# What influences national ambition in clean transport policy? A statistical analysis of NDC climate mitigation targets and driving factors

# **Supplementary Information**

Sturgess, D\*., Ferguson, N. S., Dixon, J. \* david.sturgess@strath.ac.uk

#### **Contents**

| Supplementary Information 1 – Presented regression models (Fig. 2) raw statistical outputs                         | 2   |
|--------------------------------------------------------------------------------------------------------------------|-----|
| Supplementary information 2 – Details of parties with conditional NDC provisions                                   | 3   |
| Supplementary information 3 – Independent variables used for quantitative analysis                                 | . 4 |
| Supplementary information 4 – Bivariate relationships                                                              | 7   |
| Supplementary information 5 – Sensitivity tests of multiple regression models (both unconditional and conditional) |     |
| Supplementary Information 6 – Parties included in regression analysis model observations                           | 13  |
| Supplementary Information 7 – Regression of GDP per capita against 2100-warming assessment                         | 17  |

# <u>Supplementary Information 1 – Presented regression models (Fig. 2) raw statistical outputs</u>

**S.I.1: Table 1** – Global regression models with Unconditional and Conditional ambition dependent variables

|                         |                        |                        | Dependen               | t variable:            |                        |                                                                                                                                                                  |  |  |
|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -                       | ndc                    | 2_ambition_uncondition | onal                   | nd                     | c2_ambition_condition  | m3c (6)  -0.026 (0.043) 0.125** (0.062) -0.080** (0.058) 0.024 (0.064) -0.075* (0.040) 0.116** (0.045) -0.122* (0.072)  0.061** (0.029) 0.067 (0.055)  156 0.251 |  |  |
|                         | m1u                    | m2u                    | m3u                    | m1c                    | m2c                    | m3c                                                                                                                                                              |  |  |
|                         | (1)                    | (2)                    | (3)                    | (4)                    | (5)                    | (6)                                                                                                                                                              |  |  |
| Constant                | -0.009 (0.035)         | 0.017 (0.027)          | 0.026 (0.038)          | -0.044 (0.039)         | 0.019 (0.029)          | -0.026 (0.043)                                                                                                                                                   |  |  |
| gdp_pc_log_1            | 0.111*** (0.038)       |                        | 0.052 (0.055)          | 0.153*** (0.042)       |                        | 0.125** (0.062)                                                                                                                                                  |  |  |
| oil_rents_1             | -0.103*** (0.028)      |                        | -0.060* (0.031)        | -0.113*** (0.031)      |                        | -0.080** (0.035)                                                                                                                                                 |  |  |
| coal_rents_1            | 0.191*** (0.053)       |                        | 0.159*** (0.052)       | 0.188*** (0.060)       |                        | 0.165*** (0.058)                                                                                                                                                 |  |  |
| ng_rents_1              | 0.016 (0.057)          |                        | 0.043 (0.057)          | -0.004 (0.063)         |                        | 0.024 (0.064)                                                                                                                                                    |  |  |
| ev_critical_minerals_1  | -0.076** (0.037)       |                        | -0.072** (0.035)       | -0.078* (0.041)        |                        | -0.075° (0.040)                                                                                                                                                  |  |  |
| nd_gain_vulnerability_1 | 0.099*** (0.037)       |                        | 0.046 (0.040)          | 0.153*** (0.041)       |                        | 0.116** (0.045)                                                                                                                                                  |  |  |
| nd_gain_readiness_1     |                        | -0.154*** (0.055)      | -0.149** (0.064)       |                        | -0.139** (0.059)       | -0.122° (0.072)                                                                                                                                                  |  |  |
| public_support_1        |                        | 0.048* (0.027)         |                        |                        | 0.056* (0.030)         |                                                                                                                                                                  |  |  |
| electoral_democracy_1   |                        | 0.068** (0.029)        | 0.061** (0.026)        |                        | 0.070** (0.031)        | 0.061** (0.029)                                                                                                                                                  |  |  |
| control_corruption_1    |                        | 0.134** (0.054)        | 0.109** (0.049)        |                        | 0.112* (0.059)         | 0.067 (0.055)                                                                                                                                                    |  |  |
| Observations            | 163                    | 115                    | 156                    | 163                    | 115                    | 156                                                                                                                                                              |  |  |
| $\mathbb{R}^2$          | 0.190                  | 0.198                  | 0.272                  | 0.200                  | 0.159                  | 0.251                                                                                                                                                            |  |  |
| Adjusted R <sup>2</sup> | 0.159                  | 0.168                  | 0.227                  | 0.169                  | 0.128                  | 0.204                                                                                                                                                            |  |  |
| Residual Std. Error     | 0.062 (df = 156)       | 0.054 (df = 110)       | 0.059 (df = 146)       | 0.069 (df = 156)       | 0.058 (df = 110)       | 0.067 (df = 146)                                                                                                                                                 |  |  |
| F Statistic             | 6.100*** (df = 6; 156) | 6.771*** (df = 4; 110) | 6.067*** (df = 9; 146) | 6.503*** (df = 6; 156) | 5.193*** (df = 4; 110) | 5.425*** (df = 9; 1                                                                                                                                              |  |  |
| Note:                   |                        |                        |                        |                        | *p<0.1                 | 1; **p<0.05; ***p<0                                                                                                                                              |  |  |

2

# <u>Supplementary information 2 – Details of parties with conditional NDC provisions</u>

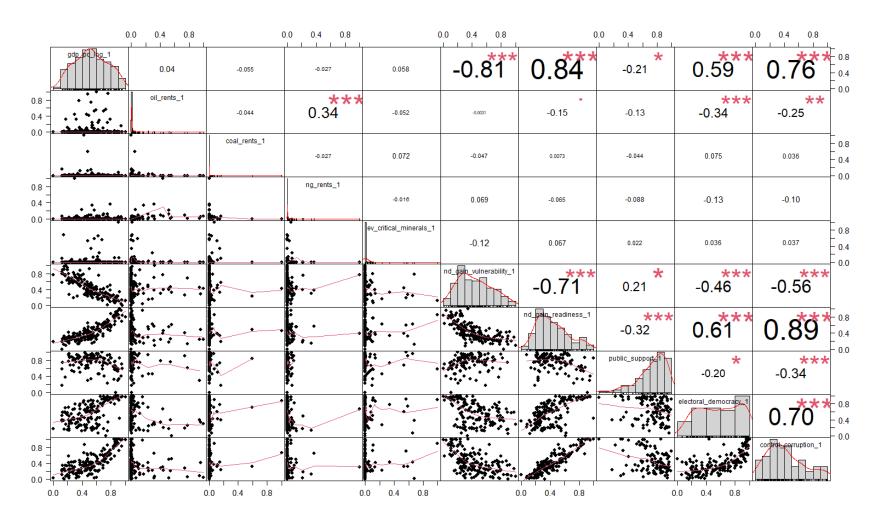
**S.I.2: Table 1** – Countries that submitted conditional NDC provision, with unconditional and conditional 2100-warming assessments

| ISO<br>Alpha-3 | Country names               | Global 2100-warming for 'Unconditional NDC' assessment [in °C] | Global 2100-warming for 'Conditional NDC' assessment [in °C] |
|----------------|-----------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| DZA            | ALGERIA                     | 5.1                                                            | 4.7                                                          |
| BRB            | BARBADOS                    | 1.6                                                            | 1.2                                                          |
| BIH            | BOSNIA AND<br>HERZEGOVINA   | 3.1                                                            | 2.8                                                          |
| KHM            | CAMBODIA                    | 5                                                              | 4.1                                                          |
| CMR            | CAMEROON                    | 2                                                              | 1.4                                                          |
| CAF            | CENTRAL AFRICAN<br>REPUBLIC | 3.6                                                            | 2.8                                                          |
| COG            | CONGO, REPUBLIC OF<br>THE   | 2.2                                                            | 1.2                                                          |
| DOM            | DOMINICAN REPUBLIC          | 1.8                                                            | 1.2                                                          |
| ECU            | ECUADOR                     | 1.7                                                            | 1.2                                                          |
| GNQ            | EQUATORIAL GUINEA           | 3.3                                                            | 1.4                                                          |
| SWZ            | ESWATINI                    | 2.1                                                            | 1.8                                                          |
| FJI            | FIJI, THE REPUBLIC OF       | 1.7                                                            | 1.3                                                          |
| GEO            | GEORGIA                     | 2.7                                                            | 2.1                                                          |
| GIN            | GUINEA                      | 1.3                                                            | 1.2                                                          |
| GUY            | GUYANA                      | 5.1                                                            | 2.4                                                          |
| IDN            | INDONESIA                   | 2.3                                                            | 1.5                                                          |
| JOR            | JORDAN                      | 2                                                              | 1.2                                                          |
| KAZ            | KAZAKHSTAN                  | 5.1                                                            | 4.7                                                          |
| KGZ            | KYRGYZSTAN                  | 3                                                              | 2.3                                                          |
| LBN            | LEBANON                     | 3.4                                                            | 2.6                                                          |
| MDV            | MALDIVES                    | 4.9                                                            | 1.2                                                          |
| MUS            | MAURITIUS                   | 2.3                                                            | 1.2                                                          |
| MEX            | MEXICO                      | 2.7                                                            | 2.1                                                          |
| MDA            | MOLDOVA, REPUBLIC OF        | 5.1                                                            | 1.6                                                          |
| MAR            | MOROCCO                     | 1.4                                                            | 1.2                                                          |
| NAM            | NAMIBIA                     | 1.3                                                            | 1.2                                                          |
| PAK            | PAKISTAN                    | 1.7                                                            | 1.2                                                          |
| PRY            | PARAGUAY                    | 2.4                                                            | 1.7                                                          |
| PER            | PERU                        | 1.9                                                            | 1.3                                                          |
| PHL            | PHILIPPINES                 | 1.3                                                            | 1.2                                                          |
| WSM            | SAMOA                       | 2.4                                                            | 1.2                                                          |
| SLB            | SOLOMON ISLANDS             | 5.1                                                            | 1.2                                                          |
| ZAF            | SOUTH AFRICA                | 5.1                                                            | 3                                                            |
| TJK            | TAJIKISTAN                  | 3.4                                                            | 2.5                                                          |
| THA            | THAILAND                    | 3.8                                                            | 2.9                                                          |
| TUN            | TUNISIA                     | 2.7                                                            | 1.8                                                          |

# <u>Supplementary information 3 – Independent variables used for quantitative analysis</u>

#### **S.I.3: Table 1** – Independent variables key information and hypothesised relationship with ambition

| Driver                             | Source                 | N   | Description                                                                                                                                                                                                                                         | Operation                                                                                                        | Hypothesis (relationship with ambition) |
|------------------------------------|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| GDP per capita (log)               | (World Bank,<br>2024a) | 165 | Logarithm of GDP per capita (current US\$, 2024).                                                                                                                                                                                                   | Greater values = Greater economic growth                                                                         | N/A (Control)                           |
| Oil rents                          | (World Bank,<br>2024b) | 166 | The difference between the value of crude oil production at regional prices and total costs of production, measured as a % of GDP.                                                                                                                  | Greater values = Greater oil rents                                                                               | Negative                                |
| Coal rents                         | (World Bank, 2024c)    | 165 | The difference between the value of both hard and soft coal production at world prices and their total costs of production, measured as a % of GDP.                                                                                                 | Greater values = Greater coal rents                                                                              | Negative                                |
| Natural gas rents                  | (World Bank,<br>2024d) | 165 | The difference between the value of natural gas production at regional prices and total costs of production, measured as a % of GDP.                                                                                                                | Greater values = Greater natural gas rents                                                                       | Negative                                |
| Electric-vehicle critical minerals | (USGS, 2024)           | 168 | Share of global known reserves of key earth minerals critical to electric vehicle production as identified by (IEA, 2021) - Copper, Lithium, Nickel, Manganese, Cobalt, Graphite. Measured as a % of total reserves (across all minerals included). | Greater values = Greater share of global reserves                                                                | Positive                                |
| Vulnerability                      | (ND-GAIN, 2024)        | 167 | Measure accounting for a country's exposure, sensitivity and adaptive capacity to the negative effects of climate change.                                                                                                                           | Greater values = Greater vulnerability to the negative effects of climate change.                                | Positive                                |
| Readiness                          | (ND-GAIN, 2024)        | 167 | Measure of a country's ability to leverage investments and convert<br>them to adaptive actions, accounting for economic, governance and<br>social factors.                                                                                          | Greater values = Greater ability to leverage and convert investment into adaptive actions.                       | Positive                                |
| Public support                     | (Andre et al., 2024)   |     |                                                                                                                                                                                                                                                     | Greater values = Greater share of the population who support heightened national action to tackle climate change | Positive                                |
| Electoral democracy                | (V-Dem, 2024)          | 160 | Measure of the of the extent to which elections occur freely and fairly, under comprehensive suffrage, and freedoms of association and expression are guaranteed. Measured on an index 0-1.                                                         | Greater values = More democratic                                                                                 | Positive                                |
| Control of corruption              | (World Bank,<br>2024e) | 167 | Measures perceptions of the extent to which public power is exercised for private gain, including both petty and grand forms of corruption. Measured on an aggregate indicator ranging ~ -2.5-2.5                                                   | Greater values = Less corruption                                                                                 | Positive                                |


#### **S.I.3: Table 2** – Statistical summary of data used in this analysis

NB: 'statistic'\_1 indicates max-min normalised independent variables used in regression models

#### **Descriptive Statistics**

| Statistic                                          | N   | Mean   | St. Dev. | Min    | Max   |
|----------------------------------------------------|-----|--------|----------|--------|-------|
| EDGAR_2019_transport_share_total_emissions         | 168 | 0.174  | 0.097    | 0.010  | 0.594 |
| Global.2100.warming.forUnconditional.NDCassessment |     |        |          |        | 5.100 |
| Global.2100.warming.forConditional.NDCassessment   |     | 2.510  | 1.460    | 1.200  | 5.100 |
| ndc2_ambition_unconditional                        | 168 | 0.084  | 0.067    | 0.003  | 0.392 |
| ndc2_ambition_conditional                          | 168 | 0.094  | 0.075    | 0.003  | 0.392 |
| gdp_pc_log                                         | 165 | 3.757  | 0.614    | 2.336  | 5.052 |
| gdp_pc_log_1                                       | 165 | 0.523  | 0.226    | 0.000  | 1.000 |
| oil_rents                                          | 166 | 0.020  | 0.053    | 0.000  | 0.286 |
| oil_rents_1                                        | 166 | 0.071  | 0.184    | 0.000  | 1.000 |
| coal_rents                                         | 165 | 0.002  | 0.010    | 0.000  | 0.111 |
| coal_rents_1                                       | 165 | 0.016  | 0.093    | 0.000  | 1.000 |
| ng_rents                                           | 165 | 0.007  | 0.029    | 0.000  | 0.317 |
| ng_rents_1                                         | 165 | 0.023  | 0.091    | 0.000  | 1.000 |
| ev_critical_minerals                               | 168 | 0.005  | 0.020    | 0.000  | 0.154 |
| ev_critical_minerals_1                             | 168 | 0.035  | 0.132    | 0.000  | 1.000 |
| nd_gain_vulnerability                              | 167 | 0.427  | 0.091    | 0.256  | 0.647 |
| nd_gain_vulnerability_1                            | 167 | 0.439  | 0.232    | 0.000  | 1.000 |
| nd_gain_readiness                                  | 167 | 0.423  | 0.143    | 0.136  | 0.801 |
| nd_gain_readiness_1                                | 167 | 0.431  | 0.215    | 0.000  | 1.000 |
| public_support                                     | 115 | 0.886  | 0.072    | 0.619  | 0.982 |
| public_support_1                                   | 115 | 0.734  | 0.197    | 0.000  | 1.000 |
| electoral_democracy                                | 160 | 0.534  | 0.253    | 0.014  | 0.914 |
| electoral_democracy_1                              | 160 | 0.578  | 0.281    | 0.000  | 1.000 |
| control_corruption                                 | 167 | -0.113 | 0.981    | -1.689 | 2.122 |
| control_corruption_1                               | 167 | 0.414  | 0.258    | 0.000  | 1.000 |

S.I.3: Figure 1 – Scatter-matrix, histogram, and Spearman rank correlation-matrix of all independent variables used in quantitative analysis



# $\underline{Supplementary\ information\ 4-Bivariate\ relationships}$

S.I.4: Table 1 - Bivariate relationships between independent variables and unconditional ambition

|                         |                         |                       |                     |                         | Dependent variable  |                     |                     |                         |                           |
|-------------------------|-------------------------|-----------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|-------------------------|---------------------------|
| •                       |                         |                       |                     | ndc2                    | _ambition_uncondi   | tional              |                     |                         |                           |
|                         | (1)                     | (2)                   | (3)                 | (4)                     | (5)                 | (6)                 | (7)                 | (8)                     | (9)                       |
| Constant                | 0.092*** (0.005)        | 0.083*** (0.005)      | 0.086*** (0.005)    | 0.087*** (0.005)        | 0.081*** (0.011)    | 0.070*** (0.012)    | 0.065*** (0.021)    | 0.035*** (0.011)        | 0.058*** (0.010)          |
| oil_rents_1             | -0.095*** (0.028)       |                       |                     |                         |                     |                     |                     |                         |                           |
| coal_rents_1            |                         | 0.166*** (0.055)      |                     |                         |                     |                     |                     |                         |                           |
| ng_rents_1              |                         |                       | -0.048 (0.058)      |                         |                     |                     |                     |                         |                           |
| ev_critical_minerals_1  |                         |                       |                     | -0.066* (0.039)         |                     |                     |                     |                         |                           |
| nd_gain_vulnerability_1 |                         |                       |                     |                         | 0.008 (0.022)       |                     |                     |                         |                           |
| nd_gain_readiness_1     |                         |                       |                     |                         |                     | 0.034 (0.024)       |                     |                         |                           |
| public_support_1        |                         |                       |                     |                         |                     |                     | 0.024 (0.028)       |                         |                           |
| electoral_democracy_1   |                         |                       |                     |                         |                     |                     |                     | 0.084*** (0.018)        |                           |
| control_corruption_1    |                         |                       |                     |                         |                     |                     |                     |                         | 0.063*** (0.020)          |
| Observations            | 166                     | 165                   | 165                 | 168                     | 167                 | 167                 | 115                 | 160                     | 167                       |
| $R^2$                   | 0.068                   | 0.052                 | 0.004               | 0.017                   | 0.001               | 0.012               | 0.007               | 0.126                   | 0.058                     |
| Adjusted R <sup>2</sup> | 0.062                   | 0.046                 | -0.002              | 0.011                   | -0.005              | 0.006               | -0.002              | 0.120                   | 0.052                     |
| Residual Std. Error     | 0.065 (df = 164)        | 0.066 (df = 163)      | 0.067 (df = 163)    | 0.067 (df = 166)        | 0.067 (df = 165)    | 0.067 (df = 165)    | 0.059 (df = 113)    | 0.063 (df = 158)        | 0.065 (df = 165)          |
| F Statistic             | 11.999*** (df = 1; 164) | 8.932*** (df = 1; 163 | 0.681 (df = 1; 163) | $2.869^* (df = 1; 166)$ | 0.138 (df = 1; 165) | 1.923 (df = 1; 165) | 0.756 (df = 1; 113) | 22.746*** (df = 1; 158) | $10.066^{***}$ (df = 1; 1 |

\*p<0.1; \*\*p<0.05; \*\*\*p<0.01

### S.I.4: Table 2 - Bivariate relationships between independent variables and *conditional* ambition

| Conditional | hivariate o | consitivity to  | t without | adnne (log | control | variable |
|-------------|-------------|-----------------|-----------|------------|---------|----------|
| Conunium    | Divariate   | sensitivity tes | st withou | guppe (10g | COHLIO  | variable |

|                         |                         |                           |                       |                         | Dependent variable  | ::                  |                     |                         |                      |  |  |
|-------------------------|-------------------------|---------------------------|-----------------------|-------------------------|---------------------|---------------------|---------------------|-------------------------|----------------------|--|--|
|                         |                         | ndc2_ambition_conditional |                       |                         |                     |                     |                     |                         |                      |  |  |
|                         | (1)                     | (2)                       | (3)                   | (4)                     | (5)                 | (6)                 | (7)                 | (8)                     | (9)                  |  |  |
| Constant                | 0.102*** (0.006)        | 0.092*** (0.006)          | 0.096*** (0.006)      | 0.096*** (0.006)        | 0.082*** (0.013)    | 0.080*** (0.013)    | 0.062*** (0.022)    | 0.043*** (0.013)        | 0.068*** (0.011)     |  |  |
| oil_rents_1             | -0.106*** (0.031)       |                           |                       |                         |                     |                     |                     |                         |                      |  |  |
| coal_rents_1            |                         | 0.152** (0.063)           |                       |                         |                     |                     |                     |                         |                      |  |  |
| ng_rents_1              |                         |                           | -0.068 (0.065)        |                         |                     |                     |                     |                         |                      |  |  |
| ev_critical_minerals_1  |                         |                           |                       | -0.073* (0.044)         |                     |                     |                     |                         |                      |  |  |
| nd_gain_vulnerability_1 |                         |                           |                       |                         | 0.026 (0.025)       |                     |                     |                         |                      |  |  |
| nd_gain_readiness_1     |                         |                           |                       |                         |                     | 0.031 (0.027)       |                     |                         |                      |  |  |
| public_support_1        |                         |                           |                       |                         |                     |                     | 0.037 (0.030)       |                         |                      |  |  |
| electoral_democracy_1   |                         |                           |                       |                         |                     |                     |                     | 0.085*** (0.020)        |                      |  |  |
| control_corruption_1    |                         |                           |                       |                         |                     |                     |                     |                         | 0.061*** (0.022)     |  |  |
| Observations            | 166                     | 165                       | 165                   | 168                     | 167                 | 167                 | 115                 | 160                     | 167                  |  |  |
| $\mathbb{R}^2$          | 0.067                   | 0.035                     | 0.007                 | 0.017                   | 0.007               | 0.008               | 0.014               | 0.104                   | 0.043                |  |  |
| Adjusted R <sup>2</sup> | 0.061                   | 0.029                     | 0.001                 | 0.011                   | 0.001               | 0.002               | 0.005               | 0.098                   | 0.037                |  |  |
| Residual Std. Error     | 0.073 (df = 164)        | 0.075 (df = 163)          | 0.076 (df = 163)      | 0.075 (df = 166)        | 0.076 (df = 165)    | 0.076 (df = 165)    | 0.062 (df = 113)    | 0.071 (df = 158)        | 0.074 (df = 165)     |  |  |
| F Statistic             | 11.709*** (df = 1; 164) | 5.852** (df = 1; 163      | ) 1.086 (df = 1; 163) | $2.787^*$ (df = 1; 166) | 1.083 (df = 1; 165) | 1.298 (df = 1; 165) | 1.549 (df = 1; 113) | 18.302*** (df = 1; 158) | 7.416*** (df = 1; 10 |  |  |

Note:

#### <u>Supplementary information 5 – Sensitivity tests of multiple regression models (both unconditional and conditional)</u>

**S.I.5: Table 1** – Sensitivity test for structural factors (Model 1) with unconditional ambition dependent variable

|                         |                             |                       |                        | $Dependent\ variable:$      |                        |                              |                       |
|-------------------------|-----------------------------|-----------------------|------------------------|-----------------------------|------------------------|------------------------------|-----------------------|
|                         |                             |                       | ndo                    | 2_ambition_unconditi        | onal                   |                              |                       |
|                         | (1)                         | (2)                   | (3)                    | (4)                         | (5)                    | (6)                          | (7)                   |
| Constant                | -0.009 (0.035)              | 0.013 (0.039)         | 0.013 (0.035)          | -0.018 (0.036)              | 0.088*** (0.011)       | 0.090*** (0.013)             | 0.092*** (0.011)      |
| gdp_pc_log_1            | 0.111*** (0.038)            | 0.087** (0.042)       | 0.091** (0.038)        | 0.107*** (0.039)            |                        |                              |                       |
| oil_rents_1             | -0.103*** (0.028)           |                       | -0.102*** (0.027)      |                             | -0.099*** (0.029)      |                              | -0.098*** (0.027)     |
| coal_rents_1            | 0.191*** (0.053)            |                       |                        | 0.192*** (0.055)            | 0.167*** (0.054)       |                              |                       |
| ng_rents_1              | 0.016 (0.057)               |                       |                        |                             | 0.021 (0.058)          |                              |                       |
| ev_critical_minerals_1  | -0.076** (0.037)            |                       | -0.068* (0.038)        |                             | -0.082** (0.038)       |                              | -0.073* (0.038)       |
| fuel_exports_1          |                             | -0.057** (0.023)      |                        |                             |                        | -0.056 <sup>**</sup> (0.023) |                       |
| nd_gain_vulnerability_1 | 0.099*** (0.037)            | 0.086* (0.044)        | 0.078** (0.038)        | 0.100*** (0.038)            | 0.010 (0.022)          | 0.012 (0.026)                | 0.005 (0.022)         |
| Observations            | 163                         | 146                   | 165                    | 164                         | 163                    | 146                          | 165                   |
| $\mathbb{R}^2$          | 0.190                       | 0.070                 | 0.121                  | 0.097                       | 0.145                  | 0.042                        | 0.090                 |
| Adjusted R <sup>2</sup> | 0.159                       | 0.050                 | 0.099                  | 0.080                       | 0.118                  | 0.028                        | 0.073                 |
| Residual Std. Error     | 0.062 (df = 156)            | 0.066 (df = 142)      | 0.064 (df = 160)       | 0.065 (df = 160)            | 0.064 (df = 157)       | 0.067 (df = 143)             | 0.065 (df = 161)      |
| F Statistic             | $6.100^{***}$ (df = 6; 156) | 3.541** (df = 3; 142) | 5.519*** (df = 4; 160) | $5.721^{***}$ (df = 3; 160) | 5.320*** (df = 5; 157) | 3.101** (df = 2; 143)        | 5.323*** (df = 3; 161 |
| Note:                   |                             |                       |                        |                             |                        | *p<0.1                       | l; **p<0.05; ***p<0.0 |

The associative effect of our structural factors with unconditional ambition has the same direction across all models

We find GDP per capita (log), Oil & Coal rents and Electric vehicle critical minerals significant for all models for which they are included

Vulnerability is significant and positive when GDP per capita is controlled, but not significant when control is removed however positive association remains true

Additionally, we tested the effect of replacing the fossil fuel economic incentive of rents with that of fuel exports (World Bank, 2024), finding a significant negative association, this was not as strong nor significant as our fossil fuel rents findings which also reflected varying directional effects depending on fossil fuel type

**S.I.5: Table 2** - Sensitivity test for structural factors (Model 1) with conditional ambition dependent variable

|                         |                             |                        |                        | Dependent variable:    |                              |                              |                            |  |  |  |
|-------------------------|-----------------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|----------------------------|--|--|--|
| -                       | ndc2_ambition_conditional   |                        |                        |                        |                              |                              |                            |  |  |  |
|                         | (1)                         | (2)                    | (3)                    | (4)                    | (5)                          | (6)                          | (7)                        |  |  |  |
| Constant                | -0.044 (0.039)              | -0.020 (0.044)         | -0.022 (0.039)         | -0.052 (0.040)         | 0.090*** (0.013)             | 0.093*** (0.014)             | 0.095*** (0.013)           |  |  |  |
| gdp_pc_log_1            | 0.153*** (0.042)            | 0.126*** (0.046)       | 0.133*** (0.042)       | 0.148*** (0.044)       |                              |                              |                            |  |  |  |
| oil_rents_1             | -0.113*** (0.031)           |                        | -0.115*** (0.030)      |                        | -0.108*** (0.033)            |                              | -0.109*** (0.031)          |  |  |  |
| coal_rents_1            | 0.188*** (0.060)            |                        |                        | 0.190*** (0.062)       | 0.154** (0.061)              |                              |                            |  |  |  |
| ng_rents_1              | -0.004 (0.063)              |                        |                        |                        | 0.003 (0.066)                |                              |                            |  |  |  |
| ev_critical_minerals_1  | -0.078* (0.041)             |                        | -0.071* (0.042)        |                        | -0.086 <sup>**</sup> (0.043) |                              | -0.078* (0.043)            |  |  |  |
| fuel_exports_1          |                             | -0.069*** (0.025)      |                        |                        |                              | -0.066 <sup>**</sup> (0.026) |                            |  |  |  |
| nd_gain_vulnerability_1 | 0.153*** (0.041)            | 0.140*** (0.049)       | 0.130*** (0.042)       | 0.152*** (0.043)       | 0.030 (0.025)                | 0.031 (0.029)                | 0.024 (0.025)              |  |  |  |
| Observations            | 163                         | 146                    | 165                    | 164                    | 163                          | 146                          | 165                        |  |  |  |
| $\mathbb{R}^2$          | 0.200                       | 0.100                  | 0.146                  | 0.109                  | 0.132                        | 0.053                        | 0.093                      |  |  |  |
| Adjusted R <sup>2</sup> | 0.169                       | 0.081                  | 0.125                  | 0.092                  | 0.104                        | 0.040                        | 0.076                      |  |  |  |
| Residual Std. Error     | 0.069 (df = 156)            | 0.073 (df = 142)       | 0.071 (df = 160)       | 0.072 (df = 160)       | 0.072 (df = 157)             | 0.075 (df = 143)             | 0.073 (df = 161)           |  |  |  |
| F Statistic             | $6.503^{***}$ (df = 6; 156) | 5.278*** (df = 3; 142) | 6.836*** (df = 4; 160) | 6.518*** (df = 3; 160) | 4.778*** (df = 5; 157)       | 4.026** (df = 2; 143)        | $5.519^{***}$ (df = 3; 16) |  |  |  |
| Note:                   |                             |                        |                        |                        |                              | *n<0.1                       | 1: **p<0.05: ***p<0.0      |  |  |  |

The associative effect of our structural factors with conditional ambition has the same direction across all models (bar natural gas rents however this is not significant and effect is approximately null)

We observe the same directional and significance effects in these conditional ambition models as the above unconditional models

S.I.5: Table 3 - Sensitivity test for socio-institutional factors (Model 2) with unconditional ambition dependent variable

|                         |                        | -                           |                           |                        |                       |                        |                       |  |  |  |  |
|-------------------------|------------------------|-----------------------------|---------------------------|------------------------|-----------------------|------------------------|-----------------------|--|--|--|--|
|                         |                        |                             |                           | Dependent variable:    |                       |                        |                       |  |  |  |  |
|                         |                        | ndc2_ambition_unconditional |                           |                        |                       |                        |                       |  |  |  |  |
|                         | (1)                    | (2)                         | (3)                       | (4)                    | (5)                   | (6)                    | (7)                   |  |  |  |  |
| Constant                | 0.018 (0.027)          | -0.051 (0.042)              | 0.031 (0.023)             | 0.049*** (0.013)       | -0.036 (0.039)        | 0.049** (0.021)        | -0.006 (0.027)        |  |  |  |  |
| gdp_pc_log_1            | 0.024 (0.052)          | -0.021 (0.053)              | 0.012 (0.075)             | -0.039 (0.042)         |                       |                        |                       |  |  |  |  |
| nd_gain_readiness_1     | -0.177** (0.071)       |                             | -0.060 (0.067)            | -0.022 (0.045)         | -0.202*** (0.072)     | -0.096 (0.061)         |                       |  |  |  |  |
| public_support_1        | 0.047* (0.028)         | 0.068* (0.039)              |                           |                        | 0.076** (0.037)       |                        | 0.049* (0.028)        |  |  |  |  |
| PEW_public_support_1    | l                      |                             | 0.031 (0.026)             |                        |                       | 0.033 (0.026)          |                       |  |  |  |  |
| electoral_democracy_1   | 0.062** (0.031)        |                             | 0.072** (0.033)           | 0.112*** (0.023)       | 0.030 (0.036)         |                        | 0.076** (0.029)       |  |  |  |  |
| cso_index_1             |                        | 0.142*** (0.036)            |                           |                        | 0.105*** (0.037)      |                        |                       |  |  |  |  |
| control_corruption_1    | 0.139** (0.055)        | 0.056 (0.050)               |                           |                        | 0.195*** (0.072)      | 0.111* (0.058)         | 0.008 (0.031)         |  |  |  |  |
| Observations            | 114                    | 69                          | 38                        | 158                    | 70                    | 39                     | 115                   |  |  |  |  |
| $\mathbb{R}^2$          | 0.197                  | 0.263                       | 0.245                     | 0.144                  | 0.354                 | 0.170                  | 0.140                 |  |  |  |  |
| Adjusted R <sup>2</sup> | 0.160                  | 0.217                       | 0.153                     | 0.127                  | 0.303                 | 0.098                  | 0.116                 |  |  |  |  |
| Residual Std. Error     | 0.054 (df = 108)       | 0.056 (df = 64)             | 0.037 (df = 33)           | 0.063 (df = 154)       | 0.052 (df = 64)       | 0.039 (df = 35)        | 0.055 (df = 111)      |  |  |  |  |
| F Statistic             | 5.314*** (df = 5; 108) | 5.699*** (df = 4; 64)       | $2.672^{**}$ (df = 4; 33) | 8.615*** (df = 3; 154) | 7.008*** (df = 5; 64) | $2.383^* (df = 3; 35)$ | 6.005*** (df = 3; 111 |  |  |  |  |
| Note:                   |                        |                             |                           |                        |                       | *p<0.1                 | ; **p<0.05; ***p<0.0  |  |  |  |  |

The associative effect of our socio-institutional factors with unconditional ambition has the same direction across all models (bar GDP per capita (log) however this is not significant)

Only Public support is significant across all model variations tested, whilst Electoral democracy and Control of Corruption are significant for the majority of models

We test alternative metric - Pew Research Centre's Global attitudes and trends survey data (PEW, 2015) - for our public support data taken for 2024 due to data availability constraints as it is retrospective of the 2022 NDC submission cut-off, however taken as indicative for this study to provide a far greater cross-sectional dataset). We find a positive association that matches that of our public support metric, however the PEW metric is not statistically significant (in contrast to our metric) however this could be largely attributed to the very limited sample size (only 38 observations).

As a follow up to Peterson et al., (2023) study of ambition enhancement we include their novel civil society organisation consultation index in our sensitivity test (whilst not included in our main findings) our results concur with their finding of a significant strong association with ambition.

S.I.5: Table 4 - Sensitivity test for socio-institutional factors (Model 2) with conditional ambition dependent variable

|                           |                        |                       |                    | $Dependent\ variable:$ |                       |                    |                           |
|---------------------------|------------------------|-----------------------|--------------------|------------------------|-----------------------|--------------------|---------------------------|
|                           |                        |                       | nde                | c2_ambition_condition  | nal                   |                    |                           |
|                           | (1)                    | (2)                   | (3)                | (4)                    | (5)                   | (6)                | (7)                       |
| Constant                  | 0.020 (0.030)          | -0.051 (0.045)        | 0.054* (0.030)     | 0.057*** (0.015)       | -0.037 (0.043)        | 0.074** (0.027)    | -0.001 (0.029)            |
| gdp_pc_log_1              | 0.021 (0.056)          | 0.004 (0.057)         | 0.035 (0.098)      | -0.030 (0.047)         |                       |                    |                           |
| nd_gain_readiness_1       | -0.162** (0.077)       |                       | -0.096 (0.088)     | -0.035 (0.050)         | -0.161** (0.080)      | -0.109 (0.079)     |                           |
| public_support_1          | 0.056* (0.030)         | 0.073* (0.042)        |                    |                        | 0.082** (0.041)       |                    | 0.057* (0.030)            |
| PEW_public_support_1      |                        |                       | 0.016 (0.034)      |                        |                       | 0.017 (0.033)      |                           |
| $electoral\_democracy\_1$ | 0.064* (0.033)         |                       | 0.069 (0.044)      | 0.114*** (0.026)       | 0.029 (0.040)         |                    | 0.078** (0.031)           |
| cso_index_1               |                        | 0.152*** (0.038)      |                    |                        | 0.120*** (0.040)      |                    |                           |
| control_corruption_1      | 0.117* (0.060)         | 0.026 (0.054)         |                    |                        | 0.150* (0.079)        | 0.109 (0.076)      | -0.003 (0.034)            |
| Observations              | 114                    | 69                    | 38                 | 158                    | 70                    | 39                 | 115                       |
| $\mathbb{R}^2$            | 0.159                  | 0.240                 | 0.139              | 0.119                  | 0.300                 | 0.077              | 0.116                     |
| Adjusted R <sup>2</sup>   | 0.120                  | 0.192                 | 0.035              | 0.102                  | 0.246                 | -0.002             | 0.093                     |
| Residual Std. Error       | 0.058 (df = 108)       | 0.060 (df = 64)       | 0.049 (df = 33)    | 0.071 (df = 154)       | 0.058 (df = 64)       | 0.050 (df = 35)    | 0.059 (df = 111)          |
| F Statistic               | 4.085*** (df = 5; 108) | 5.040*** (df = 4; 64) | 1.334 (df = 4; 33) | 6.920*** (df = 3; 154) | 5.493*** (df = 5; 64) | 0.974 (df = 3; 35) | $4.874^{***}$ (df = 3; 11 |
| Note:                     |                        |                       |                    |                        |                       | *p<0.1:            | ; **p<0.05; ***p<0.0      |

p<0.1; p<0.05; p<0.01

The associative effect of our socio-institutional factors with conditional ambition has the same direction across all models (bar GDP per capita (log) however this is not significant)

We observe the same directional and significance effects in these conditional ambition models as the above unconditional models

# $\frac{Supplementary\ Information\ 6-Parties\ included\ in\ regression\ analysis\ model}{observations}$

**S.I.6: Table 1** – (marked 'x' indicates inclusion, omissions result from lack of available data)

| Country (n=168)                     | Model 1 (n=163) | Model 2 (n=115) | Model 3 (n=156) |
|-------------------------------------|-----------------|-----------------|-----------------|
| ALGERIA                             | х               | х               | х               |
| ARGENTINA                           | Х               | х               | х               |
| ARMENIA                             | Х               | х               | х               |
| AUSTRALIA                           | Х               | х               | Х               |
| AUSTRIA                             | Х               | х               | х               |
| AZERBAIJAN                          | Х               |                 | х               |
| BAHAMAS                             | х               |                 |                 |
| BAHRAIN                             | х               |                 | х               |
| BANGLADESH                          | Х               | х               | х               |
| BARBADOS                            | х               |                 | х               |
| BELARUS                             | х               |                 | х               |
| BELGIUM                             | Х               | х               | х               |
| BELIZE                              | х               |                 |                 |
| BENIN                               | х               | х               | х               |
| BHUTAN                              | Х               |                 | х               |
| BOLIVIA, THE PLURINATIONAL STATE OF | Х               | х               | х               |
| BOSNIA AND HERZEGOVINA              | Х               | х               | х               |
| BOTSWANA                            | Х               | х               | х               |
| BRAZIL                              | х               | х               | х               |
| BRUNEI DARUSSALAM                   | Х               |                 |                 |
| BULGARIA, THE REPUBLIC OF           | Х               | х               | х               |
| BURKINA FASO                        | Х               | Х               | Х               |
| BURUNDI                             | Х               |                 | Х               |
| CAMBODIA                            | Х               | Х               | Х               |
| CAMEROON                            | Х               | х               | х               |
| CANADA                              | Х               | Х               | х               |
| CAPE VERDE                          | Х               |                 | х               |
| CENTRAL AFRICAN REPUBLIC            | Х               |                 | Х               |
| CHAD                                | х               |                 | х               |
| CHILE                               | Х               | Х               | Х               |
| CHINA                               | Х               | Х               | Х               |
| COLOMBIA                            | х               | х               | х               |
| COMOROS                             | х               |                 | х               |
| CONGO, DEMOCRATIC REPUBLIC OF THE   | х               |                 | х               |
| CONGO, REPUBLIC OF THE              | х               | х               | х               |
| COSTA RICA                          | х               | х               | х               |
| COTE D'IVOIRE                       | х               | х               | х               |
| CROATIA                             |                 |                 |                 |
| CUBA                                | х               |                 | х               |

| CYPRUS                    | х | х | x |
|---------------------------|---|---|---|
| CZECH REPUBLIC            | х | х | х |
| DENMARK                   | х | х | х |
| DJIBOUTI                  | х |   | х |
| DOMINICAN REPUBLIC        | х | х | х |
| ECUADOR                   | х | х | х |
| EGYPT                     | х | х | х |
| EL SALVADOR               | х | х | х |
| EQUATORIAL GUINEA         | х |   | х |
| ERITREA                   |   |   |   |
| ESTONIA                   | х | х | х |
| ESWATINI                  | х |   | х |
| ETHIOPIA                  | х |   | х |
| European Union (27)       |   |   |   |
| FIJI, THE REPUBLIC OF     | х |   | х |
| FINLAND                   | х | х | х |
| FRANCE                    | х | х | х |
| GABON                     | х | х | х |
| GAMBIA                    | х |   | х |
| GEORGIA                   | х | х | х |
| GERMANY                   | х | х | х |
| GHANA                     | х | х | х |
| GREECE                    | х | х | х |
| GUATEMALA                 | х | х | х |
| GUINEA                    | х | х | х |
| GUINEA-BISSAU             | х |   | х |
| GUYANA                    | х |   | х |
| HAITI                     | х |   | х |
| HONDURAS                  | х | х | х |
| HUNGARY                   | х | х | х |
| ICELAND                   | х | х | х |
| INDIA                     | х | х | х |
| INDONESIA                 | х | х | х |
| IRAN, ISLAMIC REPUBLIC OF | х | х | х |
| IRAQ                      | х | х | х |
| IRELAND                   | х | х | х |
| ISRAEL                    | х | х | х |
| ITALY                     | х | х | х |
| JAMAICA                   | х | х | х |
| JAPAN                     | х | х | х |
| JORDAN                    | х | х | х |
| KAZAKHSTAN                | х | х | х |
| KENYA                     | х | х | х |
| KOREA, REPUBLIC OF        | х | х | х |
| KUWAIT                    | х |   | х |
| KYRGYZSTAN                |   |   |   |

| LAO PEOPLE'S DEMOCRATIC REPUBLIC |   | х |   |
|----------------------------------|---|---|---|
| LATVIA                           | х | х | х |
| LEBANON                          | х | х | х |
| LESOTHO                          | х |   | х |
| LIBERIA                          | х |   | х |
| LIBYA                            | х |   | х |
| LITHUANIA                        | х | х | х |
| LUXEMBOURG                       | х |   | х |
| MADAGASCAR                       | х | х | х |
| MALAWI                           | х | х | х |
| MALAYSIA                         | х | х | х |
| MALDIVES                         | х |   | х |
| MALI                             | х | х | х |
| MALTA                            | х | х | х |
| MAURITANIA                       | х |   | х |
| MAURITIUS                        | х | х | х |
| MEXICO                           | Х | Х | х |
| MOLDOVA, REPUBLIC OF             | Х | х | х |
| MONGOLIA                         | Х | Х | х |
| MOROCCO                          | Х | х | х |
| MOZAMBIQUE                       | X | х | х |
| NAMIBIA                          | х | х | х |
| NEPAL                            | Х | Х | х |
| NETHERLANDS, THE KINGDOM OF THE  | х | х | х |
| NEW ZEALAND                      | х | х | х |
| NICARAGUA                        | х | х | х |
| NIGER                            | х |   | х |
| NIGERIA                          | Х | х | х |
| NORTH MACEDONIA                  | х | х | х |
| NORWAY                           | х | х | х |
| OMAN                             | Х |   | Х |
| PAKISTAN                         | х | х | х |
| PANAMA                           | Х | х | х |
| PAPUA NEW GUINEA                 | Х |   | х |
| PARAGUAY                         | Х | х | х |
| PERU                             | Х | х | х |
| PHILIPPINES                      | х | х | х |
| POLAND                           | х | х | х |
| PORTUGAL                         | х | х | х |
| ROMANIA                          | х | х | х |
| RUSSIAN FEDERATION               | х | х | х |
| RWANDA                           | х |   | х |
| SAINT LUCIA                      | х |   |   |
| SAINT VINCENT AND THE GRENADINES | х |   |   |
| SAMOA                            | х |   |   |
| SAO TOME AND PRINCIPE            | х |   | х |
|                                  | • | • | • |

| SAUDI ARABIA                                         | х |   | х |
|------------------------------------------------------|---|---|---|
| SENEGAL                                              | х | х | х |
| SIERRA LEONE                                         |   | х |   |
| SINGAPORE                                            | х | х | х |
| SLOVAKIA                                             |   |   |   |
| SLOVENIA                                             | х | х | х |
| SOLOMON ISLANDS                                      | х |   | х |
| SOMALIA                                              | х |   | х |
| SOUTH AFRICA                                         | х | Х | Х |
| SPAIN                                                | х | х | х |
| SRI LANKA                                            | х | х | х |
| SUDAN, REPUBLIC OF THE                               | х |   | Х |
| SURINAME                                             | х |   | х |
| SWEDEN                                               | х | Х | х |
| SWITZERLAND                                          | х | Х | х |
| SYRIAN ARAB REPUBLIC                                 | х |   | Х |
| TAJIKISTAN                                           | х | х | х |
| TANZANIA, UNITED REPUBLIC OF                         | х | х | х |
| THAILAND                                             | х | х | х |
| TIMOR-LESTE                                          | х |   | Х |
| TOGO                                                 | Х | Х | Х |
| TONGA                                                | Х |   |   |
| TRINIDAD AND TOBAGO                                  | х |   | Х |
| TUNISIA                                              | х | х | х |
| TURKEY                                               | х | х | х |
| TURKMENISTAN                                         | х |   | х |
| UGANDA                                               | х | х | х |
| UKRAINE                                              | х | х | х |
| UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND | х | X | х |
| UNITED STATES OF AMERICA                             | Х | Х | Х |
| URUGUAY                                              | х | х | х |
| UZBEKISTAN                                           | х | х | Х |
| VANUATU                                              | х |   | Х |
| VENEZUELA, BOLIVARIAN REPUBLIC OF                    |   | х |   |
| VIET NAM                                             | х | х | Х |
| YEMEN                                                | х |   | Х |
| ZAMBIA                                               | х | х | х |

#### <u>Supplementary Information 7 – Regression of GDP per capita against 2100-warming assessment</u>

S.I.7: Table 1 – 2100-warming assessment as ambition to enable relationship comparison with (Tørstad, 2020)

Note: 2100-warming assessment is not inverted, therefore positive association reflects a negative effect on 'ambition'.

|                                | Dependent variable:                                  |                                                        |  |
|--------------------------------|------------------------------------------------------|--------------------------------------------------------|--|
|                                | Global_2100_warming_for_Unconditional_NDC_assessment | ent Global_2100_warming_for_Conditional_NDC_assessment |  |
|                                | (1)                                                  | (2)                                                    |  |
| Constant                       | 1.528*** (0.275)                                     | 1.210*** (0.266)                                       |  |
| gdp_pc_log_1                   | 2.279*** (0.484)                                     | 2.471*** (0.466)                                       |  |
| Observations                   | 165                                                  | 165                                                    |  |
| $\mathbb{R}^2$                 | 0.120                                                | 0.147                                                  |  |
| Adjusted R <sup>2</sup>        | 0.115                                                | 0.142                                                  |  |
| Residual Std. Error (df = 163) | 1.399                                                | 1.349                                                  |  |
| F Statistic (df = 1; 163)      | 22.221***                                            | 28.078***                                              |  |
| Note:                          |                                                      | *p<0.1; **p<0.05; ***p<0.01                            |  |