyone infected before .

11. Resample the ancestor h; of ¢ to be anyone infected before i, but bias the choice such that
hosts with genotypic similarities to ¢ are proposed more often.

12. Pick a pair of hosts ¢, j where ¢ infects j, and rearrange the transmission network such that j
infects i.

13. Do the same as the previous move, except also set the offspring of ¢ to be infected by j, and
set the offspring of j to be infected by 3.

For the remaining three moves, upon choosing to perform the move, we will randomly select one of
two possible sub-moves, to ensure reversibility:

15. With probability 1/2, pick a host h and create a new unobserved host ¢ that is infected by
h. Then, take some of the offspring of A and make them into offspring of i. With probability
1/2, delete an unobserved host i, and update the ancestor of i’s offspring to be h;.
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16.

17.

4.

With probability 1/2, pick a host j and create a new unobserved host ¢ that infects j. Then,
take some of the offspring of j and make them into offspring of i. With probability 1/2,
delete an unobserved host i, and update the ancestor of i’s offspring to be j, one of the former
offspring of i.

With probability 1/2, pick a mutation that occurs twice on the global phylogeny, create a new
unobserved host ¢ with this mutation, and rearrange the phylogeny such that this mutation
occurs only once. With probability 1/2, delete an unobserved host i and resample the ancestors
of the former children of 7 from the descendants of h;.

The overviews of Moves 4-16 provided above may be implemented as follows, respectively:

Select an explicit host ¢ uniformly at random. Resample the number of implicit hosts leading
to i as being equal to the rounded value of (t;[1] — tp,[1])py with probability 0.95, or drawn
from the Pois((t;[1] — tp,[1])jg) distribution with probability 0.05. Then, resample t; as the
cumulative sum of a Dirichlet(ug, g, . . ., jtg) draw, rescaled to the interval (tp,[1],t;[1]), and
in reverse order.

. Perform Move 4. Then, resample the times of mutation events along the branch from ty,[1]

to t;[1] as i.i.d. Unif(ty,[1],t;[1]) draws.

. Select an explicit host ¢ uniformly at random. Let J = {j : h; = i}. Let tyax = min{{t;[1] :

j € J}Us;}. If i is not the root, resample t;[1] ~ Unif(tp,[1], tmax), and then apply Move 5
to ¢ and to each j. If 7 is the root, let T denote the total evolutionary time, i.e. the difference
in time between max; s; and t1[1]. Let pa = 7'/10 and let

p= ra
ua + tmax — tz[l] .
Then sample
— Expo(ua) with probability p
Unif (0, tmax — t:[1])  with probability 1 —p

Finally, apply Move 5 to each j € J.

Select an explicit host ¢ uniformly at random. Let J = {j : h; = i}. Let I denote the set of all
explicit hosts ancestral to i, including i—that is, if we apply the function ¢ — h; recursively,
we enumerate the elements of I. Let J = {j: hj € I} \ I. Let

Apmax = min{{t;[1] —tp,[1] : j € J} U {sy —ty[1]: i' € I}}.
As in Move 6, let T denote the total evolutionary time, let ua = 7'/10, and let

b= A
pa + Amax .

Then sample

—Expo(ua)  with probability p
Unif(0, Apax) with probability 1 —p

Set t; < t; + A for each ¢/ € I, and finally, apply Move 5 to each j € J.

10
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10.

11.

12.

13.

14.

15.

. Select an explicit host ¢ uniformly at random. Let J = {j : h; = i}. Resample the genotype

of ¢ uniformly at random from the set of genotypes that minimize the number of mutations
along the portion of the phylogeny connecting i to each j € J and to h;, noting that if ¢ is
observed, than the genotype may only be updated at sites with missing data and sites with
iSNVs. Then resample the times of the mutations on the branch of the phylogeny leading into
7 uniformly at random. Do the same thing for each j € J.

. Do one of the following, with equal probability:

(a) Select an explicit host ¢ uniformly at random. Let J = {j : h; = i}. Select j € J
uniformly at random, and set h; < j. Then apply Move 4 to ¢. Finally, apply Move 8 to
i.

(b) Select an explicit host ¢ uniformly at random. Set h; <— hp,. Then apply Move 4 to i.
Finally, apply Move 8 to 1.

Select an explicit host ¢ uniformly at random. Let A = {a : t,[1] < t;[1]}, and sample h;
uniformly from A. Then apply Move 4 to i. Finally, apply Move 8 to i.

Select an explicit host ¢ uniformly at random, and let A be as above. For each a € A, let m,
be the number of mutations on the branch of the phylogeny leading into a that also appear
on the branch of the phylogeny leading into i. Sample a € A with probability

exp(ma/T)
2iaren exp(Ma /7)

with 7 = 0.2. Set h; + a; apply Move 4 to i; and, finally, apply Move 8 to 1.

Select an explicit host j uniformly at random subject to the condition that h; and hjp; both
exist. Let 7 = h; and let h = h;. Set hj <= h, h; < j, and swap the vectors t; and t;. Let
K ={k: hy € {h,i,j}}. For each k € K, resample the times of mutations on the branch of
the phylogenetic tree leading into k.

Perform Move 12, except after swapping the vectors t; and t;, perform the following additional
step: let K; = {k: hy =i}; let Kj = {k: hy = j}, set hy, =i for each k € Kj; and set hy, = j
for each k € K;.

Do one of the following, with equal probability:

(a) Select an explicit host h with probability proportional to its degree (i.e. the size of
the set J = {j : h; = h}), subject to the condition that the degree of h is at least
2. Let Jy = {j : hj = h}. Sample n; ~ Unif({2,3,...,|Jo|}) if h is observed, or
nj ~ Unif({2,3,...,]Jo| — 1}) if h is unobserved. Sample a subset J uniformly at
random from the set of subsets of Jy that have cardinality n;. Create a new host explicit
host ¢, set h; = h, and set hj = i for each j € J. Draw t;[1] ~ Unif(t5[1], minje s t;[1]),
then draw the rest of the vector t; by applying Move 4 to i. Then apply Move 4 to each
7 € J. Finally, apply Move 8 to .

(b) Select an unobserved explicit host ¢ uniformly at random. Let J = {j : h; = i}, and
let h = h;. Delete host ¢ and set h; = h for each j in J. Finally, apply Move 5 to each
jeJ.

Do one of the following, with equal probability:

11
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(a) Select an explicit host j; uniformly at random. Let Ko = {k : hy = ji} and let h = hj,.
Sample ny ~ Unif({1,2,...,|Ko|}) if j1 is observed, or n; ~ Unif({1,2,...,|Ko| — 2})
if 71 is unobserved. Sample a subset K uniformly at random from the set of subsets
of Ky that have cardinality n;. For each k € K, set hyy = h. Let J = K U {j1}.
Create a new host explicit host i, set h; = h, and set h; = i for each j € J. Draw
t;[1] ~ Unif(t;[1], minje s t;[1]), then draw the rest of the vector t; by applying Move 4
to 2. Then apply Move 4 to each j € J. Finally, apply Move 8 to 1.

(b) Select an unobserved explicit host ¢ uniformly at random. Let J = {j : h; = i}, let
J1 = argmin;c; t;[1], let K = J\ {j1}, and let h = h;. Delete host i, set hj, = h, and
set hy = j;1 for each k € K. Finally, apply Move 5 to each j € J.

16. Do one of the following, with equal probability:

(a) Let P denote the set of positions on the genome that mutate at least once on the global
phylogeny. For a position p € P, let n, be one less than the number of times a mutation
at position p occurs on the global phylogeny. Let B ~ Bernoulli(0.95). If B = 1, and
if the n,’s are not all equal to 0, sample a position p with probability proportional to
ny. Let Jy be the set of explicit hosts j such that the branch of the global phylogeny
leading into j has a mutation at position p, and note that |Jy| > 2 by construction of
ny. Sample a subset J of cardinality 2 from Jy uniformly at random. Let h be the most
recent common ancestor of the two elements of J, i.e. the latest-to-be-infected explicit
host that is ancestral to both elements of J. Create a new host explicit host i, set h; = h,
and set h; =i for each j € J. Draw t;[1] ~ Unif(ts[1], minje s t;[1]), then draw the rest
of the vector t; by applying Move 4 to i. Then apply Move 4 to each j € J. Finally,
apply Move 8 to 1.

(b) Select an unobserved explicit host ¢ uniformly at random, subject to the condition that
the set J = {j : hj = i} has cardinality 2. Let h = h;. Delete host ¢ and set h; = h for
each j in J. For each j in J, repeatedly perform the following sequence of actions until
it terminates: (1) set K = {k : hy = hj,k # j}; (2): with probability ﬁ, terminate, or
with probability KLH, select a k uniformly at random from K, and set h; = k. Note that
repeating these actions must eventually terminate because each iteration takes j one step
further from the root, and the entire transmission network can only have finitely many
hosts. Finally, apply Move 5 to each j € J.

Note also that to ensure we maintain the property that an unobserved explicit host must either
have degree 2 or be the root, we automatically reject moves that violate this condition.

B.2 Schedule of Moves

The schedule of moves depends on how frequently we wish to execute local moves as opposed to
global ones. We capture this ratio using the fixed, user-specifed parameter Mj,¢a1, which states that
there are Miocal iterations of each local move per 1 iteration of each global move. Letting Mgiohal
denote the total number of iterations of each global move and Mecorq be the number of local moves
per MCMC sample (i.e. state of the MCMC that is returned to the user at the end of the algorithm),
we propose Algorithm 1 as the overall structure of our implementation. As a default, we propose
Mglobal = 1047 Moear = 100, and Myecorqa = 100.

12



406

407
408
409
410
411
412

413

414
415
416
417
418
419
420
421
422
423
424
425

426

Algorithm 1 Phylogenetic and Transmission Reconstruction

1: Initialize @, the configuration of the transmission network and values of all parameters
2: © < (), the set of posterior samples

3: for 1 << Mglobal do

4 Update 8 by executing moves 1-3 in order

5: for 1 < j < Mjgear do

6 Update 0 by executing moves 4-16 in order

7 if j mod Miecora = 0 then

8 Append 6 to ©

9

end if
10: end for
11: end for

12: return ©

B.3 Parallelization

The above MCMC sampler may conveniently be run in parallel over subtrees partitioning the
transmission network, thanks to the fact that the likelihood function computed on the entire tree
equals the product of the likelihood function computed on each subtree. The only moves that
require an update of the likelihood on all parts of the tree at once are the global moves; hence,
we parallelize the algorithm by randomly partitioning the tree into subtrees after completing the
global moves, then joining the subtrees back together to perform the next cycle of global moves,
and repeating.’!

To perform the random tree partitioning, we implement the algorithm presented in Borndorfer,
Elijazyfer, & Schwartz (2019), with a slight modification. In words, this algorithm first specifies
A, the minimum allowable number of nodes in a subtree. Here we use a conservative choice of
A = max(n/Mcores, 25), where n is the total number of nodes in the original tree and Mcopes is the
available number of CPU cores. This choice guarantees that the algorithm will produce at most
Mores subtrees. Then, we iterate over nodes in the tree in reverse-BFS order, where BF'S is executed
starting at the root node. For a node ¢, we first compute the total number of descendants of ¢ as the
sum of the number of descendants of the children of 4, plus 1 for ¢ itself. After having performed
this update, if the total number of descendants of a node ¢ is A or greater, we take i to be the
root of one of our subtrees—so long as “cutting off” that subtree leaves at least A nodes remaining
in the subtree rooted at the global root. Finally, for the sake of improved mixing, we make the
modification that a node ¢ cannot be the root of a subtree if it was the root of a subtree in the
previous partition of the transmission network.

!Moves 10 and 11 do sometimes change the likelihood across different regions of the transmission network; to
resolve this, we simply limit the choices of the new value of h; to those within the same subtree as i. Moreover, we
automatically reject any move that affects a host ¢ at the boundary of one subtree and another and would hence cause
the likelihood to change in more than one subtree. Since each tree partition differs from the previous one and varies
randomly with the tree topology, a certain tree rearrangement via Move 10 or 11 prohibited under one partition may,
and eventually will, become possible under a different partition.
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