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1 Introduction

Previous studies have identified four shock-induced endotheliopathy (SHINE)
phenotypes [1]. These phenotypes are associated with significant differences
in the metabolic profiles from blood samples, which correlate with variations
in mortality rates and are independent of the severity of the injury. Using
Genome-scale metabolic model (GEM) and flux balance analysis [2] on data
from 95 trauma patients, we derived a constraint space of solutions that de-
scribe their reaction fluxes. This section goal is to identify patterns in the pa-
tients’ metabolic flux profiles associated with the different endotypes, allowing
for patient stratification and the identification of potential therapeutic targets
by applying. To this aim a pipeline combining different approaches based on lin-
ear multivariate analysis is developed. The pipeline comprises different steps: i.

*Corresponding author: Marin de Mas I. Email: igor.bartolome.marin.de.mas@regionh.dk
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data preprocessing, ii. dimensionality reduction [3| and iii. clustering to identify
potential patterns (Figure . Tasks in this section were performed using MAT-
LAB (version R2022a) and Python (version 3.9.12) with the packages numpy
(1.21.5) and scikit-learn (1.0.2).
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Normalization ]—» —> d position

Figure 1: First method summary

Clustering

analysis

2 Source Data

This study employs a mechanistic genome-scale metabolic model (GEM) inte-
grated with flux balance analysis (FBA) to analyze metabolic flux profiles of
trauma patients. We use the iEC3006 GEM, which includes 3006 reactions, to
generate a baseline model. By sampling the baseline model the initial lower and
upper flux boundaries of the exchange reactions were determined (Figure .
Next, these boundaries are adjusted to reflect patient-specific conditions using
metabolic concentration data collected from 95 trauma patients relative to a
control group of healthy individuals. Patient-specific flux boundaries are cal-
culated by determining the ratio between metabolite concentrations in patients
and the control group. For example, if a patient exhibits twice the metabolite
secretion compared to healthy individuals, the corresponding reaction’s mini-
mum and maximum flux boundaries in the baseline model are doubled. This
procedure is applied to all reactions in the baseline model to generate trauma-
specific metabolic boundaries. To account for variability in the control group,
we create three sets of boundaries per patient using the mean, minimum, and
maximum concentrations. FBA is performed under steady-state conditions,
where the mass of substrates equals the mass of products (A = C + D; Fig-
ure . Mathematically, this condition is expressed as S - v = 0, where S is
the stoichiometric matrix and v is the flux vector constrained by the adjusted
boundaries. Since large metabolic models contain more reactions than metabo-
lites, this system has infinite feasible solutions rather than a single solution. To
characterize this solution space, we perform random sampling of steady-state
flux solutions, generating a matrix where rows represent reaction fluxes (3006
reactions) and columns correspond to sampled solution points. This sampling
defines the constrained solution space of metabolic fluxes for each patient. Each
patient’s data is stored as three MATLAB structure arrays, corresponding to
the flux boundaries derived from the minimum, mean, and maximum values of
the control group. Each structure contains the lower and upper flux boundaries,
reaction names, and the sampling output. The resulting matrix for each patient
has 3006 reaction fluxes and 18036 (6012 - 3 randomly sampled solution points,
optimized to represent the solution space effectively. In total, we generate 95
patient-specific models, each with three variations, resulting in 285 matrices.
These matrices provide a comprehensive representation of reaction fluxes and
their constrained solution spaces, enabling detailed metabolic analysis of trauma
patients.
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Figure 2: Sampling Solution Points of Reaction Fluxes Using FBA: (1). Mod-
eling of Reactions: The blue line represents the cell membrane, with A (in red)
as the substrate, and C and D as the products. (2). Stoichiometric Matrix:
This matrix shows the production (1) and elimination (-1) of different metabo-
lites across multiple reactions. (3). Steady State Condition: At steady state, (
S -v =0) defines the flux through each reaction. (4). Post-Sampling Matrix:
After sampling, we obtain a new matrix (reactions by solution points) that de-
fines the solution space of the reactions for the patient.

3 Pre-processing

3.1 Normalization

After loading the solution points matrices from each patient, we need to nor-
malize the data since the reaction fluxes have different boundaries. Using a
standard scaler, we standardize the reaction fluxes by dividing each value by
the standard deviation (scaling to unit variance) and subtracting the mean (cen-
tering the distribution around 0). We then concatenate the three matrices of
each patient and normalize them using the standard scaler. This process results
in a normalized matrix for each patient, such as the one shown in Figure [2]
(Normalized matrix of a patient), which has 3006 reaction fluxes as rows and
18036 solution points (max, mean, and min) as columns.

3.2 Impact of the variance of the healthy patients

To eliminate the variability within the control group, we compute the ratio of the
trauma patients’ values against the minimum, mean, and maximum values of
the healthy individuals. This approach results in three solution points matrices
for each patient. Performing a PCA on the reaction fluxes reveals that the
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Figure 3: Normalized matrix of a patient

minimum, mean, and maximum models form three distinct groups for every
patient in the cohort, as shown in Figure[dl This indicates that all three models
are essential to account for the variability within the control group.

3.3 Singular value decomposition (SVD)

The solution points are intended to define the solution space of the reaction
fluxes. However, due to sampling, some points may be highly correlated with
others. Singular value decomposition (SVD) helps summarize these solution
points into components that explain most of the variance. For the average
of the 95 patients, 350 SVD components account for more than 95% of the
variance. Consequently, we obtain a reduced matrix of 3006 reaction fluxes by
350 SVD components for each patient (Figure|5). To compare different patients
and identify patterns, we need to organize our data into a 3-way tensor. We
combine each patient’s matrix into a tensor (as shown in Figure @ with three
dimensions:

e Patients
e Reaction fluxes
e Solution points

Originally, since the solution points are randomly distributed, the columns
in the different patient’s matrix doesn’t explain the same thing. Using SVD,
instead of the solution points, we will have components that are sorted by their
explained variance which means that each patient’s matrix has columns sorted
from the component that explained most of the variance to the one that ex-
plained the less. This way the solution points dimension isn’t randomly dis-
tributed from a patient to another anymore and we can concatenate all the
matrices in one 3-way tensor.



113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Patient 73 :

40 | WEE Max o
N Mean e
30 1 N Min

axis 2 =12.16%
=

0 4
_10 .
®
_20 4
_30 -
-100 -50 0 50 100

axis 1 = 26.05%

Figure 4: Example of distribution of the solution points (patient 73)

3.4 Tensor decomposition

Once we have our tensor, we reduce it into multiple components to identify pat-
terns (feature extraction) in each dimension. This method has been previously
studied on simulated metabolomics data (low dimension) 3] and has shown that
we can effectively distinguish different groups of patients using the decomposed
vectors. To determine the optimal number of components, we compute the
reconstructed tensor and then calculate the percentage difference between the
original and reconstructed tensor (Figure E[) We evaluate this reconstruction
error on the tensor with 350 SVD components for various numbers of tensor
decomposition components, as shown in Figure Our results indicate that
approximately 99% of the data is explained by the model when the number
of tensor decomposition components matches the number of SVD components
(e.g., the model with 350 tensor decomposition components explains 98% of the
tensor with 350 SVD components).

4 Results

4.1 Clustering analysis

As shown in Figure Iﬂ the tensor decomposition yields three vectors (represent-
ing the dimensions of our tensor) with multiple components. From a tensor
decomposition with 350 components, we obtain three vectors, each with 350
components. Using this preprocessed data, we can perform a clustering analysis
on the patient vectors to identify any correlations among patients. By grouping
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Figure 5: SVD 350 components

these patients, we can then analyze the reaction fluxes to uncover pathways that
explain their correlations.

4.2 Compute the number of clusters

Using the K-means clustering method, we computed the SSE (Figure E[) and
identified an optimal number of clusters at 3 (elbow point). The silhouette curve
(Figure E[) also indicates that the highest similarity within each cluster occurs
at 3 clusters. However, this optimal number of clusters does not align with the
original number of metabolic groups (4), suggesting that our distribution does
not accurately represent the original groups.

4.3 Compare computed clusters with the original metabolic
groups

The original clinical data contained 4 clusters (metabolic groups). When we
compare them to the distribution of our patient vectors on 2 components us-
ing PCA for visualization (Figure [10| - a), we see that they appear randomly
distributed. To compare the metabolic groups, we need to compute 4 clusters
(instead of 3, which was the optimal number of clusters) and find the permuta-
tion with the highest percentage of identity. With the K-means clusters sorted
as [1; 2; 0; 3], we achieve 37.89% identity with the metabolic groups (Figure [10]
— b shows the distribution of the computed clusters with this permutation). As
shown in Figure [10| - (c¢) Distribution of the clusters, this permutation results
in different distributions for the computed clusters and the metabolic groups.
However, it is homogeneous when we look at the identity within each cluster
(Figure [10| — (d) Patients with identical clusters). From these results, we can
conclude that the identity between the two sets of clusters is random, indicating
no correlation between our distribution of patients from the tensor decomposi-
tion and the metabolic groups. Instead, this distribution is correlated with the
explained variance of the SVD for each patient. In Figure [I1] - Visualization
of the patients (350 SVD components), the clusters represented are computed
(using K-means) from the list of variances explained by the SVD with 350 com-
ponents for each patient. The first component of the PCA (x-axis on the plot)
explains more than 80% of the variance, and there is a correlation between the
clusters of variances explained for each patient and this axis. In Figure [12] -
Visualization of the patients (500 SVD components), we observe the same cor-
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relation with 500 SVD components, which explain on average more than 99%
of the variance for each patient compared to 95

5 Conclusion

In this study, we utilized a genome-scale metabolic model (GEM) integrated
with flux balance analysis (FBA) to analyze the metabolic flux profiles of
95 trauma patients. By adjusting the baseline model with patient-specific
metabolic data, we generated a comprehensive set of patient-specific models.
The sampled metabolic flux profile of the pateints were normalized and reduced
using singular value decomposition (SVD) to facilitate pattern recognition and
clustering analysis. Our analysis revealed that the variability within the con-
trol group necessitated the use of three distinct models (minimum, mean, and
maximum) for each patient. This approach ensured a robust representation of
the metabolic flux profiles. The tensor decomposition and subsequent clustering
analysis identified three optimal clusters, although this did not align with the
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original four metabolic groups identified in clinical data. This discrepancy sug-
gests that the metabolic profiles derived from the GEM and FBA approach may
capture different aspects of patient variability compared to traditional clinical
classifications. Furthermore, the clustering analysis indicated that the distribu-
tion of patients was more closely correlated with the explained variance of the
SVD components rather than the original metabolic groups. This finding under-
scores the importance of considering the underlying data structure and variance
when interpreting clustering results. Overall, our study demonstrates the po-
tential of combining GEM, FBA, and advanced multivariate analysis techniques
to uncover metabolic patterns in trauma patients. These insights could inform
patient stratification and the identification of therapeutic targets, ultimately
contributing to improved clinical outcomes.
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Figure 12: Visualization of the patients (500 SVD components)
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