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Fig. S1 SEM image of TNT nanotubes. a-d) Nanotube image; e-f) Nanotube barrier layer image.
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Fig. S2 Morphology of nanotube directly loaded porous SnO2 at different angles. a-e) Top view; f-i) Side view; i1-i3) i Mapping image.
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Fig. S3 SEM image of TNT/SnO2/IrOx. a-h) Side corner image; i-l) Plane image.
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Fig. S4 a) BET chart of TNT/SnO2/IrOx; b) BET chart of TNT/SnO2.
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Fig. S5 SEM image and corresponding Mapping image at the critical point.
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Fig. S6 Various morphologies correspond to EDS maps.
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Fig. S7 Comparison of different OER activity (Ir loading with 80 ug cm-2) a) The steady-state polarization curve is obtained at a low scanning rate of 1 mV s-1; b) EIS image of different electrocatalysts at 0.5 M H2SO4; c) Tafel image of different electrocatalysts in 0.5 M H2SO4; d) The overpotential corresponding to 10 mA cm-2 and the current density corresponding to 370 mV overpotential of different electrocatalysts; e) Mass activity of different catalysts under 370mV overpotential; f) Impedance of Ti with different morphologies in 0.5 M H2SO4.

Different amounts of SnO2 were prepared on TNT by different methods, of which very little SnO2 was prepared by electrochemical pulse deposition, as shown in the figure, and then the same unit mass of precious metal was dripped on this basis.
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Fig. S8 a-c) CV of TNT/SnO2/IrOx ,TNT/IrO2,TNT/IrOx at 20-200 mV s-1 sweep speed.
	Electrocatalysts
	Electrolyte
	Ƞ10 mA cm-2 (mV)
	Tafel slope (mV dec-1)
	Stability
	References

	IrOx@TiO2
	0.5 M H2SO4
	255
	48.8
	600 h @ 10 mA cm-2
	[1]

	IrOx
	0.5 M H2SO4
	300
	56
	/
	[1]

	IrO2
	0.5 M H2SO4
	356
	72
	70 h @ 10 mA cm-2
	[1]

	Ir/D-ATO
	0.5 M H2SO4
	305
	49.05
	250 h @ 1A cm-2
	[2]

	rOx/WO3
	0.5 M H2SO4
	260
	65.4
	100 h @ 10 mA cm-2
	[3]

	IrO2@TaOx@TaB
	0.1 M HClO4
	279
	50
	1500 h @ 2 A cm-2
	[4]

	IrO2@TaB2
	0.1 M HClO4
	288
	42.6
	120 h @ 1 A cm-2
	[5]

	TiN/IrO2
	0.5 M H2SO4
	313
	65.5
	140 min @ 10 mA cm-2
	[6]

	Ir/MoS2
	0.5 M H2SO4
	270
	58.31
	/
	[7]

	Ir- NiCo2O4
	0.5 M H2SO4
	240
	60
	2 h @ 10 mA cm-2
	[8]

	Ru@IrOx
	0.05 M H2SO4
	282
	69
	24 h @ 1.55 Vs RHE
	[9]

	Co-RuIr
	0.1 M HClO4
	235
	66.9
	25 h @ 10 mA cm-2
	[10]

	Ir-Ag NTS
	0.5 M H2SO4
	285
	61.1
	6 h @ 5 mA cm-2
	[11]

	Ir/GF
	0.5 M H2SO4
	290
	46
	10 h @ 10 mA cm-2
	[12]


Table. S9 Comparison of OER activity with various advanced acid catalysts reported recently.
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Fig. S10 Comparison of different OER activity (Ir loading with 40 ug cm-2) a) The steady-state polarization curve is obtained at a low scanning rate of 1 mV s-1 in 0.5 M H2SO4, 1 M KOH and 0.5 M Na2SO4; b) EIS image of different electrocatalysts in 0.5 M H2SO4, 1 M KOH and 0.5 M Na2SO4; c) Chronopotentigrams of catalyst at 0.1 A cm-2 current density in three electrolytes; d) The overpotential corresponding to 10 mA cm-2 and the current density corresponding to 370 mV overpotential of different electrocatalysts; e) Mass activity of different catalysts under 370 mV overpotential; f) Steady-state polarization curves of Ti felt /SnO2/IrOx and Com Ti felt /IrO2 in 0.5 M H2SO4 Impedance of Ti with different morphologies in 0.5 M H2SO4; g) Mass activity of both at 370 mV overpotential; h) Overpotential corresponding to 10 mA cm-2 and current density corresponding to 370 mV overpotential of catalyst in different electrolytes.

Fig. S11 SEM and corresponding Mapping image of Ti felt/SnO2/IrOx.
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Fig. S12 a-i) Side SEM image of TNT/IrOx.
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Fig. S13 TNT/SnO2/IrOx post-CP SEM image. a-d) Morphology after 40 h at 10 mA cm-2 current density; e) Topography after 200 h at a current density of 30 mA cm-2.
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Fig. S14 TNT/SnO2/IrOx full spectrum of XPS before and after CP.
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Fig. S15 TNT/SnO2/IrOx EDS spectra before and after CP.
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Fig. S16 a-f) SEM image of catalyst on nanotube; g-j) Mapping of various angles.
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