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Figure S1: Imputed pathway expression by PASTA and six other existing methods using a
human lung cancer spatial transcriptomics (ST) dataset. We collected a ST dataset from human
lung cancer tissue with 480 genes processed by 10x Genomics Xenium [Janesick et al., 2023]. We annotated
the dataset manually referring to the PanglaoDB [Franzén et al., 2019] for the seven clusters that Xenium
provides. The corresponding scRNA-seq dataset was collected from the UCSC cell Browser website. Three
pathways are presented: WNT BETA CATENIN SIGNALING, HEME METABOLISM, and KRAS SIG-
NALING DN (from top to bottom, respectively). Normalized pathway expression are visualized for the cells.
PASTA-imputed pathway expression shows consistently higher correlations with true values, as indicated by

the strong correlations between the predicted and actual pathway expression.
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Figure S2: Distributions of a hallmark pathway expression. We collected a ST dataset from human
lung cancer tissue with 480 genes, and applied the impuataion methods on the ST dataset. We compare
the distribution of WNT BETA CATENIN SIGNALING pathway predictions among different cell types.
PASTA predicts expression distributions among all the cell types similar to the ground truth. In contrast,

the other methods fail in predicting one or more cell types.
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Figure S3: Enrichment of immune pathways predicted by PASTA in different cell types. We
manually selected a group of immune-related pathways from GOBP (Gene Ontology Biological Process) and
KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. Each dot indicates a significant pathway
enrichment in a particular cell type, with the size of the dot reflecting the significance level: the larger the
dot, the more significant the enrichment. In general, PASTA successfully predicted that those pathways were

enriched in immune cells.
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Figure S4: Top 5 of enriched predicted meta-programs (MPs) in each cell type. The MPs are
developed by |Gavish et al., 2023|, consisting of genes that are upregulated in subpopulations of cells within
many tumors. MPs are presented along the Y axis, and the names are reflecting its functional annotations.
RBCs: red blood cells; PDAC: pancreatic ductal adenocarcinoma; NPC/OPC: neuroal/oligodendrocyte
(Oligo) progenitors cells; EMT: epithelial-mesenchymal transition; MES: mesenchymal. We applied PASTA
on predicting the MPs. PASTA successfully connects almost all the basal cells to all the MPs. Here we
presented the top 5 enriched MPs in each cell type. Each dot indicates a significant pathway enrichment in
a particular cell type, with the size of the dot reflecting the significance level: the larger the dot, the more

significant the enrichment.
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Figure S5: HE staining of the human lung tissue, predicted pathway, and gene expression figures.
The pathway is collected from HALLMARK gene sets and the gene is RETN. The pathway and gene are
both related to the tumor cell expression. Single gene expression can fail on identify the tissue structure,
while pathway that aggregates genes with similar function can provide more information about the tissue

structure.
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Figure S6: Trajectory analysis of tumor development. A. Domain detected by IRIS. One domain
contains mainly basal cells and we identify it as tumor domain. B. Pseudotime of tumor development
predicted using the pathway-by-cell predicted by PASTA. C. Pseudotime of tumor development predicted
using the pathway-by-cell predicted by Tangram. D. Gene expression of MET. MET gene is related to
tumor development. The pseudotime estimation from PASTA and Tangram showed different patterns:
Our method revealed that more developed tumor cells were concentrated in the center, whereas Tangram’s
predictions placed them at the right edge. We examined the expression of the MET gene, which is associated
with abnormal cell proliferation. The distribution of the gene expression aligned closely with our method’s
predictions, demonstrating that our approach effectively captures the underlying biological development
among the tumor cells.
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Figure S7: Predicted pathway expressions of the Merfish mouse brain data. The ST dataset
contains 82075 cells with a panel of 1122 genes. The cell types were identified by the authors manually,
including mostly neurons. The corresponding mouse primary visual cortex scRNA-seq data is collected
from the Allen Institute. The three pathways are collected from GOBP database. Pearson correlations are
shown in the figure between the prediction and the ground truth. The existing method did not show ideal

performance on predicting the pathway expression, indicating by the low correlations.
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Figure S8: Cell distributions in the two K-means clusters. We performed the K-means clusters
using the predicted pathway-by-cell matrix, setting the K = 2. The pathways were collected from GOBP
database, which are related to the brain development. Distributions of major cells are presented. Except
for PASTA, the imputation methods all generated cell mixtures in the two clusters. Astro-Epen, astrocyte
and ependymal-like cells; GABA, Gamma-aminobutyric acid; Glut, glucose transporters; CB, cerebellum;
IT-ET, inhibitory-excitatory; IMN, immature neurons; DG, dentate gyrus; OEC, olfactory ensheathing cell;
OPC, oligodendrocyte progenitor cells.

True PASTA Tangram StDiff GimVI Seurat SpaGE StPlus

» 0.795

FOREBRAIN REGIONALIZATION

Normalized pathway expression .
0 01 05 1

Figure S9: Predicted FOREBRAIN REGIONALIZATION pathway expression in the ISS mouse ST data.
The pathway is from GOBP database. We applied the imputation methods on two different slices of the
ISS mouse ST data. The two datasets contain 136 genes profiled from 14,066 and 15,823 cells, respectively.
We clustered the dataset using Seurat and annotated each cluster manually referring to the PanglaoDB.
During the training process, we did not incorporate cell type information for PASTA, as the majority of the
cells were neurons that are distributed across the spatial domain. PASTA still generates a high correlation

compared to the other methods.
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