

1 JUNIPER: Reconstructing Transmission Events from
2 Next-Generation Sequencing Data at Scale

3 Supplementary Text

4 **A Intrahost Evolutionary Model**

5 **A.1 Viral Population Size at First Mutation Event**

6 To determine the probability density function (PDF) of an iSNV exhibiting a certain frequency, we
7 model within-host viral replication as a pure-birth process in which the the viral population at time
8 t after inoculation is:

9
$$n(t) := e^{\beta t}$$

10 for some parameter β . Our first goal is to compute the total evolutionary time elapsed within the
11 host between the time of inoculation and time t past inoculation. For any $s > 0$ and small $\Delta s > 0$,
12 the approximately $n(s)$ virions to exist in the time interval $(s, s + \Delta s)$ contribute a factor of $n(s)\Delta s$
13 to the total evolutionary time. Taking the limit as $\Delta s \rightarrow 0$, the total evolutionary time at t —that
14 is, the total amount of time that all lineages in the population have been extant—is given by

15
$$N(t) := \int_0^t n(s)ds = \frac{n(t) - 1}{\beta}.$$

16 Here the -1 in the numerator is the constant of integration, chosen such that $N(0) = 0$. Now,
17 under a Jukes Cantor model, the amount of evolutionary time T until the first mutation event at a
18 given site on the genome is distributed as $\text{Expo}(\mu)$, i.e. the Exponential distribution with a mean
19 of $1/\mu$. Setting

20
$$T = \frac{n(t) - 1}{\beta}$$

21 and rearranging, we obtain

22
$$n(t) = 1 + \beta T.$$

23 Treating T as random, we have that

24
$$\beta T \sim \text{Expo}\left(\frac{\mu}{\beta}\right)$$

25 and hence the population size at the time t of the first mutation also approximately follows this
26 distribution, assuming μ/β is small. To simplify notation moving forward, let $r = \mu/\beta$.

27 **A.2 Proportion of Mutated Particles**

28 Given $n(t)$, we model the proportion x of viral particles in sequencing data to exhibit the new
 29 mutation as $\text{Beta}(1, n(t))$. Hence, the marginal PDF f of this proportion is obtained by the integral

30
$$f(x; r) = \int_1^\infty f_{\text{Beta}}(x; 1, u) f_{\text{Expo}}(u - 1; r) du$$

31 where $f_{\text{Beta}}(x; a, b)$ denotes the $\text{Beta}(a, b)$ PDF evaluated at x and $f_{\text{Expo}}(x; \alpha)$ denotes the $\text{Expo}(\alpha)$
 32 PDF evaluated at x . While the resulting PDF admits an analytic form, its corresponding CDF
 33 (which we will need later) does not. For this reason, we approximate $n(t)$ as following a discrete
 34 $\text{Geom}(r)$ distribution, leveraging the fact that r is very close to 0. The above equation then becomes

35
$$f(x; r) \approx \sum_{k=1}^{\infty} f_{\text{Beta}}(x; 1, k) f_{\text{Geom}}(k - 1; r) = \frac{r}{(r + x - rx)^2},$$

36 a highly tractable PDF whose CDF and moments admit analytic forms. In particular, the CDF F
 37 is given by

38
$$F(x; r) := \int_0^x f(t; r) dt = \frac{x}{r + x - rx},$$

39 a function which often arises in computing the likelihood of within-host variation data. Finally, we
 40 note that the probability density function of the frequency of a *specific* within-host variant, i.e. a
 41 within host variant arising from an A to C substitution as opposed to a substitution from A to any
 42 other nucleotide, is given by

43
$$\frac{r}{3(r + x - rx)^2},$$

44 assuming the Jukes-Cantor model.

45 **A.3 Likelihood of Within-Host Variation Data**

46 While the previous section defines a probability density function for *de novo* within-host variant
 47 frequencies, two adjustments must be made when using it to compute the likelihood of NGS data
 48 observed in an outbreak. First, in practice, NGS can reliably detect within-host variants that
 49 comprise a fraction of the viral population exceeding some threshold, usually 3% in practice. If
 50 variants with frequencies below some threshold value B are masked, the likelihood $L_{is}(x; r)$ of a
 51 specific *de novo* variant within host i at some site s on the viral genome exhibiting frequency x
 52 becomes

53
$$L_{is}(x; r) = \begin{cases} \frac{B}{r+B-rB}, & x < B \\ \frac{r}{3(r+x-rx)^2}, & x \geq B \end{cases}.$$

54 This function accounts for a lower threshold on iSNV frequencies by integrating the PDF of x
 55 over all undetectable frequencies, resulting in the $x < B$ piece of the piecewise function. It applies
 56 to all iSNVs in a given host at positions on the genome that do *not* mutate on the part of the
 57 global phylogeny contained within said host, where *global phylogeny* means the phylogenetic tree
 58 connecting the bottlenecks of all hosts in our proposed transmission network as described in the
 59 *Global Evolutionary Model* subsection of the main text. Now, consider the case that position s

60 exhibits within-host variation in a host i , and that the portion of the global phylogeny contained
 61 within host i also exhibits a mutation at site s . Since the distribution of the frequency of a *de novo*
 62 iSNV at site s depends on the population size at the first mutation event at site s , we handle this
 63 case by conditioning on whether the mutation at site s on the global phylogeny within i is indeed
 64 the first to occur at that site within host i . Let t be the time at which such a mutation occurs,
 65 measured in time units post inoculation of i . Take the mutation on the global phylogeny at site
 66 s within host i be a substitution from nucleotide X to nucleotide Y , and let the two nucleotides
 67 observed as within-host variants at site s in host i be X and Z . First consider the case $Y = Z$. If
 68 the mutation on the global phylogeny is the first to occur at site s in host i , the likelihood of
 69 the frequency x of that mutation follows a $\text{Beta}(1, n(t))$ distribution, as per the previous section.
 70 If not, its density function is obtained by restricting population size at the time of first mutation
 71 to have support $[0, n(t)]$ and then applying the same Geometric approximation to the Exponential
 72 distribution as before:

$$73 \quad \frac{1}{3} \sum_{k=1}^{n(t)} f_{\text{Beta}}(x; 1, k) f_{\text{Geom}}(k-1; r) = \frac{r(n(t)(r-1)x - n(t)r - 1)((r-1)(x-1))^{n(t)} + r}{3(r(-x) + r + x)^2}.$$

74 While the left-hand side of the above only makes sense when $n(t)$ is an integer, the right-hand side
 75 is defined for any real $n(t)$, and hence we allow $n(t)$ to take on continuous values in practice. The
 76 case $Y \neq Z$ is analogous, except that if the first mutation to occur at site s within host i is the one
 77 on the global phylogeny, the probability of observing a within-host mutation from X to Z is 0 under
 78 our model.

79 Once again, in the presence of a lower threshold B for iSNV frequencies, our observed frequencies
 80 will either be greater than B or will be reported as being below the limit of detection. In the latter
 81 case, as before, the likelihood is computed by integrating the above density function from 0 to B ,
 82 and ignoring the $1/3$ term in front because any substitution whose frequency stays below the limit
 83 of detection is possible. Again, this integral admits an analytic form:

$$84 \quad \int_0^B \sum_{k=1}^{n(t)} f_{\text{Beta}}(x; 1, k) f_{\text{Geom}}(k-1; r) dx = \frac{(1-r)^{n(t)} (-r(1-B)^{n(t)+1} - Br + B + r) - B}{B(r-1) - r}$$

85 We are now ready to write down the complete likelihood L of observing a within-host substitution
 86 from X to Z with frequency x at site s in a host i , considering both the limit of detecting for NGS
 87 as well as the possibility of a substitution at site s from X to Y on the part of the global phylogeny
 88 within host i . Let G equal 1 if such a substitution occurs on the global phylogeny, and 0, otherwise.
 89 Let $S_{\text{Geom}}(k; r)$ denote the $\text{Geom}(r)$ survival function, i.e.

$$90 \quad S_{\text{Geom}}(k; r) = \sum_{j=k+1}^{\infty} f_{\text{Geom}}(j; r),$$

91 and let $F_{\text{Beta}}(x; \alpha, \beta)$ denote the $\text{Beta}(\alpha, \beta)$ CDF, i.e.

$$92 \quad F_{\text{Beta}}(x; \alpha, \beta) = \int_0^x f_{\text{Beta}}(t; \alpha, \beta) dt.$$

93 Then

$$94 \quad L_{is}(x; r) = \begin{cases} \frac{x}{r+x-rx}, & x < B, G = 0 \\ \frac{r}{3(r+x-rx)^2}, & x \geq B, G = 0 \\ \frac{(1-r)^{n(t)}(-r(1-B)^{n(t)+1}-Br+B+r)-B}{B(r-1)-r} + S_{\text{Geom}}(n(t); r)F_{\text{Beta}}(x; 1, n(t)), & x < B, G = 1 \\ \frac{r(n(t)(r-1)x-n(t)r-1)((r-1)(x-1))^{n(t)}+r}{3(r(-x)+r+x)^2}, & x \geq B, G = 1, Y \neq Z \\ \frac{r(n(t)(r-1)x-n(t)r-1)((r-1)(x-1))^{n(t)}+r}{3(r(-x)+r+x)^2} + S_{\text{Geom}}(n(t); r)f_{\text{Beta}}(x; 1, n(t)), & x \geq B, G = 1, Y = Z \end{cases}.$$

95 Finally, to compute the likelihood L of all within-host variants observed across all hosts, let x_{is} to
96 be the frequency of a *de novo* within-host variant at site s in host i . Letting \mathbf{X} denote the collection
97 of all such x_{is} over i and s , we define

$$98 \quad L(\mathbf{X}; r) = \prod_i \prod_s L_{is}(x_{is}; r).$$

99 Note that if no within-host variation data is available for site s in host i , we take $L_{is}(x_{is}; r) = 1$.

100 A.4 Within-Host Likelihood Adjustment for Incomplete Bottlenecks

101 Recall that our within-host variation model assumes transmission bottlenecks are always complete,
102 i.e. that each host is first infected by a single virion. In this section, we present a modification to
103 the function L_{is} presented above that can incorporate incomplete bottlenecks, though it requires
104 making several additional assumptions and approximations. Modeling incomplete bottlenecks is
105 particularly challenging because it drastically enlarges the space of plausible phylogenetic trees,
106 given a transmission network: even if we maintain the assumption that all coalescences occur at the
107 time of inoculation, we must infer both the *number* of bottleneck particles to inoculate each host
108 as well as *which* is ancestral to each lineage.

109 Given this challenge, we propose an approximate model under the assumptions that every bottleneck
110 consists of one or two viral particles. Note that even with this assumption, any number of shared
111 polymorphic sites between a donor and recipient are possible. Moreover, we only ever model a
112 host as being inoculated with two virions if (1) the two ends of the branch terminating at said
113 host both represent observed (sampled and sequenced) hosts, (2) those two hosts share at least one
114 polymorphic site with the same two alleles, and (3) adding a second branch of the phylogenetic tree
115 linking the two hosts decreases the total number of mutation events required to realize the genetic
116 diversity observed in both hosts. These conditions are met when, for instance, a donor and recipient
117 have identical consensus genomes, a shared iSNV at one site, and no other polymorphic sites. This
118 scenario may occur if two virions—one with one genotype at the polymorphic site and one with the
119 other—inoculate the recipient. It may also occur if the polymorphism arises *de novo* in both the
120 donor and recipient, but this latter scenario requires two mutation events, as opposed to one in the
121 former.

122 Consider the case that conditions (1), (2), and (3) are met for a given two hosts h and i with h
123 ancestral to i . First, suppose s is a shared polymorphic site for h and i . In this case, we model
124 the inoculum of host i as consisting of two virions, one with each of the two shared alleles at site s .
125 Hence, we model the fraction of reads in i at site s exhibiting one of the alleles is Beta(1, 1), which is
126 the same as the uniform distribution on $[0, 1]$. The probability density function of this distribution is
127 1 on $[0, 1]$ and 0 elsewhere, so its contribution to the within-host evolutionary likelihood is constant.
128 If s is *not* a shared polymorphic site, then we model both particles to infect host i as having the
129 same genotype, and we revert to the previously-defined L_{is} to compute the likelihood for that site.

130 We also need to account for the fact that there now exists an additional branch on the phylogenetic
 131 tree linking h to i . This branch needs no additional mutations, since whatever mutation led to the
 132 shared polymorphic site has already been accounted for in the within-host evolutionary likelihood
 133 function calculated for host i . Moreover, under the assumption of rapid exponential growth of
 134 the within-host effective population size immediately after inoculation, said mutation must have
 135 occurred just after host h was infected (or was already present in the bottleneck of h). Since the
 136 new branch extends from the time of mutation in h to the time of inoculation of i , its length is
 137 approximately the difference in times of inoculation of h and i —i.e. the same length as the existing
 138 branch from h to i .

139 We now have what we need to define our modified within-host likelihood function, which we will
 140 call $\tilde{L}(\mathbf{X}; r)$. Let $H_i = 1$ if conditions (1), (2), and (3) hold in i , and 0, otherwise. To account for
 141 shared polymorphic sites in h and i , let

$$142 \quad \tilde{L}_{is}(x; r) := \begin{cases} 1, & H_i = 1 \text{ and } s \text{ is a shared polymorphic site between } h \text{ and } i \\ L_{is}(x; r), & \text{otherwise} \end{cases}.$$

143 Then, to account for the additional branch from h to i , let t_h and t_i denote the times of inoculation
 144 of h and i respectively, and set

$$145 \quad \tilde{L}(\mathbf{X}; r) = \prod_i [\exp(-\mu(t_i - t_h))]^{H_i} \prod_s \tilde{L}_{is}(x_{is}; r).$$

146 The term $\exp(-\mu(t_i - t_h))$ is the Jukes-Cantor likelihood of a branch of length $t_i - t_h$ exhibiting
 147 zero mutations.

148 Because of the additional assumptions and approximations required here, we recommend using this
 149 optional adjustment to the likelihood function only in scenarios with little to no consensus-level
 150 diversity. Note that it only aids in inferring transmission links based on shared polymorphic sites
 151 in the absence of consensus-level changes; the instance of a minor allele being transmitted from
 152 a donor and reaching fixation in the recipient is already accounted for without any need for this
 153 modification.

154 A.5 Complete Posterior Density

155 Having defined the intrahost evolutionary model, we can now write the complete posterior density
 156 from which we sample using MCMC. To do so, we first establish some notation. Let

$$157 \quad \mathbf{Y} = (\mathbf{G}, \mathbf{Z}, \mathbf{s})$$

158 denote our data, where:

- 159 • \mathbf{G} is an $n_{\text{obs}} \times n_{\text{bases}}$ matrix with entries in $\{\text{A, C, G, T}\}$ whose entry g_{is} is the nucleotide
 160 at site s on the consensus genome collected from host i , where n_{obs} is the number of observed
 161 hosts and n_{bases} is the length of the viral genome.
- 162 • \mathbf{Z} is an $n_{\text{obs}} \times n_{\text{bases}}$ matrix whose entry z_{is} is the proportion of the viral population exhibiting
 163 a minor allele at site s in host i . Note that in practice, we mask all multiallelic sites, so z_{is}
 164 is well-defined. Depending on the contents of the bottleneck infecting host i , the *de novo*
 165 within-host variant to arise at site s in host i may have frequency z_{is} or $1 - z_{is}$, hence the
 166 need to distinguish between \mathbf{Z} defined here and \mathbf{X} as defined in Section A.3.

167 • \mathbf{s} is a vector of length n_{obs} whose i th entry is the time that a genome was sampled from case
 168 i . By convention, we set $\max_i s_i = 0$, and all other entries of \mathbf{s} relative to its maximum. As a
 169 result, all entries of \mathbf{s} are non-positive.

170 Next, let

171 $\boldsymbol{\theta} = (n, \mathbf{h}, \mathbf{t}, \mathcal{M}, \mathbf{X}, \mu, R, \psi, \beta, \pi, a_g, \lambda_g, a_s, \lambda_s)$

172 where:

- 173 • n is the total number of hosts in the network.
- 174 • \mathbf{h} is the length- n vector of ancestors, whose i th entry h_i is equal to the infector of a host i .
 175 By convention, the index $i = 1$ denotes the root of the cluster, and we set h_1 to be undefined
 176 (NA in computer terms).
- 177 • \mathbf{t} is a vector of length n whose i th entry t_i is the time at which host i becomes infected.
- 178 • \mathcal{M} is a list of all mutations to occur on the global phylogeny. We organize \mathcal{M} as a list of lists,
 179 where the i th entry enumerates the mutations along the branch of the phylogeny starting at
 180 the bottleneck of host h_i and ending at the bottleneck of host i . Each mutation consists of
 181 the nucleotide being mutated away from, the position on the genome of the mutation, the
 182 nucleotide being mutated into, and the time at which the mutation occurs e.g. C123T at time
 183 -10 . Let $|\mathcal{M}|$ denote the total number of mutation events in all of \mathcal{M} .
- 184 • \mathbf{X} is an $n_{\text{obs}} \times n_{\text{bases}}$ matrix whose entry x_{is} is the proportion of the viral population exhibiting
 185 a *de novo* within-host variant site s in host i . Depending on the contents of the bottleneck
 186 infecting i (which may be deduced from \mathcal{M}), x_{is} is equal to either z_{is} or $1 - z_{is}$.
- 187 • μ is the mutation rate, in substitutions per site per unit time.
- 188 • R is the reproductive number, i.e. the mean of the offspring distribution.
- 189 • ψ is the second parameter of the offspring distribution, which is modeled as Negative Binomial
 190 with parameters $\frac{R\psi}{1-\psi}$ and ψ (to ensure the mean equals R).
- 191 • β is the within-host effective population size growth rate, as defined in Section A.1.
- 192 • π is the probability that a host is sampled.
- 193 • a_g is the shape parameter of the generation interval, which we assume to follow a Gamma
 194 distribution.
- 195 • λ_g is the rate parameter of the generation interval, which we assume to follow a Gamma distribution.
- 196 • a_s is the shape parameter of the sojourn interval (the time between inoculation and sampling),
 197 which we assume to follow a Gamma distribution.
- 198 • λ_s is the rate parameter of the sojourn interval, which we assume to follow a Gamma distribution.

201 Using the definitions of \mathbf{Y} and $\boldsymbol{\theta}$, the likelihood $\pi(\mathbf{Y}|\boldsymbol{\theta})$ is given by:

$$\begin{aligned}
 202 \quad \pi(\mathbf{Y}|\boldsymbol{\theta}) &= \prod_{i=1}^n \left[(1 - \pi_{t_i})^{\mathbb{1}(i \notin \text{obs})} (\pi_{t_i} f_{\text{Gamma}}(s_i - t_i; a_s, \lambda_s)^{\mathbb{1}(i \in \text{obs})}) \alpha_{t_i}(d_i) \right. \\
 203 \quad &\quad \times \left. \prod_{j:h_j=i} f_{\text{Gamma}}(t_j - t_i; a_g, \lambda_g) \right] \times \\
 204 \quad &\quad \exp \left(-\mu n_{\text{bases}} \sum_{i=1}^n \sum_{j:h_j=i} (t_j - t_i) \right) \times \left(\frac{\mu}{3} \right)^{|\mathcal{M}|} \times \\
 205 \quad &\quad L(\mathbf{X}; \mu/\beta),
 \end{aligned}$$

206 where:

- 207 • $\mathbb{1}(A)$ is the indicator function of an event A .
- 208 • obs is the set of observed (i.e. sampled and sequenced) hosts.
- 209 • $f_{\text{Gamma}}(x; a, \lambda)$ is the probability density function of a Gamma distribution with shape parameter a and rate parameter λ evaluated at x .
- 211 • $\pi_{t_i} = \pi \int_{t_i}^0 f_{\text{Gamma}}(x; a_s, \lambda_s) dx$ is the probability that host i is sampled by the time 0, i.e. the 212 time of the last sample collection and hence the time at which data collection ends.
- 213 • d_i is the number of people infected by host i , i.e. the cardinality $|\{j : h_j = i\}|$.
- 214 • $\alpha_{t_i}(d_i) = \sum_{k=d_i}^{\infty} \binom{k}{d_i} f_{\text{NBin}}(k; \frac{R\psi}{1-\psi}; \psi) \bar{\omega}_{t_i}^{k-d_i}$, where
 - 215 – $f_{\text{NBin}}(k; r, p)$ is the probability mass function of the Negative Binomial distribution with 216 parameters r and p evaluated at k , i.e.

$$f_{\text{NBin}}(k; r, p) = \frac{\Gamma(k+r)}{\Gamma(r)k!} p^r (1-p)^k.$$

215 – $\bar{\omega}_{t_i}^{k-d_i}$ is the probability that $k-d_i$ of the offspring of i are unsampled and have no sampled 216 descendants by time 0. This quantity may be calculated numerically using equation 9 of 217 **TransPhylo** (Didelot et al. 2017).

- 218 • $L(\mathbf{X}; \mu/\beta)$ is defined in Section A.3. It may optionally be replaced by $\tilde{L}(\mathbf{X}; \mu/\beta)$ as defined 219 in Section A.4.

220 The first two lines of the likelihood $\pi(\mathbf{Y}|\boldsymbol{\theta})$ and all associated definitions, which account for the 221 probability associated with the transmission network, are adapted from **TransPhylo** (Didelot et 222 al. 2017), equations 8–11. The third line is the Jukes-Cantor model for an explicit mutation 223 representation of a phylogeny (Jukes & Cantor 1969). The final line is the within-host variant 224 frequency model developed in this paper.

225 Additionally, there are several conditions $\boldsymbol{\theta}$ must satisfy, else we set the value of $\pi(\mathbf{Y}|\boldsymbol{\theta})$ to 0. These 226 conditions are:

- If a position s on the genome in host i is observed, meaning that $g_{is} \in \{A, C, G, T\}$ (as opposed to N or - or another designator of missing data), then we require that either (a) if no iSNV is observed at site s in host i , the bottleneck infecting i must have allele g_{is} at site s , or (b) if an iSNV is observed at site s in host i , the bottleneck infecting i must have one of the two alleles observed at site s .
- The global phylogeny must obey *local parsimony*. This means that for each host i , the genotype of the bottleneck infecting host i must be selected to minimize the number of mutations among the portion of the global phylogeny connecting host i to host h_i and hosts j such that $h_j = i$, subject to all bottlenecks in the global phylogeny satisfying the previous condition.

Finally, we must define our prior on θ . In accordance with *TransPhylo* (Didelot et al. 2017), the only non-uniform prior we assign is $R \sim \text{Expo}(1)$, i.e.

$$\pi(\theta) = \exp(-R).$$

Having defined our prior and likelihood, we may now compute the posterior $\pi(\theta|\mathbf{Y})$ up to a constant of proportionality via Bayes' Theorem:

$$\pi(\theta|\mathbf{Y}) \propto \pi(\mathbf{Y}|\theta)\pi(\theta).$$

B MCMC Implementation

B.1 Moves

We draw samples from the joint posterior distribution of transmission networks, phylogenies, and their underlying parameters using a Metropolis-Hastings sampler with a custom moveset. We separate our MCMC moves into two categories: *global moves*, which affect every node's contribution to the likelihood function, and *local moves*, which only affect the contributions of a few nodes. The global moves are:

1. Adjust the value of the mutation rate μ by adding a Normal random variable with mean 0 and standard deviation $\mu_0/10$, where μ_0 is a user-specified initial guess of the mutation rate (defaults to $\mu_0 = 2 \times 10^{-5}$).
2. Adjust the value of the sampling rate π by adding a Normal random variable with mean 0 and standard deviation 0.05.
3. Adjust the value of the reproductive number R by adding a Normal random variable with mean 0 and standard deviation 0.1.

All of these moves require updating the likelihood function associated with the global phylogeny, the likelihood of the transmission network, and the likelihood function of the within-host evolution at every host. As such, they are relatively expensive, in contrast to the local moves to follow. Before enumerating them, we establish some notation: let an *observed* host refer to a host that is sampled and sequenced, and let an *unobserved* host refer any other host. Let an *explicit* host refer to any host that is either (a) observed, (b) has at least two offspring, or (c) is the root, i.e. the first case to be infected. For an explicit host i , we use the notation h_i to mean the most recent explicit host that is ancestral to i . Let the *implicit hosts leading to i* refer to the non-explicit hosts along the transmission chain from h_i to i (noting that the set of implicit hosts leading to i may be empty). See Figure 1.

Figure 1: Let boxes represent hosts and arrows represent transmissions. Here, h_i and i are explicit hosts, and the two unlabeled hosts along the transmission chain from h_i to i are referred as the implicit hosts leading to i .

266 For an explicit host i , let \mathbf{t}_i denote the times of inoculation for i and the implicit hosts leading to
 267 i , in decreasing order. For an observed host i , let s_i denote the time of sampling. Throughout, we
 268 use the notation $\mathbf{x}[k]$ to denote the k th element of the vector \mathbf{x} , with 1-based indexing. Let a_g and
 269 λ_g be the shape and rate parameters of the Gamma-distributed generation interval; let a_s and λ_s
 270 be the shape and rate parameters of the Gamma-distributed sojourn interval. For ease of notation,
 271 let μ_g and μ_s denote the means of the generation and sojourn intervals, respectively.

272 Using this notation, we may define our local moves. As some of them are quite complex and
 273 notation-heavy, we provide a simple descriptor of each move in the list below.

274 4. Resample the times of infection along a branch.

275 5. Resample the times of infection and mutation along a branch.

276 6. Resample the times of infection for a host i and all hosts along the branches connected to i .

277 7. Resample the times of infection for a host i , its ancestors, and all hosts along the branches
 278 connected to i and its ancestors.

279 8. Update the genotype of a host i .

280 9. Resample the ancestor h_i of i to be either the ancestor or an offspring of h_i .

281 10. Resample the ancestor h_i of i to be anyone infected before i .

282 11. Resample the ancestor h_i of i to be anyone infected before i , but bias the choice such that
 283 hosts with genotypic similarities to i are proposed more often.

284 12. Pick a pair of hosts i, j where i infects j , and rearrange the transmission network such that j
 285 infects i .

286 13. Do the same as the previous move, except also set the offspring of i to be infected by j , and
 287 set the offspring of j to be infected by i .

288 For the remaining three moves, upon choosing to perform the move, we will randomly select one of
 289 two possible sub-moves, to ensure reversibility:

290 15. With probability $1/2$, pick a host h and create a new unobserved host i that is infected by
 291 h . Then, take some of the offspring of h and make them into offspring of i . With probability
 292 $1/2$, delete an unobserved host i , and update the ancestor of i 's offspring to be h_i .

293 16. With probability 1/2, pick a host j and create a new unobserved host i that infects j . Then,
 294 take some of the offspring of j and make them into offspring of i . With probability 1/2,
 295 delete an unobserved host i , and update the ancestor of i 's offspring to be j , one of the former
 296 offspring of i .

297 17. With probability 1/2, pick a mutation that occurs twice on the global phylogeny, create a new
 298 unobserved host i with this mutation, and rearrange the phylogeny such that this mutation
 299 occurs only once. With probability 1/2, delete an unobserved host i and resample the ancestors
 300 of the former children of i from the descendants of h_i .

301 The overviews of Moves 4–16 provided above may be implemented as follows, respectively:

302 4. Select an explicit host i uniformly at random. Resample the number of implicit hosts leading
 303 to i as being equal to the rounded value of $(\mathbf{t}_i[1] - \mathbf{t}_{h_i}[1])\mu_g$ with probability 0.95, or drawn
 304 from the $\text{Pois}((\mathbf{t}_i[1] - \mathbf{t}_{h_i}[1])\mu_g)$ distribution with probability 0.05. Then, resample \mathbf{t}_i as the
 305 cumulative sum of a $\text{Dirichlet}(\mu_g, \mu_g, \dots, \mu_g)$ draw, rescaled to the interval $(\mathbf{t}_{h_i}[1], \mathbf{t}_i[1])$, and
 306 in reverse order.

307 5. Perform Move 4. Then, resample the times of mutation events along the branch from $\mathbf{t}_{h_i}[1]$
 308 to $\mathbf{t}_i[1]$ as i.i.d. $\text{Unif}(\mathbf{t}_{h_i}[1], \mathbf{t}_i[1])$ draws.

309 6. Select an explicit host i uniformly at random. Let $J = \{j : h_j = i\}$. Let $t_{\max} = \min\{\{\mathbf{t}_j[1] : j \in J\} \cup s_i\}$. If i is not the root, resample $\mathbf{t}_i[1] \sim \text{Unif}(\mathbf{t}_{h_i}[1], t_{\max})$, and then apply Move 5
 310 to i and to each j . If i is the root, let T denote the total evolutionary time, i.e. the difference
 311 in time between $\max_j s_j$ and $\mathbf{t}_1[1]$. Let $\mu_\Delta = T/10$ and let
 312

$$313 p = \frac{\mu_\Delta}{\mu_\Delta + t_{\max} - \mathbf{t}_i[1]}.$$

314 Then sample

$$315 \Delta \sim \begin{cases} -\text{Expo}(\mu_\Delta) & \text{with probability } p \\ \text{Unif}(0, t_{\max} - \mathbf{t}_i[1]) & \text{with probability } 1 - p \end{cases}.$$

316 Finally, apply Move 5 to each $j \in J$.

317 7. Select an explicit host i uniformly at random. Let $J = \{j : h_j = i\}$. Let I denote the set of all
 318 explicit hosts ancestral to i , including i —that is, if we apply the function $i \mapsto h_i$ recursively,
 319 we enumerate the elements of I . Let $J = \{j : h_j \in I\} \setminus I$. Let

$$320 \Delta_{\max} = \min\{\{\mathbf{t}_j[1] - \mathbf{t}_{h_j}[1] : j \in J\} \cup \{s_{i'} - \mathbf{t}_{i'}[1] : i' \in I\}\}.$$

321 As in Move 6, let T denote the total evolutionary time, let $\mu_\Delta = T/10$, and let

$$322 p = \frac{\mu_\Delta}{\mu_\Delta + \Delta_{\max}}.$$

323 Then sample

$$324 \Delta \sim \begin{cases} -\text{Expo}(\mu_\Delta) & \text{with probability } p \\ \text{Unif}(0, \Delta_{\max}) & \text{with probability } 1 - p \end{cases}.$$

325 Set $\mathbf{t}_{i'} \leftarrow \mathbf{t}_{i'} + \Delta$ for each $i' \in I$, and finally, apply Move 5 to each $j \in J$.

326 8. Select an explicit host i uniformly at random. Let $J = \{j : h_j = i\}$. Resample the genotype
 327 of i uniformly at random from the set of genotypes that minimize the number of mutations
 328 along the portion of the phylogeny connecting i to each $j \in J$ and to h_i , noting that if i is
 329 observed, than the genotype may only be updated at sites with missing data and sites with
 330 iSNVs. Then resample the times of the mutations on the branch of the phylogeny leading into
 331 i uniformly at random. Do the same thing for each $j \in J$.

332 9. Do one of the following, with equal probability:

- 333 (a) Select an explicit host i uniformly at random. Let $J = \{j : h_j = i\}$. Select $j \in J$
 334 uniformly at random, and set $h_i \leftarrow j$. Then apply Move 4 to i . Finally, apply Move 8 to
 335 i .
- 336 (b) Select an explicit host i uniformly at random. Set $h_i \leftarrow h_{h_i}$. Then apply Move 4 to i .
 337 Finally, apply Move 8 to i .

338 10. Select an explicit host i uniformly at random. Let $A = \{a : \mathbf{t}_a[1] < \mathbf{t}_i[1]\}$, and sample h_i
 339 uniformly from A . Then apply Move 4 to i . Finally, apply Move 8 to i .

340 11. Select an explicit host i uniformly at random, and let A be as above. For each $a \in A$, let m_a
 341 be the number of mutations on the branch of the phylogeny leading into a that also appear
 342 on the branch of the phylogeny leading into i . Sample $a \in A$ with probability

$$\frac{\exp(m_a/\tau)}{\sum_{a' \in A} \exp(m_{a'}/\tau)}$$

344 with $\tau = 0.2$. Set $h_i \leftarrow a$; apply Move 4 to i ; and, finally, apply Move 8 to i .

345 12. Select an explicit host j uniformly at random subject to the condition that h_j and h_{h_j} both
 346 exist. Let $i = h_j$ and let $h = h_i$. Set $h_j \leftarrow h$, $h_i \leftarrow j$, and swap the vectors \mathbf{t}_j and \mathbf{t}_i . Let
 347 $K = \{k : h_k \in \{h, i, j\}\}$. For each $k \in K$, resample the times of mutations on the branch of
 348 the phylogenetic tree leading into k .

349 13. Perform Move 12, except after swapping the vectors \mathbf{t}_j and \mathbf{t}_i , perform the following additional
 350 step: let $K_i = \{k : h_k = i\}$; let $K_j = \{k : h_k = j\}$, set $h_k = i$ for each $k \in K_j$; and set $h_k = j$
 351 for each $k \in K_i$.

352 14. Do one of the following, with equal probability:

- 353 (a) Select an explicit host h with probability proportional to its degree (i.e. the size of
 354 the set $J = \{j : h_j = h\}$), subject to the condition that the degree of h is at least
 355 2. Let $J_0 = \{j : h_j = h\}$. Sample $n_j \sim \text{Unif}(\{2, 3, \dots, |J_0|\})$ if h is observed, or
 356 $n_j \sim \text{Unif}(\{2, 3, \dots, |J_0| - 1\})$ if h is unobserved. Sample a subset J uniformly at
 357 random from the set of subsets of J_0 that have cardinality n_j . Create a new host explicit
 358 host i , set $h_i = h$, and set $h_j = i$ for each $j \in J$. Draw $\mathbf{t}_i[1] \sim \text{Unif}(\mathbf{t}_h[1], \min_{j \in J} \mathbf{t}_j[1])$,
 359 then draw the rest of the vector \mathbf{t}_i by applying Move 4 to i . Then apply Move 4 to each
 360 $j \in J$. Finally, apply Move 8 to i .

- (b) Select an unobserved explicit host i uniformly at random. Let $J = \{j : h_j = i\}$, and
 let $h = h_i$. Delete host i and set $h_j = h$ for each j in J . Finally, apply Move 5 to each
 $j \in J$.

364 15. Do one of the following, with equal probability:

365 (a) Select an explicit host j_1 uniformly at random. Let $K_0 = \{k : h_k = j_1\}$ and let $h = h_{j_1}$.
 366 Sample $n_2 \sim \text{Unif}(\{1, 2, \dots, |K_0|\})$ if j_1 is observed, or $n_j \sim \text{Unif}(\{1, 2, \dots, |K_0| - 2\})$
 367 if j_1 is unobserved. Sample a subset K uniformly at random from the set of subsets
 368 of K_0 that have cardinality n_j . For each $k \in K$, set $h_k = h$. Let $J = K \cup \{j_1\}$.
 369 Create a new host explicit host i , set $h_i = h$, and set $h_j = i$ for each $j \in J$. Draw
 370 $\mathbf{t}_i[1] \sim \text{Unif}(\mathbf{t}_h[1], \min_{j \in J} \mathbf{t}_j[1])$, then draw the rest of the vector \mathbf{t}_i by applying Move 4
 371 to i . Then apply Move 4 to each $j \in J$. Finally, apply Move 8 to i .

372 (b) Select an unobserved explicit host i uniformly at random. Let $J = \{j : h_j = i\}$, let
 373 $j_1 = \arg \min_{j \in J} \mathbf{t}_j[1]$, let $K = J \setminus \{j_1\}$, and let $h = h_i$. Delete host i , set $h_{j_1} = h$, and
 374 set $h_k = j_1$ for each $k \in K$. Finally, apply Move 5 to each $j \in J$.

375 16. Do one of the following, with equal probability:

376 (a) Let P denote the set of positions on the genome that mutate at least once on the global
 377 phylogeny. For a position $p \in P$, let n_p be one less than the number of times a mutation
 378 at position p occurs on the global phylogeny. Let $B \sim \text{Bernoulli}(0.95)$. If $B = 1$, and
 379 if the n_p 's are not all equal to 0, sample a position p with probability proportional to
 380 n_p . Let J_0 be the set of explicit hosts j such that the branch of the global phylogeny
 381 leading into j has a mutation at position p , and note that $|J_0| \geq 2$ by construction of
 382 n_p . Sample a subset J of cardinality 2 from J_0 uniformly at random. Let h be the most
 383 recent common ancestor of the two elements of J , i.e. the latest-to-be-infected explicit
 384 host that is ancestral to both elements of J . Create a new host explicit host i , set $h_i = h$,
 385 and set $h_j = i$ for each $j \in J$. Draw $\mathbf{t}_i[1] \sim \text{Unif}(\mathbf{t}_h[1], \min_{j \in J} \mathbf{t}_j[1])$, then draw the rest
 386 of the vector \mathbf{t}_i by applying Move 4 to i . Then apply Move 4 to each $j \in J$. Finally,
 387 apply Move 8 to i .

388 (b) Select an unobserved explicit host i uniformly at random, subject to the condition that
 389 the set $J = \{j : h_j = i\}$ has cardinality 2. Let $h = h_i$. Delete host i and set $h_j = h$ for
 390 each j in J . For each j in J , repeatedly perform the following sequence of actions until
 391 it terminates: (1) set $K = \{k : h_k = h_j, k \neq j\}$; (2): with probability $\frac{1}{K+1}$, terminate, or
 392 with probability $\frac{K}{K+1}$, select a k uniformly at random from K , and set $h_j = k$. Note that
 393 repeating these actions must eventually terminate because each iteration takes j one step
 394 further from the root, and the entire transmission network can only have finitely many
 395 hosts. Finally, apply Move 5 to each $j \in J$.

396 Note also that to ensure we maintain the property that an unobserved explicit host must either
 397 have degree 2 or be the root, we automatically reject moves that violate this condition.

398 B.2 Schedule of Moves

399 The schedule of moves depends on how frequently we wish to execute local moves as opposed to
 400 global ones. We capture this ratio using the fixed, user-specified parameter M_{local} , which states that
 401 there are M_{local} iterations of each local move per 1 iteration of each global move. Letting M_{global}
 402 denote the total number of iterations of each global move and M_{record} be the number of local moves
 403 per MCMC sample (i.e. state of the MCMC that is returned to the user at the end of the algorithm),
 404 we propose Algorithm 1 as the overall structure of our implementation. As a default, we propose
 405 $M_{\text{global}} = 10^4$, $M_{\text{local}} = 100$, and $M_{\text{record}} = 100$.

Algorithm 1 Phylogenetic and Transmission Reconstruction

```
1: Initialize  $\boldsymbol{\theta}$ , the configuration of the transmission network and values of all parameters
2:  $\Theta \leftarrow \emptyset$ , the set of posterior samples
3: for  $1 \leq i \leq M_{\text{global}}$  do
4:   Update  $\boldsymbol{\theta}$  by executing moves 1-3 in order
5:   for  $1 \leq j \leq M_{\text{local}}$  do
6:     Update  $\boldsymbol{\theta}$  by executing moves 4-16 in order
7:     if  $j \bmod M_{\text{record}} = 0$  then
8:       Append  $\boldsymbol{\theta}$  to  $\Theta$ 
9:     end if
10:   end for
11: end for
12: return  $\Theta$ 
```

406 **B.3 Parallelization**

407 The above MCMC sampler may conveniently be run in parallel over subtrees partitioning the
408 transmission network, thanks to the fact that the likelihood function computed on the entire tree
409 equals the product of the likelihood function computed on each subtree. The only moves that
410 require an update of the likelihood on all parts of the tree at once are the global moves; hence,
411 we parallelize the algorithm by randomly partitioning the tree into subtrees after completing the
412 global moves, then joining the subtrees back together to perform the next cycle of global moves,
413 and repeating.¹

414 To perform the random tree partitioning, we implement the algorithm presented in Borndörfer,
415 Elijazyfer, & Schwartz (2019), with a slight modification. In words, this algorithm first specifies
416 λ , the minimum allowable number of nodes in a subtree. Here we use a conservative choice of
417 $\lambda = \max(n/M_{\text{cores}}, 25)$, where n is the total number of nodes in the original tree and M_{cores} is the
418 available number of CPU cores. This choice guarantees that the algorithm will produce at most
419 M_{cores} subtrees. Then, we iterate over nodes in the tree in reverse-BFS order, where BFS is executed
420 starting at the root node. For a node i , we first compute the total number of descendants of i as the
421 sum of the number of descendants of the children of i , plus 1 for i itself. After having performed
422 this update, if the total number of descendants of a node i is λ or greater, we take i to be the
423 root of one of our subtrees—so long as “cutting off” that subtree leaves at least λ nodes remaining
424 in the subtree rooted at the global root. Finally, for the sake of improved mixing, we make the
425 modification that a node i cannot be the root of a subtree if it was the root of a subtree in the
426 previous partition of the transmission network.

¹Moves 10 and 11 do sometimes change the likelihood across different regions of the transmission network; to resolve this, we simply limit the choices of the new value of h_i to those within the same subtree as i . Moreover, we automatically reject any move that affects a host i at the boundary of one subtree and another and would hence cause the likelihood to change in more than one subtree. Since each tree partition differs from the previous one and varies randomly with the tree topology, a certain tree rearrangement via Move 10 or 11 prohibited under one partition may, and eventually will, become possible under a different partition.