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Table S1 GATHER (Guidelines for Accurate and Transparent Health Estimates Reporting) Checklist. 72 

Item # Checklist item Reported 
on page # 

Objectives and funding 

1 Define the indicator(s), populations (including age, sex, and geographic 
entities), and time period(s) for which estimates were made. 

3-5 

2 List the funding sources for the work. 14 

Data Inputs 

For all data inputs from multiple sources that are synthesized as part of the study: 

3 Describe how the data were identified and how the data were accessed. 3 

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions. SI 8 

5 Provide information on all included data sources and their main 

characteristics. For each data source used, report reference information or 

contact name/institution, population represented, data collection method, 

year(s) of data collection, sex and age range, diagnostic criteria or 

measurement method, and sample size, as relevant. 

SI 5-8 

6 Identify and describe any categories of input data that have potentially 
important biases (e.g., based on characteristics listed in item 5). 

14 

For data inputs that contribute to the analysis but were not synthesized as part of the study: 

7 Describe and give sources for any other data inputs. SI 8-11 

For all data inputs: 

8 Provide all data inputs in a file format from which data can be efficiently 

extracted (e.g., a spreadsheet rather than a PDF), including all relevant 

meta-data listed in item 5. For any data inputs that cannot be shared 

because of ethical or legal reasons, such as third-party ownership, provide a 

contact name or the name of the institution that retains the right to 
the data. 

SI 5-11 

Data analysis 

9 Provide a conceptual overview of the data analysis method. A diagram may 
be helpful. 

5-6 

10 Provide a detailed description of all steps of the analysis, including 

mathematical formulae. This description should cover, as relevant, data 

cleaning, data pre-processing, data adjustments and weighting of data 

sources, and mathematical or statistical model(s). 

5-6, SI 11-13 

11 Describe how candidate models were evaluated and how the final model(s) 
were selected. 

5-6, SI 13-14 

12 Provide the results of an evaluation of model performance, if done, as well 
as the results of any relevant sensitivity analysis. 

SI 13-14 

13 Describe methods for calculating uncertainty of the estimates. State which 
sources of uncertainty were, and were not, accounted for in the 
uncertainty analysis. 

6 

14 State how analytic or statistical source code used to generate estimates can 
be accessed. 

NA 

Results and Discussion 

15 Provide published estimates in a file format from which data can be 
efficiently extracted. 

NA 

16 Report a quantitative measure of the uncertainty of the estimates (e.g. 
uncertainty intervals). 

8 

17 Interpret results in light of existing evidence. If updating a previous set of 
estimates, describe the reasons for changes in estimates. 

13 

18 Discuss limitations of the estimates. Include a discussion of any modelling 
assumptions or data limitations that affect interpretation of the estimates. 

14 
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1. Scrub typhus data sources and data processing 74 

1.1 National reported data 75 

Occurrence data from national surveillance systems were acquired across five 76 
countries/regions: Mainland China, Japan, South Korea, Taiwan, and Thailand. The data were 77 
collected at varying spatial and temporal resolutions, case categories, and reporting criteria, 78 
as detailed below. 79 

Mainland China: Scrub typhus is a vector-borne notifiable disease and has been included in 80 
the national surveillance system during 1952 to 1989 and from 2006 onwards in mainland 81 
China1. Physicians are required by law to report cases to the China Center for Disease 82 
Control and Prevention through the China Information System for Disease Control and 83 
Prevention (CISDCP). Scrub typhus case reports include basic demographic and clinical data 84 
including gender, age, occupation, residential address, date of onset of symptoms, 85 
laboratory diagnosis, and clinical outcome for each case. There was no information 86 
regarding the geographical distribution in the surveillance data from 1952 to 1989; the basic 87 
demographic and geographical information became available from 2006.  88 

We obtained secured access to detailed data spanning from 2006 to 2019 through direct 89 
correspondence with relevant health authorities. To prevent revealing the identity of 90 
individuals, all the case data were anonymized prior to sharing. All scrub typhus cases were 91 
diagnosed and reported according to the diagnostic criteria issued by Chinese Center for 92 
Disease Control and Prevention, including suspect, clinically diagnosed, and laboratory-93 
confirmed three categories. The diagnosis criteria and classification for those three 94 
categories are shown in Table S2.  95 

Table S2. Scrub typhus diagnosis criteria and case classification in Mainland China. 96 
Diagnosis criteria 

Epidemiological 
history 

During the epidemic season, the patient has been in scrub typhus 
endemic areas within 3 weeks before the onset, and has a history 
of field activities, mainly including field work, rural fishing, camping 
training, sitting on grass, touching, and using straw, etc. 

Clinical criteria Fever;  
Lymphadenectasis;  
Rash;  
Specific eschar or ulceration 

Confirmed 
criteria 

-Positive Wail-Field test: single serum OXK titer ≥ 1:160; 
-Positive indirect immunofluorescence test IFA: paired serum IgG 
antibody titers increased by 4 times or more; 
-PCR nucleic acid test positive; 
-Pathogen isolated 

Case classification 

Suspected case -Epidemiology history + fever + lymphadenectasis or rash + clearly 
rule out other diseases 
-OR have fever + swollen lymph nodes + rash during the epidemic 
season 

Clinical case -Suspected case+ Specific eschar or ulceration 
-OR have epidemiological history + fever + characteristic eschar or 
ulceration 

Confirmed case -Suspected case + positive IFA or PCR or pathogen isolated; 
-OR clinical case + any confirmed criteria 

In our study, we focused exclusively on clinical and confirmed cases, excluding all suspected 97 
cases from the national surveillance data. Included cases were geo-located based on the 98 



reported time and place of occurrence. Each clinical and confirmed case was meticulously 99 
mapped to its corresponding location, with spatial precision down to the county level.  100 

Japan: The data used were obtained from the Infectious Diseases Statistics under the 101 
Infectious Disease Prevention Act (https://idsc.niid.go.jp/idwr/CDROM/Kako/NMenu.html) 102 
for 1999–2010, and the National Epidemiological Surveillance of Infectious Diseases (NESID) 103 
(https://www.niid.go.jp/niid/en/survaillance-data-table-english.html) for 2012 to 2022. In 104 
1999, when infectious disease surveillance was placed under the NESID, scrub typhus was 105 
classified as a notifiable disease (compulsory reporting of all diagnosed cases)2. In addition 106 
to clinical manifestations that were indicative of rickettsial disease (e.g. fever, rash, and 107 
eschar), the respective case definitions for scrub typhus required a positive result from one 108 
or more of the following laboratory methods: rickettsial isolation; genome detection by 109 
polymerase chain reaction (PCR); serological evidence (IgM detection (≥ 1:80); or a ≥ 4-fold 110 
increase in the antibody titer between paired serum samples) by indirect fluorescent 111 
antibody (IFA) or indirect immunoperoxidase assay3. The weekly case number for individual 112 
prefectures from 1999 to 2023 were obtained. 113 

South Korea: The Korea Centers for Disease Control and Prevention (KCDC) operate 114 
infectious disease surveillance systems to monitor national disease incidence. Since 1954, 115 
Korea has collected data on various infectious diseases in accordance with the Infectious 116 
Disease Control and Prevention Act4. All physicians (including those working in Oriental 117 
medicine) who diagnose a patient with an infectious disease or conduct a postmortem 118 
examination of an infectious disease case are obliged to report the disease to the system. 119 
These reported data are incorporated into the database of the National Infectious Disease 120 
Surveillance System, which has been providing web-based real-time surveillance data on 121 
infectious diseases since 2001 (https://www.kdca.go.kr/). The reporting data for scrub 122 
typhus in South Korea includes both suspected and confirmed cases. Suspected cases are 123 
identified as patients showing clinical symptoms (eschar, acute onset, rash, 124 
Lymphadenopathy and Hepatosplenomegaly) and having an epidemiological link suggestive 125 
of scrub typhus. Confirmed cases are those where the clinical symptoms are consistent with 126 
suspected cases and the infection should be verified through laboratory tests, such as 127 
isolation of the pathogen, a ≥ 4-fold rise in antibody titer, or detection of specific genes in 128 
clinical specimens. The data using in this study were collected at the district level, updated 129 
weekly, covering the period from 2001 to 2023. 130 

Taiwan: An open infectious disease statistical data query system has been maintained by 131 
Taiwan CDC since 1996 to provide information on the number of confirmed cases of scrub 132 
typhus. Scrub typhus has been listed as a Category IV Notifiable Infectious Disease since 133 
2007 in Taiwan based on the Communicable Disease Control Act. The publicly available 134 
online database, Taiwan National Infectious Disease Statistics System (TNIDSS), provided the 135 
number of confirmed cases of scrub typhus, the date of receipt, the date of onset, the date 136 
of diagnosis by the Department of Health, and the number of local or cases imported from 137 
overseas. Notification is defined as a suspected patient who meets clinical criteria (acute 138 
persistent high fever, headache, back pain, chills, night sweats, lymphadenopathy, painless 139 
eschar at the chigger bite and red skin with macules or papules after 1 week, sometimes 140 
accompanied by pneumonia or abnormal liver function). In addition, those who test positive 141 
in any one of the following tests are defined as positive5: (1) Clinical specimens (blood or skin 142 
wounds (eschar)) test positive for O. tsutsugamushi by nucleic acid detection; (2) Indirect 143 
immunofluorescene assay detects acute phase (or initial collection) serum, with a 144 
neutralization antibody titer of IgM of more than 1:80; and IgG titer was more than 1:320; 145 
(3) Using indirect immunofluorescence staining of matched (acute and convalescent) sera, a 146 
≥4-fold increase in the IgG titer against O. tsutsugamushi is observed. The weekly confirmed 147 
case numbers at the district level in Taiwan from 2003 to 2023 were downloaded. 148 



Thailand: We retrieved secured access to detailed data spanning from 2003 to 2022 through 149 
direct correspondence with relevant health authorities and obtained from the National 150 
Disease Surveillance System(R506). All scrub typhus cases were diagnosed and reported 151 
according to the diagnostic criteria issued by the Ministry of Public Health, including three 152 
categories of suspected, clinically diagnosed, and laboratory-confirmed. The diagnostic 153 
criteria and classification for those three categories are shown in Table S3. Cases were 154 
reported by governmental healthcare facilities including provincial hospitals, district 155 
hospitals and primary care units. Reporting from private healthcare facilities also occurred, 156 
albeit to a lesser extent6. Reported weekly case number from 2003 to 2022 were obtained at 157 
a district level and collated into a single dataset.  158 

Table S3: Diagnostic criteria and reported classifications of scrub typhus in Thailand 159 

Diagnosis criteria 

Clinical criteria 

Acute febrile illness and an eschar with at least one other symptom 
including: 
- Headache 
- Myalgia 
- Arthralgia 
- Ocular or orbital pain 
- Petechial rash 

Laboratory 
criteria 

General findings suggestive of scrub typhus: 
- Low white cell count 
- Normal or low platelet count 
Disease-specific: 
- Detection of a four-fold rise in scrub typhus antibodies in paired 
sera by IFA or antibodies detected at a cut-off titre of ≥ 1:400 in a 
single sample or, 
- IIP obtained same result as IFA or, 
- O. tsutsugamushi PCR or,  
- culture positive from blood or, 
- Weil-Felix to OX-K with a titer of ≥ 1:320 

Case classification 

Suspected 
case 

Meets all clinical criteria and has a history of entering an area of 
grassland or forest. 

Probable case 
Fulfils clinical criteria and has general laboratory findings suggestive 
of scrub typhus or an epidemiological link to confirmed cases 

Confirmed 
case 

Fulfils clinical and any of disease-specific laboratory criteria 

 160 

1.2 Data quality control 161 

To ensure the reliability and consistency of the multi-source dataset used in our study, we 162 

implemented several rigorous data quality control measures. First, we cross-verified data 163 

from different sources, including published literature, public health surveillance data, and 164 

non-public surveillance data from certain countries. For data extracted from published 165 

literature, we cross-referenced it with national public health records to validate its accuracy. 166 

Additionally, we excluded data diagnosed solely by outdated or less specific diagnostic 167 

methods, such as the Weil-Felix test, or based only on clinical diagnoses without laboratory 168 

confirmation. 169 



In terms of spatial and temporal data quality, we excluded records lacking specific spatial 170 

locations or those reported at broad administrative levels (e.g. administrative level 2 or 171 

above) or represented by large polygons exceeding 0.1x0.1 degrees to ensure that spatial 172 

information was detailed and precise. Similarly, records without explicit time information or 173 

with ambiguous temporal ranges were excluded. To maintain temporal consistency, records 174 

with extended operational times were transformed into yearly occurrences. Furthermore, we 175 

removed duplicate entries and conducted a thorough review of any outliers or inconsistent 176 

data points. Where necessary, data were either corrected or removed based on predefined 177 

criteria. 178 

Lastly, we harmonized data across different sources by standardizing classifications and 179 

formats and recording sources. For non-public surveillance data, we applied additional 180 

scrutiny to verify authenticity and accuracy, cross-referencing these records with published 181 

literature and consulting with local experts when necessary. These steps were crucial in 182 

ensuring the overall integrity and accuracy of the dataset used in our analysis. 183 

2. Explanatory covariates 184 

We selected a suite of 28 covariates for inclusion in the model based on our systematic 185 

review findings and the availability of high-resolution spatial and temporal data. These 186 

covariates were chosen because they were shown to have a significant association with scrub 187 

typhus in our systematic review and are available as long-term data with a high spatial 188 

resolution of 5 km x 5 km and yearly or finer temporal resolution. 189 

Table S4 Source of covariates. 190 
Classification Covariates Resolution Source 

Climate Minimum temperature 2.5 minutes, 
monthly 

Worldclim 

maximum temperature 

precipitation 

Relative humidity 0.25 degree, 
monthly 
 

ERA5 

Surface pressure  

Wind speed 

Geographic Elevation 2.5 minutes Worldclim 

Normalized Difference Vegetation 
Index (NDVI)  

0.05 degree, 
monthly 

MODIS/Terra 
(MOD13A2) 

Enhanced Vegetation Index (EVI) 

17 Landcovar 0.05 degree, 
annually 

MODIS/Terra+Aqua 
(MCD12C1) 

Socioeconomic Population density 30 arc second, 
annually 

WorldPop, 
Socioeconomic Data 
and Applications 
Center (SEDAC) 

Travel time to major cities (urban 
accessibility) 

30 arc seconds Weiss DJ, et.al7 

 191 

Temperature and Precipitation: The WorldClim database (www.worldclim.org) consists of a 192 

freely available set of global climate data at a 2.5-minute spatial resolution which was 193 

compiled using weather data collected from world-wide weather stations. The monthly 194 

minimum temperature, maximum temperature, and precipitation data from 2000 to 2020 195 

were obtained at a 2.5-minute spatial resolution, from which we generated annual 196 

information for each gridded cell at 0.05 degrees spatial resolution. 197 



Elevation We obtained elevation data from the Shuttle Radar Topography Mission (SRTM) 198 

through the WorldClim database, originally at a 2.5-minute spatial resolution. Given that 199 

elevation is a static variable, we considered it to have no temporal resolution and assumed it 200 

remained constant over the nearly two-decade study period. To ensure consistency with 201 

other datasets used in our analysis, we resampled this elevation data to a 5kmx5km spatial 202 

resolution using the ‘rasterio’ package in Python.  203 

Relative humidity: The ERA5 Essential Climate Variables dataset, available through the 204 

Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-205 

climate-change?tab=overview), provides a selection of global climate data, including surface 206 

air relative humidity, at a 0.25° x 0.25° spatial resolution. This dataset is part of a 207 

comprehensive project aimed at assessing climate variability from 1979 to the present, with 208 

a focus on accuracy and temporal consistency across monthly to decadal time scales. The 209 

surface air relative humidity, expressed as a percentage, represents the ratio of the partial 210 

pressure of water vapor to the equilibrium vapor pressure of water at the same temperature 211 

near the surface. The data, originally provided in GRIB format, were converted to raster TIFF 212 

format using the ‘pygrib’ package in Python. Subsequently, the data were resampled from 213 

the original 0.25-degree resolution to a 5 km x 5 km resolution using the ‘gdal’ package in 214 

Python, ensuring compatibility with our analysis framework. 215 

Surface pressure and wind speed: The surface pressure and wind speed data used in this 216 

study were obtained from the ERA5 reanalysis project, accessible through the Copernicus 217 

Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-218 

single-levels-monthly-means?tab=form). ERA5 reanalysis combines model data with global 219 

observations into a consistent and complete dataset by utilizing data assimilation methods, 220 

where forecasts are periodically updated with new observations. The surface pressure data, 221 

available at a 0.25° x 0.25° spatial resolution, represent the atmospheric pressure at the 222 

Earth's surface, expressed in Pascals (Pa). This parameter measures the force per unit area 223 

exerted by the atmosphere at the surface, encompassing land, sea, and inland water. Surface 224 

pressure is often used in conjunction with temperature to calculate air density. The wind 225 

speed data is available at a 0.25° x 0.25° spatial resolution and is expressed in meters per 226 

second (m/s). This data provides information on the horizontal speed of air movement at a 227 

height of 10 meters above the Earth's surface and is a critical parameter in understanding 228 

surface wind patterns. While these data provide an averaged representation, actual wind 229 

observations can vary due to factors like local terrain, vegetation, and buildings. The 230 

eastward and northward components of the wind at 10 meters are also available. The 231 

original data in NetCDF format were processed to generate annual mean raster files using 232 

the ‘netCDF4’ package in Python, ensuring they are suitable for spatial analysis. 233 

Landcover: The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer 234 

(MODIS) Land Cover Climate Modelling Grid (CMG) (MCD12C1) Version 6.1 data product 235 

provides a spatially aggregated and reprojected version of the tiled MCD12Q1 Version 6 236 

(https://doi.org/10.5067/MODIS/MCD12Q1.006) data product. We extracted global land 237 

cover data covering 17 different land use types from 2001 to 2020. The dataset is available at 238 

a spatial resolution of 0.05 degrees and a yearly temporal resolution and is provided in 239 

Hierarchical Data Format 4 (HDF4). The 17 land cover types follow the International 240 

Geosphere-Biosphere Programme (IGBP) classification scheme, and include: Water Bodies, 241 

Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, 242 

Deciduous Broadleaf Forests, Mixed Forests, Closed Shrublands, Open Shrublands, Woody 243 



Savannas, Savannas, Grasslands, Permanent Wetlands, Croplands, Urban and Built-up Lands, 244 

Cropland/Natural Vegetation Mosaics, Permanent Snow and Ice, and Barren lands (Table S5). 245 

Each of these land cover types represents a distinct covariate in our analysis. We utilized 246 

Python and the ‘GDAL’ library to process and convert these data into 5 km raster formats, 247 

making them suitable for further spatial analysis in our study. 248 

Table S5: MCD12C1 International Geosphere-Biosphere Programme (IGBP) legend and class 249 
descriptions.  250 
 251 

Name Value Description 

Water Bodies 0 At least 60% of area is covered by permanent water 
bodies. 

Evergreen Needleleaf Forests 1 Dominated by evergreen conifer trees (canopy 
>2m). Tree cover >60%. 

Evergreen Broadleaf Forests 2 Dominated by evergreen broadleaf and palmate 
trees (canopy >2m). Tree cover >60%. 

Deciduous Needleleaf Forests 3 Dominated by deciduous needleleaf (larch) trees 
(canopy >2m). Tree cover >60%. 

Deciduous Broadleaf Forests 4 Dominated by deciduous broadleaf trees (canopy 
>2m). Tree cover >60%. 

Mixed Forests 5 Dominated by neither deciduous nor evergreen 
(40-60% of each) tree type (canopy >2m). Tree 
cover >60%. 

Closed Shrublands 6 Dominated by woody perennials (1-2m height) 
>60% cover. 

Open Shrublands 7 Dominated by woody perennials (1-2m height) 10-
60% cover. 

Woody Savannas 8 Tree cover 30-60% (canopy >2m). 

Savannas 9 Tree cover 10-30% (canopy >2m). 

Grasslands 10 Dominated by herbaceous annuals (<2m). 

Permanent Wetlands 11 Permanently inundated lands with 30-60% water 
cover and >10% vegetated cover. 

Croplands 12 At least 60% of area is cultivated cropland. 

Urban and Built-up Lands 13 At least 30% impervious surface area including 
building materials, asphalt, and vehicles. 

Cropland/Natural Vegetation 
Mo- saics 

14 Mosaics of small-scale cultivation 40-60% with 
natural tree, shrub, or herbaceous vegetation. 

Permanent Snow and Ice 15 At least 60% of area is covered by snow and ice for 
at least 10 months of the year. 

Barren 16 At least 60% of area is non-vegetated barren (sand, 
rock, soil) areas with less than 10% vegetation. 

Unclassified 255 Has not received a map label because of missing 
inputs. 

 252 

NDVI and EVI: We obtained the monthly vegetation indices grid data, including Normalized 253 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), from the Terra 254 

Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from February 2000 255 

to December 2019. However, due to the absence of January 2000 data, only the data from 256 

2001 to 2019 were processed and used in our analysis. These data are available as a gridded 257 

product at a spatial resolution of 0.05 degrees, in the sinusoidal projection. The NDVI serves 258 

as a continuity index with the existing National Oceanic and Atmospheric Administration-259 



Advanced Very High-Resolution Radiometer (NOAA-AVHRR) derived NDVI, providing 260 

consistency for long-term time series applications. The EVI, on the other hand, is designed to 261 

minimize canopy background variations and maintain sensitivity in regions with dense 262 

vegetation. EVI is particularly effective in high biomass areas and utilizes the blue band to 263 

correct for residual atmospheric contamination from smoke and sub-pixel thin clouds. Both 264 

NDVI and EVI are computed from surface reflectance that have been corrected for molecular 265 

scattering, ozone absorption, and aerosols. The original data were processed using Python 266 

and GDAL to generate raster formats suitable for further spatial analysis. 267 

Population density We utilized population density data from the Gridded Population of the 268 

World, Version 4 (GPWv4). This dataset provides estimates of human population density 269 

(number of persons per square kilometre) for the years 2000, 2005, 2010, 2015, and 2020. 270 

The estimates are based on counts consistent with national censuses and population 271 

registers, adjusted to align with the 2015 Revision of the United Nations World Population 272 

Prospects (UN WPP) country totals. A proportional allocation gridding algorithm was used to 273 

distribute these population counts across 30 arc-second grid cells (~1 km at the equator), 274 

utilizing approximately 13.5 million national and sub-national administrative units. 275 

Additionally, we obtained population density data from WorldPop, adjusted to match 276 

individual country totals from the official United Nations population estimates. This data was 277 

derived from the corresponding Unconstrained individual countries 2000-2020 population 278 

count datasets, with population counts divided by pixel surface area to calculate density. The 279 

data was provided at a 30 arc-second resolution and was produced using the unconstrained 280 

top-down modelling method. For our analysis, we downloaded the 30 arc-second density 281 

raster data and resampled it to a 5kmx5km spatial resolution using the ‘rasterio’ package in 282 

Python, enabling integration with other spatial datasets. 283 

Travel time to major cities (urban accessibility) We utilized a global map of urban 284 

accessibility, which provides land-based travel time to the nearest densely populated area for 285 

all regions between 85 degrees north and 60 degrees south, representing a nominal year of 286 

2015 with a resolution of 30 arc seconds7. Densely populated areas are defined as 287 

contiguous regions with 1,500 or more inhabitants per square kilometre or areas with a 288 

majority of built-up land cover types coincident with a population center of at least 50,000 289 

inhabitants. This map was produced through a collaboration between the University of 290 

Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), 291 

and the University of Twente, Netherlands, and was created using a combination of global 292 

datasets, including roads, railways, rivers, topography, and landcover types. Each pixel in the 293 

resulting accessibility map represents the modelled shortest travel time to a city. We 294 

resampled this map to a 5kmx5km spatial resolution using the ‘rasterio’ package in Python to 295 

ensure compatibility with other spatial datasets in our study. 296 

3. Model 297 

3.1 General overview 298 

Model selection and parameter tuning are critical steps in developing predictive models, 299 

particularly when dealing with complex datasets and diverse modelling approaches. Proper 300 

model selection ensures that the chosen model accurately captures the underlying patterns 301 

in the data, while parameter tuning optimizes the model's performance by fine-tuning its 302 

internal settings. In our study, we employed a variety of methods to rigorously evaluate and 303 

select the best models for our analysis. The evaluation process included the use of cross-304 



validation techniques, performance metrics such as Akaike Information Criterion AIC, Area 305 

Under the Curve (AUC), accuracy, and standard deviation, among others. 306 

3.2 Generalized Additive Model (GAM)  307 

The Generalized Additive Model (GAM) is a flexible statistical modeling technique that 308 

extends the traditional linear model by allowing non-linear relationships between the 309 

dependent and independent variables. Unlike linear models, which assume a straight-line 310 

relationship, GAMs enable each predictor to have its own smooth, non-linear function. This 311 

is particularly advantageous when dealing with complex data where relationships between 312 

variables are not strictly linear, allowing the model to capture more intricate patterns and 313 

dependencies. 314 

GAMs are built by summing smooth functions of the predictors, which are estimated using 315 

techniques like splines or smoothing functions. The flexibility of GAMs comes from these 316 

smooth functions, which can adapt to the shape of the data, providing a more accurate fit.  317 

We conducted a concurvity analysis to identify covariates with high concurvity—a condition 318 

akin to multicollinearity in linear models, which can obscure the true relationships between 319 

variables and lead to misleading results. Covariates with high concurvity were removed from 320 

the model to enhance clarity and interpretability (Figure S3). We identified several pairs of 321 

covariates exhibiting high concurvity, which is analogous to multicollinearity in linear models 322 

and can distort the interpretation of model coefficients. To address this, we systematically 323 

removed the covariates with high concurvity one by one from the model. After each 324 

removal, we compared the Akaike Information Criterion (AIC) to assess the impact on model 325 

performance. The final model excluded EVI, min temperature, savannas, urban-and-built-up 326 

and elevation and retained other covariates that contributed meaningfully to the predictive 327 

accuracy without introducing significant concurvity issues. To further refine the model and 328 

prevent overfitting, we applied a backward stepwise selection procedure. This process 329 

systematically removed less informative covariates, retaining only those that contributed the 330 

most to the model’s predictive power.  331 

Table S6: Concurvity Analysis and AIC Results for GAM.  332 

Term1 Term2 Concurvity 
AIC After 
Removal term1 

s(Barren_or_Sparsely_Vegeta
ted) s(Savannas) 0.842696 38998.82 

s(pop) s(Urban_and_Builtup) 0.817263 38732.59 

s(Savannas) 
s(Barren_or_Sparsely_Vegeta
ted) 0.842696 38720.48 

s(evi) s(ndvi) 0.956443 38828.73 

s(ndvi) s(evi) 0.956443 38850.57 

s(Urban_and_Builtup) s(pop) 0.817263 38730.09 

s(tmax) s(tmin) 0.951901 41302.29 

s(tmin) s(tmax) 0.951901 39713.45 

s(elevation) s(sp) 0.98785 39022.69 

s(sp) s(elevation) 0.98785 39093.96 

 333 

3.3 Boosted Regression Trees (BRT) and Random Forest (RF) Model Selection 334 



Boosted Regression Trees (BRT) is an advanced machine learning technique that combines 335 

the strengths of two powerful algorithms: boosting and decision trees. Boosting is an 336 

ensemble method that iteratively builds a series of decision trees, each one correcting the 337 

errors of its predecessor, to improve overall model accuracy. Decision trees, on their own, 338 

are simple and interpretable models, but when combined through boosting, they become a 339 

highly flexible and powerful predictive tool capable of capturing complex patterns in the 340 

data. 341 

Random Forest (RF), another powerful machine learning algorithm, operates by constructing 342 

a multitude of decision trees during training. Unlike BRT, which builds trees sequentially, RF 343 

builds them independently and aggregates their outputs to make a final prediction. This 344 

ensemble approach helps reduce overfitting and improves the model’s generalization to new 345 

data. RF is particularly valued for its robustness, accuracy, and ability to handle large datasets 346 

with numerous features. 347 

In predictive modelling, particularly in the context of species distribution or disease 348 

occurrence, the presence-absence data balance is crucial. When the dataset is imbalanced, 349 

with significantly more absence cases than presence cases (or vice versa), it can bias the 350 

model, leading to poor predictive performance. In such scenarios, the model might simply 351 

predict the majority class (e.g. absence) most of the time, thereby failing to accurately 352 

identify true presence cases. To mitigate the potential bias from imbalanced data, we 353 

adopted a balanced dataset approach, ensuring an equal representation of presence and 354 

absence data. This was achieved by randomly selecting an equal number of absences from 355 

the entire absence dataset and combining them with the presence data to form the final 356 

dataset for modelling.  357 

To optimize the performance of the BRT model, we considered two approaches for tuning 358 

parameters. The first approach involved using the caret package, which systematically 359 

explores all possible combinations of parameters based on the provided settings. This 360 

method requires extensive experience with the BRT model, as it offers a comprehensive 361 

exploration of the parameter space. However, for this analysis, we utilized the second 362 

approach, which involves the gbm.step function. This function is particularly effective in 363 

selecting the optimal number of trees for the model by focusing on the tree number that 364 

delivers the best performance, as indicated by the lowest cross-validation (CV) error. The 365 

gbm.step function allows for fine-tuning under pre-set values for other key parameters, such 366 

as tree complexity, learning rate, and bag fraction. The gbm.step function was employed to 367 

determine the most suitable number of trees. During this process, the other parameters of 368 

the algorithm were held at their default values: Tree Complexity: 4, Learning Rate: 0.005, Bag 369 

Fraction: 0.75 or 0.5 and Step Size: 500. Based on the result (Figure S4), we set 10000 as the 370 

trees’ number. For RF, similar attention was given to balancing the presence-absence data 371 

and carefully tuning the hyperparameters. The default settings for RF were utilized with 372 

considerations for the number of trees and the maximum depth of each tree, optimizing the 373 

model’s ability to generalize well to unseen data. 374 

3.4 Relative importance of covariates 375 

For the three sub-models (GAM, BRT, RF) and two stacking methods, the relative importance 376 

of covariates was assessed as follows: For GAM, the importance was determined by 377 

sequentially removing each covariate and comparing the change in model deviance. In 378 

contrast, both BRT and RF utilized their inherent importance functions to directly calculate 379 



the significance of each covariate. These analyses resulted in five distinct figures 380 

representing the relative importance of covariates across the models (Figure S5). 381 

 382 

4.1 Result 383 

4.1 Model performance 384 

Table S7 summarizes the performance of the models assessed using both training and test 385 

datasets. The Random Forest (RF) model demonstrated the highest AUC in both the training 386 

(0.9999) and test datasets (0.9883), indicating its strong predictive performance. 387 

Additionally, two stacking ensemble models were evaluated: the RWM (Relative Weighted 388 

Mean) and CWM (Constrained Weighted Mean). The CWM model gave nearly perfect 389 

weighting to the RF sub-model, reflecting the RF model's dominance in prediction accuracy, 390 

with AUC values of 0.9856 and 0.9858 for training and test datasets, respectively. The RWM 391 

model showed more balanced weights across the sub-models, with AUC values slightly lower 392 

than those of the CWM model but still highly competitive. But based on the AUC value in the 393 

testing dataset, the RF model and its prediction were chosen to be our final model and 394 

result. 395 

Table S7: Performance of models.  396 

Model AUC training-5 fold AUC test  

GAM 0.9438 0.9426 

BRT 0.9724 0.9718 

RF 0.9999 0.9883 

Stack ensemble model-RWM  0.9772 0.9775 

Stack ensemble model-CWM  0.9856 0.9858 

Weights of each sub-model in two stacking methods 

 GAM BRT RF 

CWM 0.000001 0.000001 0.999998 

RWM 0.2837838  0.3738739 0.3738739 

 397 

4.2 Model robustness 398 

As shown in Table S8, the robustness of the final RF model was extensively tested. The model 399 

maintained a high AUC across various scenarios, including different occurrence-to-absence 400 

ratios (e.g., 1:2, 1:5) and the use of different subsets of location data. The AUC remained 401 

above 0.98 in most scenarios, with consistently low prediction errors, as measured by the 402 

out-of-bag Brier score, consistently low. These results confirm the stability and reliability of 403 

the RF model under different conditions, further supporting its use for final predictions. 404 

 405 
Table S8: Robustness test.  406 

Model 
AUC test  

Prediction. Error (out of bag 

Brier S.) 

RF (900 trees, null max.depth, 

10 min node size, 5 mtry) 

0.9883 0.040666625 

RF (occurrence:absence=1:2) 0.9892 0.03395345 

RF (occurrence:absence=1:5) 0.9913 0.02112522 

RF use location (37929 records) 0.9553 0.07601925 

RF (100 bootstraps) Standard error: 0-0.02 

 407 



4.3 Area and population counting 408 

Table S9: Predicted high environmental suitability areas and populations living in the 409 
environmental suitable areas of 215 countries. 410 

Country Area (km2) 
Population in millions 

(uncertainty) 

Percentage of total 

population 

(uncertainty) 

Local 

human 

scrub 

typhus 

occurrence 

India 3231500 1166.32 (1160.26-1169.6) 98.7% (98.2%-98.9%) Y 

China 1330900 349.26 (301.13-427.75) 28.7% (24.7%-35.1%) Y 

Indonesia 1843375 223.89 (222.02-224.29) 97.9% (97.0%-98.0%) Y 

Brazil 8466600 175.88 (151.74-177.57) 96.8% (83.6%-97.8%) N 

Nigeria 924375 174.15 (173.68-174.15) 99.1% (98.8%-99.1%) N 

Pakistan 745975 166.44 (148.3-169.2) 93.8% (83.6%-95.4%) Y 

United States 1659100 150.06 (82.07-210.98) 53.5% (29.2%-75.2%) N 

Bangladesh 147275 139.46 (139.19-139.46) 99.1% (98.9%-99.1%) Y 

Mexico 1540975 89.77 (63.29-104.9) 79.5% (56.1%-92.9%) N 

Ethiopia 1091200 84.51 (64.29-90.98) 88.2% (67.1%-94.9%) N 

Egypt 527375 83.61 (53.82-86.54) 96.3% (62.0%-99.7%) N 

Vietnam 338050 80.33 (79.34-80.38) 99.2% (98.0%-99.2%) Y 

Zaire 2254100 76.58 (68.53-76.8) 99.6% (89.1%-99.9%) N 

Philippines 282150 75.93 (75.75-75.93) 94.1% (93.9%-94.1%) Y 

Thailand 531300 57.47 (57.29-57.47) 98.9% (98.6%-98.9%) Y 

Tanzania 931150 51.77 (46.08-52.25) 97.7% (87.0%-98.6%) N 

Sudan 2558600 51.2 (47.94-51.23) 99.9% (93.5%-99.9%) N 
Myanmar 
(Burma) 705525 46.14 (45.66-46.15) 97.5% (96.5%-97.6%) 

Y 

Kenya 579550 42.19 (34.29-42.68) 97.8% (79.5%-98.9%) Y 

South Korea 109625 40.87 (38.78-41.2) 96.4% (91.5%-97.2%) Y 

Uganda 242850 39.57 (36.19-39.87) 99.0% (90.6%-99.8%) N 

Colombia 1114000 33.92 (30.55-37.43) 81.3% (73.2%-89.7%) N 

Iraq 409975 32.9 (21.25-33.83) 93.3% (60.3%-95.9%) N 

South Africa 582850 30.94 (13.4-46.46) 62.9% (27.2%-94.5%) N 

Saudi Arabia 2014900 28.11 (21.4-28.75) 96.3% (73.3%-98.5%) N 

Venezuela 915975 27.96 (27.23-28.08) 98.0% (95.5%-98.5%) N 

Japan 137325 27.55 (10.14-62.7) 26.5% (9.8%-60.4%) Y 

Nepal 112000 26.77 (25.36-26.94) 98.3% (93.1%-98.9%) Y 

Malaysia 325100 26.46 (26.45-26.46) 96.8% (96.8%-96.8%) Y 

Mozambique 823525 26.42 (23.2-26.49) 97.1% (85.3%-97.4%) N 

Ghana 241025 25.32 (24.85-25.32) 98.4% (96.6%-98.4%) N 

France 261050 24.64 (8.11-41.38) 45.1% (14.8%-75.7%) N 

Yemen 431625 23.39 (15.75-24.68) 93.0% (62.6%-98.1%) N 

Angola 1263150 22.51 (18.61-22.62) 98.7% (81.6%-99.2%) N 

Madagascar 596125 21.8 (16.59-22.9) 90.8% (69.2%-95.4%) N 

Cameroon 469725 21.2 (20.64-21.22) 98.6% (96.0%-98.6%) N 

Niger 1246650 21.1 (20.65-21.1) 100.0% (97.9%-100.0%) N 

Germany 80850 20.9 (10.25-42.61) 30.4% (14.9%-62.0%) N 

Ivory Coast 317575 20.58 (20.44-20.58) 98.8% (98.1%-98.8%) N 

Burkina Faso 280800 18.54 (18.54-18.54) 100.0% (100.0%-100.0%) N 

Mali 1320750 17.67 (17.6-17.67) 100.0% (99.6%-100.0%) N 

Malawi 118225 17.24 (14.67-17.3) 99.6% (84.7%-99.9%) N 

Sri Lanka 65075 16.49 (16.42-16.49) 95.2% (94.8%-95.2%) Y 

Zambia 731625 15.62 (8.95-15.91) 98.1% (56.2%-100.0%) N 

Guatemala 111950 15.1 (13.91-15.41) 97.0% (89.4%-99.0%) N 

Argentina 697825 14.47 (4.68-28.25) 37.2% (12.0%-72.6%) N 

Zimbabwe 401525 14.36 (8.54-14.73) 96.8% (57.5%-99.3%) N 

Cambodia 186675 14.19 (14.09-14.19) 99.7% (99.0%-99.7%) Y 



Chad 1266500 14.07 (13.93-14.08) 99.9% (98.9%-100.0%) N 

Iran 567575 13.83 (9.83-25.49) 19.4% (13.8%-35.8%) N 

Senegal 202225 13.62 (10.66-13.62) 95.6% (74.8%-95.6%) N 

Morocco 165050 13.26 (3.04-22.09) 44.8% (10.3%-74.7%) N 

Syria 113100 12.9 (4.56-16.36) 72.7% (25.7%-92.2%) N 

Guinea 249350 11.9 (10.79-11.9) 98.7% (89.5%-98.7%) N 

Algeria 2074900 10.62 (2.68-20.1) 30.2% (7.6%-57.2%) N 

Ecuador 222100 10.55 (8.91-12.74) 72.0% (60.8%-86.9%) N 

Benin 118225 10.19 (9.57-10.19) 93.3% (87.6%-93.3%) N 
United 
Kingdom 96075 10.13 (0.77-34.41) 18.1% (1.4%-61.3%) 

N 

Burundi 25150 10.13 (6.7-10.84) 92.7% (61.3%-99.3%) N 

Rwanda 20900 10.1 (7.66-10.9) 88.9% (67.5%-95.9%) N 

Somalia 637950 10.07 (9.47-10.09) 97.5% (91.7%-97.8%) N 

North Korea 36700 10.05 (5.32-13.94) 46.7% (24.7%-64.7%) N 

Peru 885675 9.89 (7.19-16.12) 35.3% (25.6%-57.5%) Y 

Italy 38325 9.88 (3.26-23) 20.4% (6.7%-47.5%) N 

Turkey 76700 9.63 (3.31-24.53) 13.8% (4.7%-35.1%) N 

Haiti 27075 9.25 (9.16-9.26) 97.9% (96.9%-98.0%) N 

Cuba 111725 9.1 (9.07-9.1) 97.6% (97.3%-97.6%) N 
Dominican 
Republic 48825 8.43 (8.34-8.45) 87.4% (86.6%-87.6%) 

N 

Belgium 31800 8.12 (3.05-9.89) 79.5% (29.9%-96.8%) N 
United Arab 
Emirates 76650 7.98 (6.23-7.98) 99.0% (77.4%-99.0%) 

N 

Honduras 115750 7.36 (7.12-7.36) 99.0% (95.8%-99.0%) Y 
Papua New 
Guinea 452350 6.86 (6.3-6.91) 97.1% (89.2%-97.9%) 

Y 

Australia 6206675 6.62 (3.08-14.92) 30.9% (14.4%-69.6%) Y 

Laos 244075 6.34 (6.28-6.34) 100.0% (99.1%-100.0%) Y 

Spain 39200 6.13 (1.37-16.36) 15.9% (3.6%-42.5%) N 

Togo 58125 6.09 (6.08-6.09) 99.3% (99.1%-99.3%) N 

Paraguay 435725 5.89 (5.02-5.92) 99.6% (84.8%-100.0%) N 

Israel 16600 5.87 (4.26-6.24) 87.5% (63.5%-93.0%) N 

Nicaragua 130900 5.51 (5.4-5.51) 99.4% (97.4%-99.4%) N 

Bolivia 856100 5.45 (4.59-6.35) 54.1% (45.6%-63.1%) N 

Tunisia 115300 5.37 (2.01-8.31) 56.1% (21.0%-86.9%) N 

Sierra Leone 72725 5.23 (5.13-5.23) 98.9% (97.0%-98.9%) N 

El Salvador 20700 5.08 (5.08-5.08) 99.0% (99.0%-99.0%) N 

Netherlands 20250 5.06 (0.73-12.52) 34.5% (5.0%-85.4%) N 

Eritrea 123725 4.91 (3.67-5.1) 95.9% (71.8%-99.7%) N 
Central 
African 
Republic 627025 4.7 (4.43-4.7) 100.0% (94.2%-100.0%) 

N 

Chile 99025 4.68 (1.8-8.53) 30.5% (11.8%-55.6%) Y 

Congo 346225 4.62 (4.59-4.62) 99.1% (98.5%-99.1%) N 

Jordan 16025 4.49 (0.94-6.1) 61.0% (12.7%-82.8%) N 

Costa Rica 50825 4.14 (4.04-4.14) 98.8% (96.3%-98.9%) N 

Liberia 96400 4.06 (4.06-4.06) 95.9% (95.8%-95.9%) N 

Oman 327700 4.05 (3.58-4.09) 97.6% (86.2%-98.6%) N 

Mauritania 1112900 3.81 (2.29-3.81) 99.7% (60.0%-99.7%) N 

Singapore 425 3.68 (3.68-3.68) 78.7% (78.7%-78.7%) N 

Puerto Rico 8775 3.08 (3.08-3.08) 96.1% (95.8%-96.1%) N 

Libya 924800 3.08 (0.95-4.88) 53.9% (16.7%-85.5%) N 

Kuwait 18975 2.97 (2.39-2.97) 99.8% (80.6%-99.8%) N 

Panama 71525 2.9 (2.89-2.9) 92.4% (92.2%-92.4%) N 

Lebanon 4800 2.71 (1.97-3.12) 71.1% (51.6%-81.9%) N 

Afghanistan 44400 2.54 (1.12-6.33) 8.3% (3.6%-20.6%) N 



Canada 30600 2.53 (1.03-3.87) 8.1% (3.3%-12.3%) N 

New Zealand 144025 2.41 (0.71-3.41) 61.2% (18.1%-86.8%) N 

Austria 15675 2.39 (1.22-4.35) 33.7% (17.1%-61.2%) N 

Jamaica 11050 2.31 (2.3-2.31) 93.2% (92.9%-93.2%) N 

Botswana 624325 2.1 (1.85-2.11) 99.6% (87.5%-100.0%) N 

Namibia 607375 1.97 (1.34-2.19) 87.5% (59.5%-96.9%) N 

West Bank 4325 1.92 (0.67-2.61) 58.6% (20.4%-79.6%) N 

Qatar 11975 1.86 (0.4-1.86) 99.1% (21.4%-99.1%) N 

Croatia 28575 1.78 (0.64-2.61) 52.6% (19.0%-77.0%) N 

Hungary 27925 1.77 (0.55-5.11) 21.3% (6.7%-61.6%) N 

Serbia 16425 1.75 (0.79-3.42) 23.8% (10.8%-46.6%) N 

Gambia, The 11075 1.71 (1.36-1.71) 99.0% (78.7%-99.0%) N 

Poland 6925 1.6 (0.44-10.5) 4.9% (1.3%-31.8%) N 

Gabon 261900 1.53 (1.52-1.53) 99.7% (99.3%-99.7%) N 

Guinea-Bissau 32325 1.5 (1.12-1.5) 88.1% (65.8%-88.1%) N 

Gaza Strip 500 1.35 (1.13-1.35) 100.0% (83.6%-100.0%) N 

Slovakia 12000 1.33 (0.69-3.01) 28.0% (14.4%-63.5%) N 

Ireland 54875 1.18 (0.04-3.04) 29.2% (0.9%-75.5%) N 

Swaziland 18750 1.16 (0.91-1.18) 97.8% (76.8%-99.3%) N 
Trinidad and 
Tobago 4600 1.02 (1.02-1.02) 97.4% (97.4%-97.4%) 

N 

Mauritius 1900 0.96 (0.95-0.96) 95.1% (94.2%-95.1%) N 

Slovenia 7725 0.85 (0.41-1.39) 48.3% (23.6%-79.3%) N 

Cyprus 7950 0.81 (0.47-0.91) 83.9% (48.6%-93.6%) N 
Equatorial 
Guinea 26550 0.79 (0.78-0.79) 97.7% (97.1%-97.7%) 

N 

Djibouti 21850 0.78 (0.67-0.78) 99.9% (85.3%-99.9%) Y 

Portugal 6425 0.68 (0.2-3.73) 8.4% (2.4%-45.8%) N 

Bhutan 20275 0.61 (0.59-0.73) 68.3% (66.1%-82.0%) Y 

Romania 17425 0.6 (0.19-5.44) 3.8% (1.2%-34.5%) N 

Ukraine 6475 0.59 (0.26-5.31) 1.6% (0.7%-14.2%) N 

Uruguay 8975 0.55 (0.16-2.21) 17.7% (5.3%-71.5%) N 
Western 
Sahara 257825 0.55 (0.28-0.55) 93.0% (47.2%-93.0%) 

N 

Guyana 212500 0.55 (0.54-0.55) 96.5% (95.9%-96.5%) N 

Comoros 1425 0.54 (0.51-0.54) 82.6% (78.7%-82.6%) N 
Czech 
Republic 4500 0.54 (0.13-3.47) 5.9% (1.5%-38.2%) 

N 

Fiji 16225 0.53 (0.53-0.53) 79.5% (79.3%-79.5%) N 

Norway 12500 0.52 (0.18-1.23) 12.2% (4.2%-28.9%) N 

Reunion 1875 0.52 (0.44-0.56) 77.3% (65.9%-82.6%) N 

Greece 6775 0.49 (0.14-2.38) 5.5% (1.5%-26.9%) N 

Suriname 146125 0.48 (0.48-0.48) 99.8% (99.7%-99.8%) N 

Bahrain 525 0.46 (0.23-0.46) 83.8% (41.6%-83.8%) N 

Brunei 5850 0.37 (0.37-0.37) 97.1% (97.1%-97.1%) N 

Luxembourg 1575 0.37 (0.13-0.51) 70.1% (25.2%-96.4%) N 

Russia 6125 0.35 (0.13-4.59) 0.3% (0.1%-3.8%) Y 

Belize 22325 0.33 (0.33-0.33) 97.5% (96.7%-97.5%) N 

Cape Verde 3125 0.29 (0.24-0.31) 85.3% (71.1%-90.6%) N 

Guadeloupe 1525 0.28 (0.28-0.28) 90.3% (90.3%-90.3%) N 

Malta 225 0.27 (0.24-0.27) 82.1% (73.8%-82.1%) N 

Macau 25 0.25 (0.25-0.25) 100.0% (100.0%-100.0%) N 

French Guiana 84100 0.24 (0.24-0.24) 99.0% (99.0%-99.0%) N 

Martinique 975 0.24 (0.24-0.24) 86.8% (86.8%-86.8%) N 
Solomon 
Islands 22075 0.24 (0.24-0.24) 77.7% (77.6%-77.7%) 

Y 

Moldova 700 0.23 (0.14-1.21) 6.8% (4.1%-35.4%) N 

Azerbaijan 2050 0.19 (0.06-1.51) 2.1% (0.6%-17.1%) N 



Bahamas, The 9375 0.18 (0.17-0.18) 76.2% (72.1%-76.8%) N 
French 
Polynesia 1500 0.16 (0.14-0.16) 80.1% (72.8%-80.1%) 

N 

Western 
Samoa 2400 0.15 (0.15-0.15) 93.5% (92.9%-93.5%) 

N 

Bosnia and 
Herzegovina 2425 0.15 (0.03-0.9) 4.7% (0.8%-28.0%) 

N 

New 
Caledonia 18225 0.15 (0.14-0.15) 79.9% (73.3%-80.2%) 

N 

Barbados 375 0.14 (0.14-0.14) 94.2% (94.2%-94.2%) N 
Sao Tome and 
Principe 850 0.13 (0.13-0.13) 92.6% (92.6%-92.6%) 

Y 

Guam 475 0.12 (0.12-0.12) 80.2% (80.2%-80.2%) N 

Georgia 700 0.12 (0.02-0.32) 3.4% (0.7%-9.5%) N 

Mayotte 275 0.12 (0.12-0.12) 80.1% (80.1%-80.1%) N 

Vanuatu 10000 0.11 (0.11-0.11) 78.1% (77.6%-78.1%) Y 

Bulgaria 975 0.1 (0.02-1.4) 1.7% (0.3%-23.8%) N 
Antigua and 
Barbuda 375 0.06 (0.06-0.06) 97.3% (96.9%-97.3%) 

N 

Dominica 750 0.06 (0.06-0.06) 95.4% (95.4%-95.4%) N 

Switzerland 175 0.05 (0.01-2.38) 0.7% (0.2%-32.0%) N 

Grenada 275 0.05 (0.05-0.05) 87.3% (87.3%-87.3%) N 
St. Vincent 
and the 
Grenadines 300 0.05 (0.05-0.05) 98.2% (95.0%-98.2%) 

N 

Seychelles 125 0.05 (0.05-0.05) 69.7% (69.7%-69.7%) N 

Sweden 175 0.04 (0-1.78) 0.5% (0.0%-21.8%) N 

Tonga 275 0.04 (0.04-0.04) 69.9% (68.9%-69.9%) N 

Man, Isle of 225 0.03 (0-0.05) 33.4% (0.0%-59.0%) N 
Federated 
States of 
Micronesia 350 0.02 (0.02-0.02) 71.6% (71.6%-71.6%) 

N 

Jersey 50 0.02 (0.01-0.04) 26.5% (6.6%-49.1%) N 

St. Lucia 75 0.02 (0.02-0.02) 13.4% (13.4%-13.4%) N 

Tajikistan 150 0.02 (0-1.3) 0.2% (0.0%-16.0%) N 
St. Kitts and 
Nevis 150 0.02 (0.01-0.02) 62.8% (52.3%-62.8%) 

N 

American 
Samoa 50 0.02 (0.02-0.02) 45.9% (45.9%-45.9%) 

N 

Virgin Islands 175 0.02 (0.02-0.02) 73.6% (73.6%-73.6%) N 
Northern 
Mariana 
Islands 125 0.02 (0.02-0.02) 81.3% (81.3%-81.3%) 

N 

Albania 125 0.01 (0-0.42) 0.3% (0.0%-18.7%) N 
British Virgin 
Islands 25 0.01 (0.01-0.01) 40.5% (40.5%-40.5%) 

N 

Uzbekistan 50 0 (0-0.89) 0.0% (0.0%-3.3%) N 
Pacific Islands 
(Palau) 250 0 (0-0) 71.0% (71.0%-71.0%) 

Y 

Denmark 50 0 (0-1.14) 0.1% (0.0%-25.7%) N 

Montserrat 100 0 (0-0) 100.0% (100.0%-100.0%) N 
Cayman 
Islands 100 0 (0-0) 3.9% (3.9%-3.9%) 

N 

Faroe Islands 50 0 (0-0.02) 2.3% (0.0%-56.7%) N 
Turks and 
Caicos Islands 100 0 (0-0) 43.6% (43.6%-43.6%) 

N 

Armenia 0 0 (0-0.01) 0.0% (0.0%-0.0%) N 

Andorra 0 0 (0-0) 0.0% (0.0%-15.2%) N 

Byelarus 0 0 (0-0.58) 0.0% (0.0%-7.0%) N 

Estonia 0 0 (0-0.36) 0.0% (0.0%-32.0%) N 



Finland 0 0 (0-0.31) 0.0% (0.0%-6.8%) N 

Guernsey 0 0 (0-0) 0.0% (0.0%-66.3%) N 

Greenland 0 0 (0-0.02) 0.0% (0.0%-0.0%) N 

Iceland 0 0 (0-0) 0.0% (0.0%-1.5%) N 

Jan Mayen 0 0 (0-0) 0.0% (0.0%-6.7%) N 

Kyrgyzstan 0 0 (0-0.07) 0.0% (0.0%-0.2%) N 

Kazakhstan 0 0 (0-0.01) 0.0% (0.0%-0.5%) N 

Latvia 0 0 (0-0.35) 0.0% (0.0%-22.4%) N 

Lithuania 0 0 (0-0.99) 0.0% (0.0%-19.3%) N 

Liechtenstein 0 0 (0-0) 0.0% (0.0%-0.0%) N 

Lesotho 0 0 (0-0.46) 0.0% (0.0%-50.5%) N 

Mongolia 0 0 (0-0.05) 0.0% (0.0%-0.0%) N 

Macedonia 0 0 (0-0) 0.0% (0.0%-2.8%) N 

Monaco 0 0 (0-0) 0.0% (0.0%-0.0%) N 

Montenegro 0 0 (0-0.05) 0.0% (0.0%-8.7%) N 
St. Pierre and 
Miquelon 0 0 (0-0.01) 0.0% (0.0%-46.6%) 

N 

San Marino 0 0 (0-0) 0.0% (0.0%-38.5%) N 

Svalbard 0 0 (0-0) 0.0% (0.0%-0.1%) N 

Turkmenistan 0 0 (0-0.38) 0.0% (0.0%-7.4%) N 

 411 

Table S10: Countries/regions where population weighted environmental suitability > 0.5 but no 412 
confirmed cases in humans have been reported. 413 

GMI code Country 
Local human scrub 
typhus occurrence 

Environmental suitability 
(population weighted) 

ATG Antigua and Barbuda N 0.8431415 

AGO Angola N 0.7060163 

BHR Bahrain N 0.5935044 

BRB Barbados N 0.8235087 

BWA Botswana N 0.6097312 

BEL Belgium N 0.5446713 

BHS Bahamas, The N 0.6562729 

BLZ Belize N 0.8506504 

BOL Bolivia N 0.5261988 

BEN Benin N 0.8186688 

BRA Brazil N 0.7707489 

BRN Brunei N 0.9156949 

BDI Burundi N 0.7044257 

TCD Chad N 0.8026985 

COG Congo N 0.8631865 

ZAR Zaire N 0.8219726 

CMR Cameroon N 0.8615318 

COM Comoros N 0.7199026 

COL Colombia N 0.7266011 

MNP Northern Mariana Islands N 0.7243235 

CRI Costa Rica N 0.8584681 

CAF Central African Republic N 0.8071204 

CUB Cuba N 0.8908176 

CPV Cape Verde N 0.6142804 

CYP Cyprus N 0.5468579 



DMA Dominica N 0.8221209 

DOM Dominican Republic N 0.7919364 

ECU Ecuador N 0.6969346 

EGY Egypt N 0.6297006 

GNQ Equatorial Guinea N 0.9001058 

ERI Eritrea N 0.6770846 

SLV El Salvador N 0.9009198 

ETH Ethiopia N 0.6561315 

GUF French Guiana N 0.9039915 

FJI Fiji N 0.7252437 

FSM Federated States of Micronesia N 0.6155528 

PYF French Polynesia N 0.5984889 

GMB Gambia, The N 0.8105883 

GAB Gabon N 0.9007281 

GHA Ghana N 0.8620615 

GRD Grenada N 0.7510616 

GLP Guadeloupe N 0.8174323 

GUM Guam N 0.7322897 

GTM Guatemala N 0.8138361 

GIN Guinea N 0.8109486 

GUY Guyana N 0.8653698 

ISR Gaza Strip N 0.6982115 

HTI Haiti N 0.8759718 

ISR Israel N 0.625336 

CIV Ivory Coast N 0.8743957 

IRQ Iraq N 0.626605 

JAM Jamaica N 0.8452687 

JOR Jordan N 0.5143677 

KWT Kuwait N 0.6646774 

LBN Lebanon N 0.5795968 

LBR Liberia N 0.8993461 

LUX Luxembourg N 0.5436459 

LBY Libya N 0.5136242 

MDG Madagascar N 0.6965172 

MTQ Martinique N 0.7875484 

MAC Macau N 0.9347954 

MYT Mayotte N 0.6908741 

MSR Montserrat N 0.8481452 

MWI Malawi N 0.7359778 

MLI Mali N 0.8172341 

MUS Mauritius N 0.8245977 

MRT Mauritania N 0.6924398 

MLT Malta N 0.5239161 

OMN Oman N 0.6924585 

MEX Mexico N 0.6585243 

MOZ Mozambique N 0.752112 



NCL New Caledonia N 0.6026257 

NER Niger N 0.7735726 

NGA Nigeria N 0.888163 

SUR Suriname N 0.9087343 

NIC Nicaragua N 0.862294 

PRY Paraguay N 0.7404584 

PAN Panama N 0.8557939 

GNB Guinea-Bissau N 0.6897403 

QAT Qatar N 0.6716459 

REU Reunion N 0.6210277 

PRI Puerto Rico N 0.887071 

RWA Rwanda N 0.6676883 

SAU Saudi Arabia N 0.674943 

KNA St. Kitts and Nevis N 0.533497 

SYC Seychelles N 0.617013 

ZAF South Africa N 0.5488808 

SEN Senegal N 0.6978806 

SVN Slovenia N 0.5009149 

SLE Sierra Leone N 0.9076485 

SGP Singapore N 0.7234231 

SOM Somalia N 0.7661952 

SDN Sudan N 0.7667642 

SYR Syria N 0.5253849 

ARE United Arab Emirates N 0.6762679 

TTO Trinidad and Tobago N 0.8951436 

TON Tonga N 0.6164699 

TGO Togo N 0.8758947 

TUN Tunisia N 0.5083447 

TZA Tanzania, United Republic of N 0.7863342 

UGA Uganda N 0.7717489 

USA United States N 0.5070344 

BFA Burkina Faso N 0.8282123 

VCT St. Vincent and the Grenadines N 0.8325873 

VEN Venezuela N 0.8323584 

VIR Virgin Islands N 0.6420539 

NAM Namibia N 0.5602835 

ISR West Bank N 0.5082296 

ESH Western Sahara N 0.543527 

WSM Western Samoa N 0.8119532 

SWZ Swaziland N 0.695571 

YEM Yemen N 0.6732206 

ZMB Zambia N 0.6338152 

ZWE Zimbabwe N 0.6090861 

 414 

Table S11: Predicted high environmental suitability areas and populations living in the 415 
environmental suitable areas in 2001, 2010 and 2020. 416 



Worldwide 
 Area (km2) Uncertainty Change 

2001 66,373,650 5361,0975-82,853,000 2001-2010 716,975 

2010 67,090,625 54,485,500-82,875,850 2010-2020 873,350 

2020 67,963,975 55,315,825-85,155,000 2001-2020 1590,325 

 Population Uncertainty Change 

2001 3,163,442,997 2,749,422,428-3,557,279,550 2001-2010 558,968,110 

2010 3,722,411,107 3,284,405,622-4,137,388,957 2010-2020 679,578,866 

2020 4,401,989,973 3,855,816,571-4,895,784,723 2001-2020 1,238,546,976 

Countries with confirmed human case 
 Area (km2) Uncertainty Change  

2001 21,356,975 17,483,675-27,371,200 2001-2010 -309,00 

2010 21,326,075 17,789,200-27,182,650 2010-2020 805,725 

2020 22,131,800 18,477,275-28,172,625 2001-2020 774,825 

 Population Uncertainty Change  

2001 2,039,459,989 1,915,091,037-2,145,480,086 2001-2010 312,157,042 

2010 2,351,617,031 2,221,678,479-2,462,458,144 2010-2020 192,130,634 

2020 2,543,747,665 2,428,123,320-2,687,674,384 2001-2020 504,287,676 

 417 
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Supplementary Figures 423 

 424 

 425 

Figure S1 (a) Locations of the occurrence records used in model development, (b) number of 426 

unique scrub typhus occurrence locations per year by country/region. 427 

 428 

 429 

 430 

 431 

 432 



433 

434 

435 

 436 

Figure S2 Covariates included in the ensemble models (2020). The covariates are listed in 437 

order from left to right and top to bottom as follows: max temperature, min temperature, 438 

precipitation, relative humidity, wind speed, air pressure, NDVI, EVI, elevation, 17 types of 439 

land use, population density, and urbanization (measured as travel time to major cities). 440 

 441 

Figure S3 Concurvity analysis result for GAM 442 



 443 

Figure S4 BRT parameter tuning result 444 

 445 

 446 

、、447 

 448 

Figure S5 Relative importance of covariates 449 



 450 

 451 

 452 

Figure S6 Maps of uncertainty in environmental suitability estimates (95%CI upper, 95%CI 453 

lower and width of the confidence interval). 454 



 455 

Figure S7 Standard error of robustness test result 100 bootstrap sampling. 456 
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