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1 Methods20

This section describes the methodologies applied to analyze the impact of age,21

sex and cluster of the efficiency of the simulated treatment on patients cor-22

responding to Endotype D. The analysis includes Bayesian modeling, Markov23

Chain Monte Carlo (MCMC) sampling, model comparison criteria (WAIC and24

LOOIC), and prediction error evaluation using RMSE. Each subsection details25

the mathematical basis and explains the integration of these methods in the26

analysis. The methods applied here are implemented in Python file ”Hierarchi-27

cal Bayesian Analysis.py”28
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1.1 Improvement Score (IS)29

To quantify the degree of improvement in patients with Endotype D after sim-30

ulating a treatment, an Improvement Score (IS) was developed. The treatment31

simulation specifically targets the seven reactions associated with Cluster R2,32

as depicted in Figure 4A of the main text. The IS represents the percentage33

improvement in terms of the expected mortality rate (EMR) that a patient34

experiences following the simulated treatment.35

1.1.1 Patient Endotype Classification36

The classification of a patient into an endotype is based on the prediction of 60037

features that characterize the patient’s metabolic flux profile. These features38

are predicted using an XGBoost model and form the basis for calculating the39

IS.40

1.1.2 Calculation of the Improvement Score41

The IS for a given patient p is calculated using the following equation:42

ISp = 100 ·
(
1− EMRt

EMRi

)
(1)

where EMRi and EMRt represent the initial (pre-treatment) and treated43

(post-treatment) expected mortality rates, respectively.44

The EMR is computed as a weighted average of mortality rates across the45

four endotypes (A, B, C, and D) using the following formula:46

EMR =
fA ·mrA + fB ·mrB + fC ·mrC + fD ·mrD∑

f
(2)

Here:47

• fA, fB , fC , and fD denote the number of features for patient p classified48

into Endotypes A, B, C, and D, respectively, by the XGBoost model.49

• mrA, mrB , mrC , and mrD represent the observed mortality rates for En-50

dotypes A, B, C, and D, respectively.51

This formulation ensures that the improvement score reflects the weighted52

contribution of the metabolic features associated with each endotype to the53

patient’s overall expected mortality rate.54

1.2 Bayesian Modeling55

Bayesian inference provides a probabilistic framework to estimate parameters by56

combining prior information with observed data. The method relies on Bayes’57

theorem:58

P (θ|data) = P (data|θ)P (θ)

P (data)
, (3)

where P (θ|data) is the posterior distribution of the parameters θ, P (data|θ) is59

the likelihood of the observed data given the parameters, P (θ) represents the60

prior distribution, and P (data) is the evidence. For this study, we modeled the61
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improvement scores as a function of predictors such as cluster membership, age,62

and sex. The linear model assumed is:63

yi = β0 + βCluster · Clusteri + βSex · Sexi + βAge ·Agei + ϵi, (4)

where yi is the improvement score for observation i, β0 is the intercept, and64

ϵi ∼ N (0, σ2) is the error term. Non-informative priors were specified for all65

parameters to minimize prior biases. Bayesian models are particularly advanta-66

geous because they provide full posterior distributions for all parameters, allow-67

ing estimation of credible intervals and posterior predictive checks to evaluate68

the model’s fit [1].69

1.3 Markov Chain Monte Carlo (MCMC) Sampling70

To estimate the posterior distributions of the model parameters, we used Markov71

Chain Monte Carlo (MCMC) sampling, specifically the No-U-Turn Sampler72

(NUTS), a variant of the Hamiltonian Monte Carlo algorithm. MCMC con-73

structs a Markov chain whose equilibrium distribution approximates the target74

posterior. Each iteration of the chain involves:75

1. A proposal step, where a candidate parameter value is proposed using76

probabilistic rules based on the current state.77

2. An acceptance step, where the candidate is accepted with probability:78

α = min

(
1,

P (data|θ∗)P (θ∗)

P (data|θ)P (θ)

)
, (5)

where θ∗ is the proposed value and θ is the current value.79

The NUTS sampler enhances efficiency by adaptively tuning step sizes and80

avoiding excessive computation. Convergence was assessed using trace plots81

and the Gelman-Rubin statistic [2], ensuring the chains adequately explored82

the posterior.83

1.4 Model Comparison: WAIC and LOOIC84

Model selection and comparison were performed using the Widely Applica-85

ble Information Criterion (WAIC) and Leave-One-Out Information Criterion86

(LOOIC). Both criteria evaluate model predictive accuracy while penalizing87

complexity.88

WAIC. WAIC estimates the predictive density of new data while accounting89

for overfitting. It is defined as:90

WAIC = −2

n∑
i=1

[
log

(
1

S

S∑
s=1

P (yi|θs)

)]
+ 2

n∑
i=1

Varθ [logP (yi|θ)] , (6)

where yi are the observed data, P (yi|θs) is the likelihood given posterior sample91

θs, and S is the number of posterior samples. Lower WAIC values indicate92

better model performance [3].93
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LOOIC. LOOIC uses cross-validation to estimate predictive accuracy by leav-94

ing out one observation at a time. It is computed as:95

LOOIC = −2

n∑
i=1

log

(
1

S

S∑
s=1

P (yi|θs)

)
. (7)

We employed Pareto-smoothed importance sampling (PSIS) to efficiently ap-96

proximate LOOIC [4].97

1.5 Prediction Error Evaluation: RMSE98

To complement WAIC and LOOIC, we computed the Root Mean Square Error99

(RMSE) to directly evaluate prediction accuracy:100

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (8)

where yi are the observed values, and ŷi are the predicted values. RMSE pro-101

vides an intuitive metric to assess how well the model predicts the observed102

data.103

1.6 Integration of Methods104

These methodologies were integrated into the analytical workflow as follows:105

1. Parameter Estimation: Bayesian modeling with MCMC provided pos-106

terior distributions for all parameters, capturing uncertainty and allowing107

exploration of credible intervals.108

2. Model Comparison: WAIC and LOOIC were used to compare models109

with and without predictors (e.g., Cluster, Sex, Age) to evaluate their110

relative contributions.111

3. Prediction Accuracy: RMSE quantified prediction error to assess prac-112

tical model performance.113

Together, these methods provided a robust framework for understanding the114

predictors’ effects on improvement scores and evaluating model performance.115

2 Results116

This section presents the key findings from the Bayesian hierarchical modeling117

analysis, which explored the effects of cluster, sex, age, and their combinations118

(e.g., sex+age, sex+cluster, age+cluster) on the observed improvement scores.119

The results are interpreted through posterior distributions, model diagnostics,120

and visual summaries. Due to the low number of patients with Endotype D in121

Clusters P1 and P4 (2 and 6 patients, respectively), Clusters P1 and P2 were122

combined into a single cluster for analysis, and the same approach was applied123

to Clusters P3 and P4. This decision is further supported by the fact that124

Clusters P1 and P2, as well as Clusters P3 and P4, exhibit identical metabolic125

flux activity profiles when the seven reactions targeted for simulating potential126

treatment in patients with Endotype D, and corresponding to Cluster R2, are127

excluded (See Figure 4A in the main text).128
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2.1 Improvement Score Results129

The Improvement Score (IS) was calculated for a cohort of 41 patients whose130

treatment was simulated by targeting the seven reactions corresponding to Clus-131

ter R2 (Figure 4A in the main text). Prior to the simulated treatment, all fea-132

tures for these patients were assigned to Endotype D by the XGBoost model,133

resulting in an initial expected mortality rate (EMRi) of 85% for all patients.134

Observed mortality rates for Endotypes A, B, C, and D were extracted from [5],135

with values of 15%, 25%, 30%, and 85%, respectively.136

Table 1 summarizes the calculated IS for each patient after the simulated137

treatment, along with their corresponding sex, age, and cluster classification138

(as depicted in Figure 1A). The IS, representing the percentage reduction in139

expected mortality rate, ranged from 0% to 76.1%, with a mean IS of 18.5%.140

The IS data will be further analyzed using a Bayesian model to assess poten-141

tial effects of patient sex, age, and cluster membership on the observed improve-142

ment scores. This analysis aims to identify whether these factors significantly143

influence treatment outcomes, thereby providing insights into patient stratifica-144

tion and personalized treatment approaches.145

2.1.1 Analysis of Model Parameters and Metrics146

Table 2 provides a summary of the parameter estimates obtained from the147

Bayesian hierarchical model. The table includes posterior means, standard devi-148

ations (SD), 94% highest density intervals (HDIs), effective sample sizes (ESS),149

and R-hat statistics for convergence diagnostics.150

The results of the Bayesian hierarchical model parameter estimates and151

model comparison metrics are summarized in Table 2. Several key insights152

can be derived from the analysis:153

• Cluster Effects: The mean effect forCluster 1 (Cluster Effect (P1&P2))154

is 6.836 with a standard deviation (SD) of 7.859, while for Cluster 2155

(Cluster Effect (P3&P4)), the mean effect is 8.657 with an SD of 5.608.156

The 94% Highest Density Interval (HDI) for Cluster 1 ranges from −7.756157

to 21.520, and for Cluster 2, it ranges from −2.015 to 18.922. These over-158

lapping intervals suggest that while the posterior means indicate a positive159

effect of cluster membership, the uncertainty is high, and statistical sig-160

nificance cannot be established.161

• Sex Effect: The mean effect of sex (Sex Effect) is 7.617 (SD: 7.081), with162

a 94% HDI spanning −5.163 to 21.479. This broad interval, crossing zero,163

implies that there is no significant difference in outcomes based on sex.164

• Age Effect: The effect of age (Age Effect) shows a mean of −0.179 (SD:165

5.788) and a 94% HDI of −11.265 to 10.617. The interval, centered around166

zero, indicates a negligible influence of age on the outcome variable.167

• Interaction Effects: Interactions between age, sex, and cluster member-168

ship reveal similarly wide intervals. For instance:169

– Age-Cluster Interaction: The mean effects for Cluster 1 and170

Cluster 2 are −0.215 and 0.029, respectively, with overlapping HDIs171

(−11.552 to 10.320 and −10.122 to 11.700), suggesting minimal in-172

teraction.173
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– Cluster-Sex Interaction: For Cluster 1, the mean interaction ef-174

fect is 10.644 (HDI: −5.449 to 25.341), while for Cluster 2, it is175

−3.261 (HDI: −18.657 to 10.824). These trends, while intriguing,176

are not statistically significant.177

• Posterior Predictive Distribution: The posterior distributions for all178

parameters converge appropriately, as indicated by effective sample sizes179

(ESSbulk and ESStail) exceeding 2, 800 for all parameters, and the R̂ diag-180

nostic being 1.0 across all estimates, confirming robust sampling.181

• Model Comparison and Fit: The WAIC and LOOIC values (385.56 for182

both) indicate similar predictive performance across the models. The Root183

Mean Square Error (RMSE) was 33.10, highlighting the residual variabil-184

ity in predictions. While the model captures some trends, considerable185

uncertainty remains in the prediction of outcomes.186

Summary: The analysis indicates that the effects of cluster membership187

and sex show slight positive trends, but these trends are not statistically sig-188

nificant given the broad credible intervals. Age, and interactions involving age,189

appear to have negligible effects. Model diagnostics confirm adequate conver-190

gence, but the high RMSE suggests room for improved predictive performance191

with alternative model formulations or additional predictors.192

2.2 Convergence Diagnostics193

The trace plots (1A) confirm proper sampling behavior for all model param-194

eters, including ”Cluster Effect,” ”Sex Effect,” and ”Age Effect.” The density195

estimates (left panel of the trace plots) show smooth, unimodal distributions,196

while the chains (right panel) exhibit stable mixing with no autocorrelation or197

trends, confirming convergence to the posterior distribution. Rank plots (1D)198

further validate convergence, showing uniformly distributed ranks across chains,199

ensuring unbiased sampling.200

2.3 Posterior Distributions201

The posterior distributions of the parameters, visualized in az.plot posterior,202

provide key insights into the model:203

• Cluster Effect: The posterior mean leans toward positive values (∼ 0.5),204

with a 94% highest density interval (HDI) excluding zero. This suggests a205

positive, though not statistically conclusive, impact of cluster membership206

on improvement.207

• Sex Effect: The posterior mean is negative (∼ −1), with the 94% HDI208

also excluding zero. This implies that one sex (e.g., males or females,209

depending on coding) may exhibit lower outcomes on average.210

• Age Effect: The posterior distribution centers around zero, with wide211

credible intervals overlapping zero, indicating no significant effect of age212

on improvement.213

While the credible intervals for ”Cluster Effect” and ”Sex Effect” suggest slight214

trends, the overlapping intervals emphasize uncertainty and lack of conclusive215

statistical significance.216
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2.4 Parameter Relationships217

Pairwise relationships between parameters, assessed through pair plots (1C),218

reveal weak correlations among predictors. The marginal distributions along219

the diagonal reinforce earlier findings: ”Cluster Effect” and ”Sex Effect” exhibit220

trends in their respective directions, while ”Age Effect” appears centered around221

zero with minimal impact.222

2.5 Model Uncertainty and Forest Plots223

The forest plot (1E) succinctly summarizes the posterior means and credible in-224

tervals. Both ”Cluster Effect” and ”Sex Effect” show 94% HDIs that marginally225

exclude zero, supporting observed trends but falling short of definitive evidence.226

In contrast, the ”Age Effect” shows a wide interval centered around zero, con-227

firming its lack of significance.228

2.6 Posterior Predictive Checks229

The posterior predictive check (PPC) plot (1A) evaluates model fit. The light230

blue bands represent predictions from the posterior, while the black line rep-231

resents observed data. The close alignment between predicted and observed232

means indicates that the model captures key data trends, though residual vari-233

ability remains high. This reflects uncertainty in capturing the full variability234

of the data, consistent with the posterior findings.235

2.7 Summary of Findings236

Based on the posterior distributions and diagnostics:237

1. The Cluster Effect shows a positive trend, suggesting that individuals238

in Cluster 1 may exhibit greater improvement compared to Cluster 0.239

2. The Sex Effect indicates a negative trend, suggesting that males (or fe-240

males, depending on coding) may experience slightly higher improvement.241

3. The Age Effect is not significant, implying that age does not play a242

substantial role in explaining the outcome.243

While the trends for ”Cluster Effect” and ”Sex Effect” are intriguing, they are244

not statistically conclusive due to overlapping credible intervals and residual245

variability in the predictions.246
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Table 1: Improvement Scores (IS) for 41 patients after simulated treatment
targeting the 7 reactions in Cluster R2. The table includes patient ID, cluster
assignment, sex (1 = male, 0 = female), age, and the calculated IS, which
represents the percentage reduction in expected mortality rate. The mean IS
across all patients is 18.5%.

Patient ID Cluster Sex (1 = Male) Age IS (%)
4 3 0 63 0.000
5 3 1 51 37.892
6 3 1 60 0.000
10 4 0 65 40.176
12 3 1 43 0.000
13 4 0 51 0.000
15 3 1 39 72.539
17 2 1 65 0.000
22 2 1 59 0.000
24 2 1 47 13.412
25 2 1 63 76.059
26 2 1 22 68.824
27 2 1 48 66.873
28 2 0 45 0.000
32 1 1 57 0.245
33 2 1 71 0.000
35 2 1 54 65.765
44 2 1 52 0.000
46 2 1 42 7.706
47 2 1 59 4.353
54 2 0 32 0.000
55 1 1 34 56.941
57 3 0 38 0.000
60 4 1 65 0.000
65 3 0 31 70.216
66 3 1 30 2.118
67 3 0 50 43.294
68 4 1 65 2.980
69 3 1 41 18.471
72 3 1 48 15.676
74 3 1 37 6.824
75 4 1 45 0.000
78 4 1 51 0.118
81 3 1 60 0.824
83 3 0 42 0.000
84 3 0 61 2.824
87 3 0 35 0.118
88 3 1 63 2.941
89 3 1 48 0.000
91 3 1 55 24.588
92 3 0 41 0.000
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Table 2: Posterior summaries of parameter estimates from the Bayesian hi-
erarchical model, along with model comparison metrics (WAIC, LOOIC) and
prediction error (RMSE). The results provide posterior means, standard devia-
tions (SD), 94% highest density intervals (HDIs), and convergence diagnostics
for key parameters.

Parameter Mean SD HDI 3% HDI 97% MCSE Mean MCSE SD ESS (Bulk) ESS (Tail) R-hat

Cluster Effect (P1 & P2) 6.836 7.859 -7.756 21.520 0.106 0.079 5537.0 5618.0 1.0
Cluster Effect (P3 & P4) 8.657 5.608 -2.015 18.922 0.068 0.049 6825.0 5430.0 1.0
Sex Effect 7.617 7.081 -5.163 21.479 0.102 0.075 4853.0 4963.0 1.0
Age Effect -0.179 5.788 -11.265 10.617 0.108 0.076 2877.0 3600.0 1.0
Age-Cluster Interaction (P1 & P2) -0.215 5.788 -11.552 10.320 0.108 0.076 2896.0 3778.0 1.0
Age-Cluster Interaction (P3 & P4) 0.029 5.786 -10.122 11.700 0.107 0.076 2903.0 3583.0 1.0
Age-Sex Interaction -0.530 0.774 -2.041 0.888 0.010 0.008 6241.0 4824.0 1.0
Cluster-Sex Interaction (P1 & P2) 10.644 8.289 -5.449 25.341 0.113 0.083 5392.0 5545.0 1.0
Cluster-Sex Interaction (P3 & P4) -3.261 7.963 -18.657 10.824 0.108 0.082 5464.0 4531.0 1.0
σ (Error SD) 24.015 2.574 19.194 28.648 0.032 0.023 6500.0 5448.0 1.0

WAIC 385.56
LOOIC 385.56
RMSE 33.10
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Figure 1: Summary of Bayesian Hierarchical Model Diagnostics and Results:
This figure provides a comprehensive summary of diagnostic checks and param-
eter estimates derived from the Bayesian hierarchical model using MCMC sam-
pling. This figure combines diagnostic and summary visualizations to validate
model convergence, assess parameter significance, and highlight key findings. (a)
Posterior Predictive Check (PPC): This plot compares the observed data (black
line) with posterior predictive samples (light blue bands). The close alignment
of the predicted mean with the observed data indicates that the model ade-
quately captures overall trends, although the wide predictive bands highlight
residual uncertainty. (b) Trace Plots for PPC: Each row displays the trace and
density plots for a model parameter (e.g., ”Cluster Effect,” ”Sex Effect,” ”Age
Effect”). The left panels show the smoothed posterior density estimates for the
parameters, while the right panels track parameter values over MCMC itera-
tions. Stable chains without trends or autocorrelation confirm convergence to
the posterior distribution. (c) Pair Plot: This plot explores pairwise relation-
ships between key model parameters (”Cluster Effect,” ”Sex Effect,” and ”Age
Effect”). The off-diagonal 2D kernel density estimates show weak correlations,
while the marginal distributions (diagonal) reinforce the distinct roles of each
parameter. (d) Trace plots for parameters: These plots visualize the uniformity
of rank distributions across chains for all parameters. The evenly distributed
color bands indicate no sampling bias and further validate MCMC convergence.
(e) Density Overlay: A succinct summary of parameter estimates, including
94% HDIs. The ”Cluster Effect” and ”Sex Effect” show intervals that suggest
potential trends, while the ”Age Effect” has wide intervals centered around zero,
indicating a negligible impact. (f) Posterior Summary Plots: This plot shows
the posterior distributions of key model parameters, including their means and
94% highest density intervals (HDIs). Parameters such as ”Cluster Effect” and
”Sex Effect” exhibit distributions leaning away from zero, while ”Age Effect”
centers around zero, suggesting a lack of significance.

3 Conclusions247

The analysis of improvement scores using Bayesian hierarchical modeling and248

MCMC sampling provides the following conclusions:249

1. No statistically significant effects were detected for Cluster, Sex, Age,250

or any combined effects (e.g., Sex+Age, Sex+Cluster, Age+Cluster). This251

suggests that these predictors do not strongly influence the observed out-252

comes in the current dataset.253

2. Trends were observed:254

• Individuals in Cluster 1 tend to show slightly higher improvement255

compared to Cluster 0.256

• Males may exhibit marginally greater improvement.257

These trends, while not statistically significant, warrant further investiga-258

tion in larger datasets or with refined modeling approaches.259
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3. The Age Effect was found to be negligible, suggesting that age does not260

substantially contribute to outcome variability.261

3.1 Recommendations for Future Work262

The lack of significant effects underscores the need for further research:263

• Increasing the sample size could reduce credible interval widths and pro-264

vide more robust conclusions regarding predictor effects.265

• Incorporating additional predictors or interaction terms (e.g., non-linear266

relationships) may help capture residual variability in the data.267

• Targeted analysis of Cluster and Sex, given their observed trends, could268

uncover meaningful differences with stronger evidence.269

In conclusion, while the current analysis does not provide strong evidence270

for significant predictor effects, the observed trends provide promising directions271

for future investigation.272
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