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1 Introduction20

Previous studies have identified four shock-induced endotheliopathy (SHINE)21

phenotypes [1]. These phenotypes are associated with significant differences22

in the metabolic profiles from blood samples, which correlate with variations23

in mortality rates and are independent of the severity of the injury. Using24

Genome-scale metabolic model (GEM) and flux balance analysis [2] on data25

from 95 trauma patients, we derived a constraint space of solutions that de-26

scribe their reaction fluxes. This section goal is to identify patterns in the pa-27

tients’ metabolic flux profiles associated with the different endotypes, allowing28

for patient stratification and the identification of potential therapeutic targets29

by applying. To this aim a pipeline combining different approaches based on lin-30

ear multivariate analysis is developed. The pipeline comprises different steps: i.31
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data preprocessing, ii. dimensionality reduction [3] and iii. clustering to identify32

potential patterns (Figure 1). Tasks in this section were performed using MAT-33

LAB (version R2022a) and Python (version 3.9.12) with the packages numpy34

(1.21.5) and scikit-learn (1.0.2).

Figure 1: First method summary

35

2 Source Data36

This study employs a mechanistic genome-scale metabolic model (GEM) inte-37

grated with flux balance analysis (FBA) to analyze metabolic flux profiles of38

trauma patients. We use the iEC3006 GEM, which includes 3006 reactions, to39

generate a baseline model. By sampling the baseline model the initial lower and40

upper flux boundaries of the exchange reactions were determined (Figure 2).41

Next, these boundaries are adjusted to reflect patient-specific conditions using42

metabolic concentration data collected from 95 trauma patients relative to a43

control group of healthy individuals. Patient-specific flux boundaries are cal-44

culated by determining the ratio between metabolite concentrations in patients45

and the control group. For example, if a patient exhibits twice the metabolite46

secretion compared to healthy individuals, the corresponding reaction’s mini-47

mum and maximum flux boundaries in the baseline model are doubled. This48

procedure is applied to all reactions in the baseline model to generate trauma-49

specific metabolic boundaries. To account for variability in the control group,50

we create three sets of boundaries per patient using the mean, minimum, and51

maximum concentrations. FBA is performed under steady-state conditions,52

where the mass of substrates equals the mass of products (A = C + D; Fig-53

ure 2). Mathematically, this condition is expressed as S · v = 0, where S is54

the stoichiometric matrix and v is the flux vector constrained by the adjusted55

boundaries. Since large metabolic models contain more reactions than metabo-56

lites, this system has infinite feasible solutions rather than a single solution. To57

characterize this solution space, we perform random sampling of steady-state58

flux solutions, generating a matrix where rows represent reaction fluxes (300659

reactions) and columns correspond to sampled solution points. This sampling60

defines the constrained solution space of metabolic fluxes for each patient. Each61

patient’s data is stored as three MATLAB structure arrays, corresponding to62

the flux boundaries derived from the minimum, mean, and maximum values of63

the control group. Each structure contains the lower and upper flux boundaries,64

reaction names, and the sampling output. The resulting matrix for each patient65

has 3006 reaction fluxes and 18036 (6012 · 3 randomly sampled solution points,66

optimized to represent the solution space effectively. In total, we generate 9567

patient-specific models, each with three variations, resulting in 285 matrices.68

These matrices provide a comprehensive representation of reaction fluxes and69

their constrained solution spaces, enabling detailed metabolic analysis of trauma70

patients.71
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Figure 2: Sampling Solution Points of Reaction Fluxes Using FBA: (1). Mod-
eling of Reactions: The blue line represents the cell membrane, with A (in red)
as the substrate, and C and D as the products. (2). Stoichiometric Matrix:
This matrix shows the production (1) and elimination (-1) of different metabo-
lites across multiple reactions. (3). Steady State Condition: At steady state, (
S · v = 0 ) defines the flux through each reaction. (4). Post-Sampling Matrix:
After sampling, we obtain a new matrix (reactions by solution points) that de-
fines the solution space of the reactions for the patient.

3 Pre-processing72

3.1 Normalization73

After loading the solution points matrices from each patient, we need to nor-74

malize the data since the reaction fluxes have different boundaries. Using a75

standard scaler, we standardize the reaction fluxes by dividing each value by76

the standard deviation (scaling to unit variance) and subtracting the mean (cen-77

tering the distribution around 0). We then concatenate the three matrices of78

each patient and normalize them using the standard scaler. This process results79

in a normalized matrix for each patient, such as the one shown in Figure 280

(Normalized matrix of a patient), which has 3006 reaction fluxes as rows and81

18036 solution points (max, mean, and min) as columns.82

3.2 Impact of the variance of the healthy patients83

To eliminate the variability within the control group, we compute the ratio of the84

trauma patients’ values against the minimum, mean, and maximum values of85

the healthy individuals. This approach results in three solution points matrices86

for each patient. Performing a PCA on the reaction fluxes reveals that the87
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Figure 3: Normalized matrix of a patient

minimum, mean, and maximum models form three distinct groups for every88

patient in the cohort, as shown in Figure 4. This indicates that all three models89

are essential to account for the variability within the control group.90

3.3 Singular value decomposition (SVD)91

The solution points are intended to define the solution space of the reaction92

fluxes. However, due to sampling, some points may be highly correlated with93

others. Singular value decomposition (SVD) helps summarize these solution94

points into components that explain most of the variance. For the average95

of the 95 patients, 350 SVD components account for more than 95% of the96

variance. Consequently, we obtain a reduced matrix of 3006 reaction fluxes by97

350 SVD components for each patient (Figure 5). To compare different patients98

and identify patterns, we need to organize our data into a 3-way tensor. We99

combine each patient’s matrix into a tensor (as shown in Figure 6) with three100

dimensions:101

• Patients102

• Reaction fluxes103

• Solution points104

Originally, since the solution points are randomly distributed, the columns105

in the different patient’s matrix doesn’t explain the same thing. Using SVD,106

instead of the solution points, we will have components that are sorted by their107

explained variance which means that each patient’s matrix has columns sorted108

from the component that explained most of the variance to the one that ex-109

plained the less. This way the solution points dimension isn’t randomly dis-110

tributed from a patient to another anymore and we can concatenate all the111

matrices in one 3-way tensor.112

4



Figure 4: Example of distribution of the solution points (patient 73)

3.4 Tensor decomposition113

Once we have our tensor, we reduce it into multiple components to identify pat-114

terns (feature extraction) in each dimension. This method has been previously115

studied on simulated metabolomics data (low dimension) [3] and has shown that116

we can effectively distinguish different groups of patients using the decomposed117

vectors. To determine the optimal number of components, we compute the118

reconstructed tensor and then calculate the percentage difference between the119

original and reconstructed tensor (Figure 7). We evaluate this reconstruction120

error on the tensor with 350 SVD components for various numbers of tensor121

decomposition components, as shown in Figure 8. Our results indicate that122

approximately 99% of the data is explained by the model when the number123

of tensor decomposition components matches the number of SVD components124

(e.g., the model with 350 tensor decomposition components explains 98% of the125

tensor with 350 SVD components).126

4 Results127

4.1 Clustering analysis128

As shown in Figure 7, the tensor decomposition yields three vectors (represent-129

ing the dimensions of our tensor) with multiple components. From a tensor130

decomposition with 350 components, we obtain three vectors, each with 350131

components. Using this preprocessed data, we can perform a clustering analysis132

on the patient vectors to identify any correlations among patients. By grouping133
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Figure 5: SVD 350 components

these patients, we can then analyze the reaction fluxes to uncover pathways that134

explain their correlations.135

4.2 Compute the number of clusters136

Using the K-means clustering method, we computed the SSE (Figure 9) and137

identified an optimal number of clusters at 3 (elbow point). The silhouette curve138

(Figure 9) also indicates that the highest similarity within each cluster occurs139

at 3 clusters. However, this optimal number of clusters does not align with the140

original number of metabolic groups (4), suggesting that our distribution does141

not accurately represent the original groups.142

4.3 Compare computed clusters with the original metabolic143

groups144

The original clinical data contained 4 clusters (metabolic groups). When we145

compare them to the distribution of our patient vectors on 2 components us-146

ing PCA for visualization (Figure 10 – a), we see that they appear randomly147

distributed. To compare the metabolic groups, we need to compute 4 clusters148

(instead of 3, which was the optimal number of clusters) and find the permuta-149

tion with the highest percentage of identity. With the K-means clusters sorted150

as [1; 2; 0; 3], we achieve 37.89% identity with the metabolic groups (Figure 10151

– b shows the distribution of the computed clusters with this permutation). As152

shown in Figure 10 – (c) Distribution of the clusters, this permutation results153

in different distributions for the computed clusters and the metabolic groups.154

However, it is homogeneous when we look at the identity within each cluster155

(Figure 10 – (d) Patients with identical clusters). From these results, we can156

conclude that the identity between the two sets of clusters is random, indicating157

no correlation between our distribution of patients from the tensor decomposi-158

tion and the metabolic groups. Instead, this distribution is correlated with the159

explained variance of the SVD for each patient. In Figure 11 - Visualization160

of the patients (350 SVD components), the clusters represented are computed161

(using K-means) from the list of variances explained by the SVD with 350 com-162

ponents for each patient. The first component of the PCA (x-axis on the plot)163

explains more than 80% of the variance, and there is a correlation between the164

clusters of variances explained for each patient and this axis. In Figure 12 -165

Visualization of the patients (500 SVD components), we observe the same cor-166

6



Figure 6: 3 dimensions tensor (patients, reaction fluxes and solution points)

relation with 500 SVD components, which explain on average more than 99%167

of the variance for each patient compared to 95168

5 Conclusion169

In this study, we utilized a genome-scale metabolic model (GEM) integrated170

with flux balance analysis (FBA) to analyze the metabolic flux profiles of171

95 trauma patients. By adjusting the baseline model with patient-specific172

metabolic data, we generated a comprehensive set of patient-specific models.173

The sampled metabolic flux profile of the pateints were normalized and reduced174

using singular value decomposition (SVD) to facilitate pattern recognition and175

clustering analysis. Our analysis revealed that the variability within the con-176

trol group necessitated the use of three distinct models (minimum, mean, and177

maximum) for each patient. This approach ensured a robust representation of178

the metabolic flux profiles. The tensor decomposition and subsequent clustering179

analysis identified three optimal clusters, although this did not align with the180
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Figure 7: Reconstruction error

original four metabolic groups identified in clinical data. This discrepancy sug-181

gests that the metabolic profiles derived from the GEM and FBA approach may182

capture different aspects of patient variability compared to traditional clinical183

classifications. Furthermore, the clustering analysis indicated that the distribu-184

tion of patients was more closely correlated with the explained variance of the185

SVD components rather than the original metabolic groups. This finding under-186

scores the importance of considering the underlying data structure and variance187

when interpreting clustering results. Overall, our study demonstrates the po-188

tential of combining GEM, FBA, and advanced multivariate analysis techniques189

to uncover metabolic patterns in trauma patients. These insights could inform190

patient stratification and the identification of therapeutic targets, ultimately191

contributing to improved clinical outcomes.192

8



Figure 8: Find the optimal number of tensor decomposition components

Figure 9: Kmean optimal number of clusters
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Figure 10: Distribution of the 95 patients

Figure 11: Visualization of the patients (350 SVD components)

Figure 12: Visualization of the patients (500 SVD components)
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