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Table S1 GATHER (Guidelines for Accurate and Transparent Health Estimates Reporting) Checklist.

Item # Checklist item Reported
on page #

Objectives and funding

1 Define the indicator(s), populations (including age, sex, and geographic 3-5
entities), and time period(s) for which estimates were made.

2 List the funding sources for the work. 14

Data Inputs

For all data inputs from multiple sources that are synthesized as part of the study:

3 Describe how the data were identified and how the data were accessed. 3

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions. |SI 8

5 Provide information on all included data sources and their main S| 5-8
characteristics. For each data source used, report reference information or
contact name/institution, population represented, data collection method,
year(s) of data collection, sex and age range, diagnostic criteria or
measurement method, and sample size, as relevant.

6 Identify and describe any categories of input data that have potentially 14
important biases (e.g., based on characteristics listed in item 5).

For data inputs that contribute to the analysis but were not synthesized as part of the study:

assumptions or data limitations that affect interpretation of the estimates.

7 Describe and give sources for any other data inputs. |SI 8-11
For all data inputs:

8 Provide all data inputs in a file format from which data can be efficiently SI 5-11
extracted (e.g., a spreadsheet rather than a PDF), including all relevant
meta-data listed in item 5. For any data inputs that cannot be shared
because of ethical or legal reasons, such as third-party ownership, provide a
contact name or the name of the institution that retains the right to
the data.

Data analysis

9 Provide a conceptual overview of the data analysis method. A diagram may [5-6
be helpful.

10 Provide a detailed description of all steps of the analysis, including 5-6, S 11-13
mathematical formulae. This description should cover, as relevant, data
cleaning, data pre-processing, data adjustments and weighting of data
sources, and mathematical or statistical model(s).

11 Describe how candidate models were evaluated and how the final model(s) |5-6, SI 13-14
were selected.

12 Provide the results of an evaluation of model performance, if done, as well |SI 13-14
as the results of any relevant sensitivity analysis.

13 Describe methods for calculating uncertainty of the estimates. State which |6
sources of uncertainty were, and were not, accounted for in the
uncertainty analysis.

14 State how analytic or statistical source code used to generate estimates can|NA
be accessed.

Results and Discussion

15 Provide published estimates in a file format from which data can be NA
efficiently extracted.

16 Report a quantitative measure of the uncertainty of the estimates (e.g. 3
uncertainty intervals).

17 Interpret results in light of existing evidence. If updating a previous set of |13
estimates, describe the reasons for changes in estimates.

18 Discuss limitations of the estimates. Include a discussion of any modelling |14
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1. Scrub typhus data sources and data processing

1.1 National reported data

Occurrence data from national surveillance systems were acquired across five
countries/regions: Mainland China, Japan, South Korea, Taiwan, and Thailand. The data were
collected at varying spatial and temporal resolutions, case categories, and reporting criteria,
as detailed below.

Mainland China: Scrub typhus is a vector-borne notifiable disease and has been included in
the national surveillance system during 1952 to 1989 and from 2006 onwards in mainland
China®. Physicians are required by law to report cases to the China Center for Disease
Control and Prevention through the China Information System for Disease Control and
Prevention (CISDCP). Scrub typhus case reports include basic demographic and clinical data
including gender, age, occupation, residential address, date of onset of symptoms,
laboratory diagnosis, and clinical outcome for each case. There was no information
regarding the geographical distribution in the surveillance data from 1952 to 1989; the basic
demographic and geographical information became available from 2006.

We obtained secured access to detailed data spanning from 2006 to 2019 through direct
correspondence with relevant health authorities. To prevent revealing the identity of
individuals, all the case data were anonymized prior to sharing. All scrub typhus cases were
diagnosed and reported according to the diagnostic criteria issued by Chinese Center for
Disease Control and Prevention, including suspect, clinically diagnosed, and laboratory-
confirmed three categories. The diagnosis criteria and classification for those three
categories are shown in Table S2.

Table S2. Scrub typhus diagnosis criteria and case classification in Mainland China.
Diagnosis criteria

During the epidemic season, the patient has been in scrub typhus
Epidemiological | endemic areas within 3 weeks before the onset, and has a history
history of field activities, mainly including field work, rural fishing, camping
training, sitting on grass, touching, and using straw, etc.

Clinical criteria | Fever;

Lymphadenectasis;

Rash;
Specific eschar or ulceration
Confirmed -Positive Wail-Field test: single serum OXK titer > 1:160;
criteria -Positive indirect immunofluorescence test IFA: paired serum IgG

antibody titers increased by 4 times or more;
-PCR nucleic acid test positive;
-Pathogen isolated

Case classification
Suspected case | -Epidemiology history + fever + lymphadenectasis or rash + clearly
rule out other diseases

-OR have fever + swollen lymph nodes + rash during the epidemic
season

Clinical case -Suspected case+ Specific eschar or ulceration

-OR have epidemiological history + fever + characteristic eschar or
ulceration

Confirmed case | -Suspected case + positive IFA or PCR or pathogen isolated;

-OR clinical case + any confirmed criteria

In our study, we focused exclusively on clinical and confirmed cases, excluding all suspected
cases from the national surveillance data. Included cases were geo-located based on the
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reported time and place of occurrence. Each clinical and confirmed case was meticulously
mapped to its corresponding location, with spatial precision down to the county level.

Japan: The data used were obtained from the Infectious Diseases Statistics under the
Infectious Disease Prevention Act (https://idsc.niid.go.jp/idwr/CDROM/Kako/NMenu.html)
for 1999-2010, and the National Epidemiological Surveillance of Infectious Diseases (NESID)
(https://www.niid.go.jp/niid/en/survaillance-data-table-english.html) for 2012 to 2022. In
1999, when infectious disease surveillance was placed under the NESID, scrub typhus was
classified as a notifiable disease (compulsory reporting of all diagnosed cases)?. In addition
to clinical manifestations that were indicative of rickettsial disease (e.g. fever, rash, and
eschar), the respective case definitions for scrub typhus required a positive result from one
or more of the following laboratory methods: rickettsial isolation; genome detection by
polymerase chain reaction (PCR); serological evidence (IgM detection (> 1:80); or a > 4-fold
increase in the antibody titer between paired serum samples) by indirect fluorescent
antibody (IFA) or indirect immunoperoxidase assay®. The weekly case number for individual
prefectures from 1999 to 2023 were obtained.

South Korea: The Korea Centers for Disease Control and Prevention (KCDC) operate
infectious disease surveillance systems to monitor national disease incidence. Since 1954,
Korea has collected data on various infectious diseases in accordance with the Infectious
Disease Control and Prevention Act*. All physicians (including those working in Oriental
medicine) who diagnose a patient with an infectious disease or conduct a postmortem
examination of an infectious disease case are obliged to report the disease to the system.
These reported data are incorporated into the database of the National Infectious Disease
Surveillance System, which has been providing web-based real-time surveillance data on
infectious diseases since 2001 (https://www.kdca.go.kr/). The reporting data for scrub
typhus in South Korea includes both suspected and confirmed cases. Suspected cases are
identified as patients showing clinical symptoms (eschar, acute onset, rash,
Lymphadenopathy and Hepatosplenomegaly) and having an epidemiological link suggestive
of scrub typhus. Confirmed cases are those where the clinical symptoms are consistent with
suspected cases and the infection should be verified through laboratory tests, such as
isolation of the pathogen, a > 4-fold rise in antibody titer, or detection of specific genes in
clinical specimens. The data using in this study were collected at the district level, updated
weekly, covering the period from 2001 to 2023.

Taiwan: An open infectious disease statistical data query system has been maintained by
Taiwan CDC since 1996 to provide information on the number of confirmed cases of scrub
typhus. Scrub typhus has been listed as a Category IV Notifiable Infectious Disease since
2007 in Taiwan based on the Communicable Disease Control Act. The publicly available
online database, Taiwan National Infectious Disease Statistics System (TNIDSS), provided the
number of confirmed cases of scrub typhus, the date of receipt, the date of onset, the date
of diagnosis by the Department of Health, and the number of local or cases imported from
overseas. Notification is defined as a suspected patient who meets clinical criteria (acute
persistent high fever, headache, back pain, chills, night sweats, lymphadenopathy, painless
eschar at the chigger bite and red skin with macules or papules after 1 week, sometimes
accompanied by pneumonia or abnormal liver function). In addition, those who test positive
in any one of the following tests are defined as positive®: (1) Clinical specimens (blood or skin
wounds (eschar)) test positive for O. tsutsugamushi by nucleic acid detection; (2) Indirect
immunofluorescene assay detects acute phase (or initial collection) serum, with a
neutralization antibody titer of IgM of more than 1:80; and IgG titer was more than 1:320;
(3) Using indirect immunofluorescence staining of matched (acute and convalescent) sera, a
>4-fold increase in the IgG titer against O. tsutsugamushi is observed. The weekly confirmed
case numbers at the district level in Taiwan from 2003 to 2023 were downloaded.
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Thailand: We retrieved secured access to detailed data spanning from 2003 to 2022 through
direct correspondence with relevant health authorities and obtained from the National
Disease Surveillance System(R506). All scrub typhus cases were diagnosed and reported
according to the diagnostic criteria issued by the Ministry of Public Health, including three
categories of suspected, clinically diagnosed, and laboratory-confirmed. The diagnostic
criteria and classification for those three categories are shown in Table S3. Cases were
reported by governmental healthcare facilities including provincial hospitals, district
hospitals and primary care units. Reporting from private healthcare facilities also occurred,
albeit to a lesser extent®. Reported weekly case number from 2003 to 2022 were obtained at
a district level and collated into a single dataset.

Table S3: Diagnostic criteria and reported classifications of scrub typhus in Thailand

Diagnosis criteria

Acute febrile illness and an eschar with at least one other symptom
including:

- Headache

Clinical criteria | - Myalgia

- Arthralgia

- Ocular or orbital pain

- Petechial rash

General findings suggestive of scrub typhus:

- Low white cell count

- Normal or low platelet count

Disease-specific:

- Detection of a four-fold rise in scrub typhus antibodies in paired
sera by IFA or antibodies detected at a cut-off titre of > 1:400 in a
single sample or,

- lIP obtained same result as IFA or,

- O. tsutsugamushi PCR or,

- culture positive from blood or,

- Weil-Felix to OX-K with a titer of > 1:320

Laboratory
criteria

Case classification

Suspected Meets all clinical criteria and has a history of entering an area of
case grassland or forest.

Fulfils clinical criteria and has general laboratory findings suggestive

Probabl . . L )
robable case | of scrub typhus or an epidemiological link to confirmed cases

Confirmed

case Fulfils clinical and any of disease-specific laboratory criteria

1.2 Data quality control

To ensure the reliability and consistency of the multi-source dataset used in our study, we
implemented several rigorous data quality control measures. First, we cross-verified data
from different sources, including published literature, public health surveillance data, and
non-public surveillance data from certain countries. For data extracted from published
literature, we cross-referenced it with national public health records to validate its accuracy.
Additionally, we excluded data diagnosed solely by outdated or less specific diagnostic
methods, such as the Weil-Felix test, or based only on clinical diagnoses without laboratory
confirmation.
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In terms of spatial and temporal data quality, we excluded records lacking specific spatial
locations or those reported at broad administrative levels (e.g. administrative level 2 or
above) or represented by large polygons exceeding 0.1x0.1 degrees to ensure that spatial
information was detailed and precise. Similarly, records without explicit time information or
with ambiguous temporal ranges were excluded. To maintain temporal consistency, records
with extended operational times were transformed into yearly occurrences. Furthermore, we
removed duplicate entries and conducted a thorough review of any outliers or inconsistent
data points. Where necessary, data were either corrected or removed based on predefined

criteria.

Lastly, we harmonized data across different sources by standardizing classifications and
formats and recording sources. For non-public surveillance data, we applied additional
scrutiny to verify authenticity and accuracy, cross-referencing these records with published
literature and consulting with local experts when necessary. These steps were crucial in
ensuring the overall integrity and accuracy of the dataset used in our analysis.

2. Explanatory covariates

We selected a suite of 28 covariates for inclusion in the model based on our systematic
review findings and the availability of high-resolution spatial and temporal data. These
covariates were chosen because they were shown to have a significant association with scrub
typhus in our systematic review and are available as long-term data with a high spatial
resolution of 5 km x 5 km and yearly or finer temporal resolution.

Table S4 Source of covariates.

Classification Covariates Resolution Source
Climate Minimum temperature 2.5 minutes, Worldclim
maximum temperature monthly
precipitation
Relative humidity 0.25 degree, ERA5
Surface pressure monthly
Wind speed
Geographic Elevation 2.5 minutes Worldclim
Normalized Difference Vegetation 0.05 degree, MODIS/Terra
Index (NDVI) monthly (MOD13A2)
Enhanced Vegetation Index (EVI)
17 Landcovar 0.05 degree, MODIS/Terra+Aqua
annually (MCD12C1)
Socioeconomic Population density 30 arc second, WorldPop,
annually Socioeconomic Data

and Applications
Center (SEDAC)

Travel time to major cities (urban
accessibility)

30 arc seconds

Weiss DJ, et.al’

Temperature and Precipitation: The WorldClim database (www.worldclim.org) consists of a
freely available set of global climate data at a 2.5-minute spatial resolution which was
compiled using weather data collected from world-wide weather stations. The monthly
minimum temperature, maximum temperature, and precipitation data from 2000 to 2020
were obtained at a 2.5-minute spatial resolution, from which we generated annual
information for each gridded cell at 0.05 degrees spatial resolution.
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Elevation We obtained elevation data from the Shuttle Radar Topography Mission (SRTM)
through the WorldClim database, originally at a 2.5-minute spatial resolution. Given that
elevation is a static variable, we considered it to have no temporal resolution and assumed it
remained constant over the nearly two-decade study period. To ensure consistency with
other datasets used in our analysis, we resampled this elevation data to a 5kmx5km spatial
resolution using the ‘rasterio’ package in Python.

Relative humidity: The ERAS Essential Climate Variables dataset, available through the
Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-
climate-change?tab=overview), provides a selection of global climate data, including surface
air relative humidity, at a 0.25° x 0.25° spatial resolution. This dataset is part of a
comprehensive project aimed at assessing climate variability from 1979 to the present, with
a focus on accuracy and temporal consistency across monthly to decadal time scales. The
surface air relative humidity, expressed as a percentage, represents the ratio of the partial
pressure of water vapor to the equilibrium vapor pressure of water at the same temperature
near the surface. The data, originally provided in GRIB format, were converted to raster TIFF
format using the ‘pygrib’ package in Python. Subsequently, the data were resampled from
the original 0.25-degree resolution to a 5 km x 5 km resolution using the ‘gdal’ package in
Python, ensuring compatibility with our analysis framework.

Surface pressure and wind speed: The surface pressure and wind speed data used in this
study were obtained from the ERAS reanalysis project, accessible through the Copernicus
Climate Data Store (https://cds.climate.copernicus.eu/cdsapptt!/dataset/reanalysis-era5-
single-levels-monthly-means?tab=form). ERA5 reanalysis combines model data with global
observations into a consistent and complete dataset by utilizing data assimilation methods,
where forecasts are periodically updated with new observations. The surface pressure data,
available at a 0.25° x 0.25° spatial resolution, represent the atmospheric pressure at the
Earth's surface, expressed in Pascals (Pa). This parameter measures the force per unit area
exerted by the atmosphere at the surface, encompassing land, sea, and inland water. Surface
pressure is often used in conjunction with temperature to calculate air density. The wind
speed data is available at a 0.25° x 0.25° spatial resolution and is expressed in meters per
second (m/s). This data provides information on the horizontal speed of air movement at a
height of 10 meters above the Earth's surface and is a critical parameter in understanding
surface wind patterns. While these data provide an averaged representation, actual wind
observations can vary due to factors like local terrain, vegetation, and buildings. The
eastward and northward components of the wind at 10 meters are also available. The
original data in NetCDF format were processed to generate annual mean raster files using
the ‘netCDF4’ package in Python, ensuring they are suitable for spatial analysis.

Landcover: The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Climate Modelling Grid (CMG) (MCD12C1) Version 6.1 data product
provides a spatially aggregated and reprojected version of the tiled MCD12Q1 Version 6
(https://doi.org/10.5067/MODIS/MCD12Q1.006) data product. We extracted global land
cover data covering 17 different land use types from 2001 to 2020. The dataset is available at
a spatial resolution of 0.05 degrees and a yearly temporal resolution and is provided in
Hierarchical Data Format 4 (HDF4). The 17 land cover types follow the International
Geosphere-Biosphere Programme (IGBP) classification scheme, and include: Water Bodies,
Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests,
Deciduous Broadleaf Forests, Mixed Forests, Closed Shrublands, Open Shrublands, Woody
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Savannas, Savannas, Grasslands, Permanent Wetlands, Croplands, Urban and Built-up Lands,
Cropland/Natural Vegetation Mosaics, Permanent Snow and Ice, and Barren lands (Table S5).
Each of these land cover types represents a distinct covariate in our analysis. We utilized
Python and the ‘GDAL library to process and convert these data into 5 km raster formats,
making them suitable for further spatial analysis in our study.

Table S5: MCD12C1 International Geosphere-Biosphere Programme (IGBP) legend and class
descriptions.

Name Value Description

Water Bodies 0 At least 60% of area is covered by permanent water
bodies.

Evergreen Needleleaf Forests| 1 Dominated by evergreen conifer trees (canopy

>2m). Tree cover >60%.

Evergreen Broadleaf Forests | 2 Dominated by evergreen broadleaf and palmate
trees (canopy >2m). Tree cover >60%.

Deciduous Needleleaf Forests| 3 Dominated by deciduous needleleaf (larch) trees
(canopy >2m). Tree cover >60%.

Deciduous Broadleaf Forests | 4 Dominated by deciduous broadleaf trees (canopy
>2m). Tree cover >60%.

Mixed Forests 5 Dominated by neither deciduous nor evergreen
(40-60% of each) tree type (canopy >2m). Tree
cover >60%.

Closed Shrublands 6 Dominated by woody perennials (1-2m height)
>60% cover.

Open Shrublands 7 Dominated by woody perennials (1-2m height) 10-
60% cover.

Woody Savannas 8 Tree cover 30-60% (canopy >2m).

Savannas 9 Tree cover 10-30% (canopy >2m).

Grasslands 10 Dominated by herbaceous annuals (<2m).

Permanent Wetlands 11 Permanently inundated lands with 30-60% water
cover and >10% vegetated cover.

Croplands 12 At least 60% of area is cultivated cropland.

Urban and Built-up Lands 13 At least 30% impervious surface area including
building materials, asphalt, and vehicles.

Cropland/Natural Vegetation | 14 Mosaics of small-scale cultivation 40-60% with

Mo- saics natural tree, shrub, or herbaceous vegetation.

Permanent Snow and Ice 15 At least 60% of area is covered by snow and ice for
at least 10 months of the year.

Barren 16 At least 60% of area is non-vegetated barren (sand,
rock, soil) areas with less than 10% vegetation.

Unclassified 255 Has not received a map label because of missing
inputs.

NDVI and EVI: We obtained the monthly vegetation indices grid data, including Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), from the Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from February 2000
to December 2019. However, due to the absence of January 2000 data, only the data from
2001 to 2019 were processed and used in our analysis. These data are available as a gridded
product at a spatial resolution of 0.05 degrees, in the sinusoidal projection. The NDVI serves
as a continuity index with the existing National Oceanic and Atmospheric Administration-
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Advanced Very High-Resolution Radiometer (NOAA-AVHRR) derived NDVI, providing
consistency for long-term time series applications. The EVI, on the other hand, is designed to
minimize canopy background variations and maintain sensitivity in regions with dense
vegetation. EVI is particularly effective in high biomass areas and utilizes the blue band to
correct for residual atmospheric contamination from smoke and sub-pixel thin clouds. Both
NDVI and EVI are computed from surface reflectance that have been corrected for molecular
scattering, ozone absorption, and aerosols. The original data were processed using Python
and GDAL to generate raster formats suitable for further spatial analysis.

Population density We utilized population density data from the Gridded Population of the
World, Version 4 (GPWv4). This dataset provides estimates of human population density
(number of persons per square kilometre) for the years 2000, 2005, 2010, 2015, and 2020.
The estimates are based on counts consistent with national censuses and population
registers, adjusted to align with the 2015 Revision of the United Nations World Population
Prospects (UN WPP) country totals. A proportional allocation gridding algorithm was used to
distribute these population counts across 30 arc-second grid cells (~1 km at the equator),
utilizing approximately 13.5 million national and sub-national administrative units.
Additionally, we obtained population density data from WorldPop, adjusted to match
individual country totals from the official United Nations population estimates. This data was
derived from the corresponding Unconstrained individual countries 2000-2020 population
count datasets, with population counts divided by pixel surface area to calculate density. The
data was provided at a 30 arc-second resolution and was produced using the unconstrained
top-down modelling method. For our analysis, we downloaded the 30 arc-second density
raster data and resampled it to a 5kmx5km spatial resolution using the ‘rasterio’ package in
Python, enabling integration with other spatial datasets.

Travel time to major cities (urban accessibility) We utilized a global map of urban
accessibility, which provides land-based travel time to the nearest densely populated area for
all regions between 85 degrees north and 60 degrees south, representing a nominal year of
2015 with a resolution of 30 arc seconds’. Densely populated areas are defined as
contiguous regions with 1,500 or more inhabitants per square kilometre or areas with a
majority of built-up land cover types coincident with a population center of at least 50,000
inhabitants. This map was produced through a collaboration between the University of
Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC),
and the University of Twente, Netherlands, and was created using a combination of global
datasets, including roads, railways, rivers, topography, and landcover types. Each pixel in the
resulting accessibility map represents the modelled shortest travel time to a city. We
resampled this map to a 5kmx5km spatial resolution using the ‘rasterio’ package in Python to
ensure compatibility with other spatial datasets in our study.

3. Model
3.1 General overview

Model selection and parameter tuning are critical steps in developing predictive models,
particularly when dealing with complex datasets and diverse modelling approaches. Proper
model selection ensures that the chosen model accurately captures the underlying patterns
in the data, while parameter tuning optimizes the model's performance by fine-tuning its
internal settings. In our study, we employed a variety of methods to rigorously evaluate and
select the best models for our analysis. The evaluation process included the use of cross-
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validation techniques, performance metrics such as Akaike Information Criterion AIC, Area
Under the Curve (AUC), accuracy, and standard deviation, among others.

3.2 Generalized Additive Model (GAM)

The Generalized Additive Model (GAM) is a flexible statistical modeling technique that
extends the traditional linear model by allowing non-linear relationships between the
dependent and independent variables. Unlike linear models, which assume a straight-line
relationship, GAMs enable each predictor to have its own smooth, non-linear function. This
is particularly advantageous when dealing with complex data where relationships between
variables are not strictly linear, allowing the model to capture more intricate patterns and
dependencies.

GAMs are built by summing smooth functions of the predictors, which are estimated using
techniques like splines or smoothing functions. The flexibility of GAMs comes from these
smooth functions, which can adapt to the shape of the data, providing a more accurate fit.

We conducted a concurvity analysis to identify covariates with high concurvity—a condition
akin to multicollinearity in linear models, which can obscure the true relationships between
variables and lead to misleading results. Covariates with high concurvity were removed from
the model to enhance clarity and interpretability (Figure S3). We identified several pairs of
covariates exhibiting high concurvity, which is analogous to multicollinearity in linear models
and can distort the interpretation of model coefficients. To address this, we systematically
removed the covariates with high concurvity one by one from the model. After each
removal, we compared the Akaike Information Criterion (AIC) to assess the impact on model
performance. The final model excluded EVI, min temperature, savannas, urban-and-built-up
and elevation and retained other covariates that contributed meaningfully to the predictive
accuracy without introducing significant concurvity issues. To further refine the model and
prevent overfitting, we applied a backward stepwise selection procedure. This process
systematically removed less informative covariates, retaining only those that contributed the
most to the model’s predictive power.

Table S6: Concurvity Analysis and AIC Results for GAM.

AIC After

Terml Term2 Concurvity Removal term1
s(Barren_or_Sparsely_Vegeta

ted) s(Savannas) 0.842696 38998.82
s(pop) s(Urban_and_Builtup) 0.817263 38732.59

s(Barren_or_Sparsely Vegeta

s(Savannas) ted) 0.842696 38720.48
s(evi) s(ndvi) 0.956443 38828.73
s(ndvi) s(evi) 0.956443 38850.57
s(Urban_and_Builtup) s(pop) 0.817263 38730.09
s(tmax) s(tmin) 0.951901 41302.29
s(tmin) s(tmax) 0.951901 39713.45
s(elevation) s(sp) 0.98785 39022.69
s(sp) s(elevation) 0.98785 39093.96

3.3 Boosted Regression Trees (BRT) and Random Forest (RF) Model Selection



335 Boosted Regression Trees (BRT) is an advanced machine learning technique that combines
336 the strengths of two powerful algorithms: boosting and decision trees. Boosting is an

337 ensemble method that iteratively builds a series of decision trees, each one correcting the
338 errors of its predecessor, to improve overall model accuracy. Decision trees, on their own,
339  aresimple and interpretable models, but when combined through boosting, they become a
340  highly flexible and powerful predictive tool capable of capturing complex patterns in the
341  data.

342 Random Forest (RF), another powerful machine learning algorithm, operates by constructing
343  a multitude of decision trees during training. Unlike BRT, which builds trees sequentially, RF
344 builds them independently and aggregates their outputs to make a final prediction. This

345  ensemble approach helps reduce overfitting and improves the model’s generalization to new
346 data. RF is particularly valued for its robustness, accuracy, and ability to handle large datasets
347  with numerous features.

348 In predictive modelling, particularly in the context of species distribution or disease

349 occurrence, the presence-absence data balance is crucial. When the dataset is imbalanced,
350  with significantly more absence cases than presence cases (or vice versa), it can bias the
351 model, leading to poor predictive performance. In such scenarios, the model might simply
352 predict the majority class (e.g. absence) most of the time, thereby failing to accurately

353 identify true presence cases. To mitigate the potential bias from imbalanced data, we

354  adopted a balanced dataset approach, ensuring an equal representation of presence and
355  absence data. This was achieved by randomly selecting an equal number of absences from
356  the entire absence dataset and combining them with the presence data to form the final
357  dataset for modelling.

358  To optimize the performance of the BRT model, we considered two approaches for tuning
359 parameters. The first approach involved using the caret package, which systematically

360  explores all possible combinations of parameters based on the provided settings. This

361 method requires extensive experience with the BRT model, as it offers a comprehensive

362  exploration of the parameter space. However, for this analysis, we utilized the second

363  approach, which involves the gbm.step function. This function is particularly effective in

364  selecting the optimal number of trees for the model by focusing on the tree number that
365  delivers the best performance, as indicated by the lowest cross-validation (CV) error. The
366  gbm.step function allows for fine-tuning under pre-set values for other key parameters, such
367  astree complexity, learning rate, and bag fraction. The gbm.step function was employed to
368  determine the most suitable number of trees. During this process, the other parameters of
369  the algorithm were held at their default values: Tree Complexity: 4, Learning Rate: 0.005, Bag
370 Fraction: 0.75 or 0.5 and Step Size: 500. Based on the result (Figure S4), we set 10000 as the
371  trees’ number. For RF, similar attention was given to balancing the presence-absence data
372  and carefully tuning the hyperparameters. The default settings for RF were utilized with

373  considerations for the number of trees and the maximum depth of each tree, optimizing the
374  model’s ability to generalize well to unseen data.

375 3.4 Relative importance of covariates

376 For the three sub-models (GAM, BRT, RF) and two stacking methods, the relative importance
377 of covariates was assessed as follows: For GAM, the importance was determined by

378 sequentially removing each covariate and comparing the change in model deviance. In

379  contrast, both BRT and RF utilized their inherent importance functions to directly calculate



380
381

382
383
384

385
386
387
388
389
390
391
392
393
394
395

396

397
398

399
400
401
402
403
404

405
406

407

the significance of each covariate. These analyses resulted in five distinct figures
representing the relative importance of covariates across the models (Figure S5).

4.1 Result
4.1 Model performance

Table S7 summarizes the performance of the models assessed using both training and test
datasets. The Random Forest (RF) model demonstrated the highest AUC in both the training
(0.9999) and test datasets (0.9883), indicating its strong predictive performance.
Additionally, two stacking ensemble models were evaluated: the RWM (Relative Weighted
Mean) and CWM (Constrained Weighted Mean). The CWM model gave nearly perfect
weighting to the RF sub-model, reflecting the RF model's dominance in prediction accuracy,
with AUC values of 0.9856 and 0.9858 for training and test datasets, respectively. The RWM
model showed more balanced weights across the sub-models, with AUC values slightly lower
than those of the CWM model but still highly competitive. But based on the AUC value in the
testing dataset, the RF model and its prediction were chosen to be our final model and
result.

Table S7: Performance of models.

Model AUC training-5 fold AUC test
GAM 0.9438 0.9426
BRT 0.9724 0.9718
RF 0.9999 0.9883
Stack ensemble model-RWM 0.9772 0.9775
Stack ensemble model-CWM 0.9856 0.9858
Weights of each sub-model in two stacking methods

GAM BRT RF
CWm 0.000001 0.000001 | 0.999998
RWM 0.2837838 0.3738739 | 0.3738739

4.2 Model robustness

As shown in Table S8, the robustness of the final RF model was extensively tested. The model
maintained a high AUC across various scenarios, including different occurrence-to-absence
ratios (e.g., 1:2, 1:5) and the use of different subsets of location data. The AUC remained
above 0.98 in most scenarios, with consistently low prediction errors, as measured by the
out-of-bag Brier score, consistently low. These results confirm the stability and reliability of
the RF model under different conditions, further supporting its use for final predictions.

Table S8: Robustness test.

Model AUC test Pr§dicti0n. Error (out of bag
Brier S.)

RF (900 trees, null max.depth, 0.9883 0.040666625

10 min node size, 5 mtry)

RF (occurrence:absence=1:2) 0.9892 0.03395345

RF (occurrence:absence=1:5) 0.9913 0.02112522

RF use location (37929 records) | 0.9553 0.07601925

RF (100 bootstraps) Standard error: 0-0.02
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4.3 Area and population counting

Table S9: Predicted high environmental suitability areas and populations living in the

environmental suitable areas of 215 countries.

Percentage of total Local
S opulation human
Country Area (km?) Populatlf)n in millions I()ullljcer‘tainty) scrub
(uncertainty)
typhus
occurrence

India 3231500 1166.32 (1160.26-1169.6) 98.7% (98.2%-98.9%) Y
China 1330900 349.26 (301.13-427.75) 28.7% (24.7%-35.1%) Y
Indonesia 1843375 223.89 (222.02-224.29) 97.9% (97.0%-98.0%) Y
Brazil 8466600 175.88 (151.74-177.57) 96.8% (83.6%-97.8%) N
Nigeria 924375 174.15 (173.68-174.15) 99.1% (98.8%-99.1%) N
Pakistan 745975 166.44 (148.3-169.2) 93.8% (83.6%-95.4%) Y
United States 1659100 150.06 (82.07-210.98) 53.5% (29.2%-75.2%) N
Bangladesh 147275 139.46 (139.19-139.46) 99.1% (98.9%-99.1%) Y
Mexico 1540975 89.77 (63.29-104.9) 79.5% (56.1%-92.9%) N
Ethiopia 1091200 84.51 (64.29-90.98) 88.2% (67.1%-94.9%) N
Egypt 527375 83.61 (53.82-86.54) 96.3% (62.0%-99.7%) N
Vietnam 338050 80.33 (79.34-80.38) 99.2% (98.0%-99.2%) Y
Zaire 2254100 76.58 (68.53-76.8) 99.6% (89.1%-99.9%) N
Philippines 282150 75.93 (75.75-75.93) 94.1% (93.9%-94.1%) Y
Thailand 531300 57.47 (57.29-57.47) 98.9% (98.6%-98.9%) Y
Tanzania 931150 51.77 (46.08-52.25) 97.7% (87.0%-98.6%) N
Sudan 2558600 51.2 (47.94-51.23) 99.9% (93.5%-99.9%) N
Myanmar Y
(Burma) 705525 46.14 (45.66-46.15) 97.5% (96.5%-97.6%)

Kenya 579550 42.19 (34.29-42.68) 97.8% (79.5%-98.9%) Y
South Korea 109625 40.87 (38.78-41.2) 96.4% (91.5%-97.2%) Y
Uganda 242850 39.57 (36.19-39.87) 99.0% (90.6%-99.8%) N
Colombia 1114000 33.92 (30.55-37.43) 81.3% (73.2%-89.7%) N
Iraq 409975 32.9(21.25-33.83) 93.3% (60.3%-95.9%) N
South Africa 582850 30.94 (13.4-46.46) 62.9% (27.2%-94.5%) N
Saudi Arabia 2014900 28.11 (21.4-28.75) 96.3% (73.3%-98.5%) N
Venezuela 915975 27.96 (27.23-28.08) 98.0% (95.5%-98.5%) N
Japan 137325 27.55 (10.14-62.7) 26.5% (9.8%-60.4%) Y
Nepal 112000 26.77 (25.36-26.94) 98.3% (93.1%-98.9%) Y
Malaysia 325100 26.46 (26.45-26.46) 96.8% (96.8%-96.8%) Y
Mozambique 823525 26.42 (23.2-26.49) 97.1% (85.3%-97.4%) N
Ghana 241025 25.32 (24.85-25.32) 98.4% (96.6%-98.4%) N
France 261050 24.64 (8.11-41.38) 45.1% (14.8%-75.7%) N
Yemen 431625 23.39 (15.75-24.68) 93.0% (62.6%-98.1%) N
Angola 1263150 22.51 (18.61-22.62) 98.7% (81.6%-99.2%) N
Madagascar 596125 21.8 (16.59-22.9) 90.8% (69.2%-95.4%) N
Cameroon 469725 21.2 (20.64-21.22) 98.6% (96.0%-98.6%) N
Niger 1246650 21.1(20.65-21.1) 100.0% (97.9%-100.0%) N
Germany 80850 20.9 (10.25-42.61) 30.4% (14.9%-62.0%) N
Ivory Coast 317575 20.58 (20.44-20.58) 98.8% (98.1%-98.8%) N
Burkina Faso 280800 18.54 (18.54-18.54) | 100.0% (100.0%-100.0%) N
Mali 1320750 17.67 (17.6-17.67) 100.0% (99.6%-100.0%) N
Malawi 118225 17.24 (14.67-17.3) 99.6% (84.7%-99.9%) N
Sri Lanka 65075 16.49 (16.42-16.49) 95.2% (94.8%-95.2%) Y
Zambia 731625 15.62 (8.95-15.91) 98.1% (56.2%-100.0%) N
Guatemala 111950 15.1(13.91-15.41) 97.0% (89.4%-99.0%) N
Argentina 697825 14.47 (4.68-28.25) 37.2% (12.0%-72.6%) N
Zimbabwe 401525 14.36 (8.54-14.73) 96.8% (57.5%-99.3%) N
Cambodia 186675 14.19 (14.09-14.19) 99.7% (99.0%-99.7%) Y




Chad 1266500 14.07 (13.93-14.08) 99.9% (98.9%-100.0%) N
Iran 567575 13.83 (9.83-25.49) 19.4% (13.8%-35.8%) N
Senegal 202225 13.62 (10.66-13.62) 95.6% (74.8%-95.6%) N
Morocco 165050 13.26 (3.04-22.09) 44.8% (10.3%-74.7%) N
Syria 113100 12.9 (4.56-16.36) 72.7% (25.7%-92.2%) N
Guinea 249350 11.9 (10.79-11.9) 98.7% (89.5%-98.7%) N
Algeria 2074900 10.62 (2.68-20.1) 30.2% (7.6%-57.2%) N
Ecuador 222100 10.55 (8.91-12.74) 72.0% (60.8%-86.9%) N
Benin 118225 10.19 (9.57-10.19) 93.3% (87.6%-93.3%) N
United N
Kingdom 96075 10.13 (0.77-34.41) 18.1% (1.4%-61.3%)

Burundi 25150 10.13 (6.7-10.84) 92.7% (61.3%-99.3%) N
Rwanda 20900 10.1 (7.66-10.9) 88.9% (67.5%-95.9%) N
Somalia 637950 10.07 (9.47-10.09) 97.5% (91.7%-97.8%) N
North Korea 36700 10.05 (5.32-13.94) 46.7% (24.7%-64.7%) N
Peru 885675 9.89 (7.19-16.12) 35.3% (25.6%-57.5%) Y
Italy 38325 9.88 (3.26-23) 20.4% (6.7%-47.5%) N
Turkey 76700 9.63 (3.31-24.53) 13.8% (4.7%-35.1%) N
Haiti 27075 9.25 (9.16-9.26) 97.9% (96.9%-98.0%) N
Cuba 111725 9.1(9.07-9.1) 97.6% (97.3%-97.6%) N
Dominican N
Republic 48825 8.43 (8.34-8.45) 87.4% (86.6%-87.6%)

Belgium 31800 8.12 (3.05-9.89) 79.5% (29.9%-96.8%) N
United Arab N
Emirates 76650 7.98 (6.23-7.98) 99.0% (77.4%-99.0%)

Honduras 115750 7.36 (7.12-7.36) 99.0% (95.8%-99.0%) Y
Papua New Y
Guinea 452350 6.86 (6.3-6.91) 97.1% (89.2%-97.9%)

Australia 6206675 6.62 (3.08-14.92) 30.9% (14.4%-69.6%) Y
Laos 244075 6.34 (6.28-6.34) 100.0% (99.1%-100.0%) Y
Spain 39200 6.13 (1.37-16.36) 15.9% (3.6%-42.5%) N
Togo 58125 6.09 (6.08-6.09) 99.3% (99.1%-99.3%) N
Paraguay 435725 5.89 (5.02-5.92) 99.6% (84.8%-100.0%) N
Israel 16600 5.87 (4.26-6.24) 87.5% (63.5%-93.0%) N
Nicaragua 130900 5.51 (5.4-5.51) 99.4% (97.4%-99.4%) N
Bolivia 856100 5.45 (4.59-6.35) 54.1% (45.6%-63.1%) N
Tunisia 115300 5.37 (2.01-8.31) 56.1% (21.0%-86.9%) N
Sierra Leone 72725 5.23 (5.13-5.23) 98.9% (97.0%-98.9%) N
El Salvador 20700 5.08 (5.08-5.08) 99.0% (99.0%-99.0%) N
Netherlands 20250 5.06 (0.73-12.52) 34.5% (5.0%-85.4%) N
Eritrea 123725 4.91(3.67-5.1) 95.9% (71.8%-99.7%) N
Central N
African

Republic 627025 4.7 (4.43-4.7) 100.0% (94.2%-100.0%)

Chile 99025 4.68 (1.8-8.53) 30.5% (11.8%-55.6%) Y
Congo 346225 4.62 (4.59-4.62) 99.1% (98.5%-99.1%) N
Jordan 16025 4.49 (0.94-6.1) 61.0% (12.7%-82.8%) N
Costa Rica 50825 4.14 (4.04-4.14) 98.8% (96.3%-98.9%) N
Liberia 96400 4.06 (4.06-4.06) 95.9% (95.8%-95.9%) N
Oman 327700 4.05 (3.58-4.09) 97.6% (86.2%-98.6%) N
Mauritania 1112900 3.81(2.29-3.81) 99.7% (60.0%-99.7%) N
Singapore 425 3.68 (3.68-3.68) 78.7% (78.7%-78.7%) N
Puerto Rico 8775 3.08 (3.08-3.08) 96.1% (95.8%-96.1%) N
Libya 924800 3.08 (0.95-4.88) 53.9% (16.7%-85.5%) N
Kuwait 18975 2.97 (2.39-2.97) 99.8% (80.6%-99.8%) N
Panama 71525 2.9 (2.89-2.9) 92.4% (92.2%-92.4%) N
Lebanon 4800 2.71(1.97-3.12) 71.1% (51.6%-81.9%) N
Afghanistan 44400 2.54 (1.12-6.33) 8.3% (3.6%-20.6%) N




Canada 30600 2.53(1.03-3.87) 8.1% (3.3%-12.3%) N
New Zealand 144025 2.41(0.71-3.41) 61.2% (18.1%-86.8%) N
Austria 15675 2.39 (1.22-4.35) 33.7% (17.1%-61.2%) N
Jamaica 11050 2.31(2.3-2.31) 93.2% (92.9%-93.2%) N
Botswana 624325 2.1(1.85-2.11) 99.6% (87.5%-100.0%) N
Namibia 607375 1.97 (1.34-2.19) 87.5% (59.5%-96.9%) N
West Bank 4325 1.92 (0.67-2.61) 58.6% (20.4%-79.6%) N
Qatar 11975 1.86 (0.4-1.86) 99.1% (21.4%-99.1%) N
Croatia 28575 1.78 (0.64-2.61) 52.6% (19.0%-77.0%) N
Hungary 27925 1.77 (0.55-5.11) 21.3% (6.7%-61.6%) N
Serbia 16425 1.75(0.79-3.42) 23.8% (10.8%-46.6%) N
Gambia, The 11075 1.71 (1.36-1.71) 99.0% (78.7%-99.0%) N
Poland 6925 1.6 (0.44-10.5) 4.9% (1.3%-31.8%) N
Gabon 261900 1.53 (1.52-1.53) 99.7% (99.3%-99.7%) N
Guinea-Bissau 32325 1.5(1.12-1.5) 88.1% (65.8%-88.1%) N
Gaza Strip 500 1.35(1.13-1.35) 100.0% (83.6%-100.0%) N
Slovakia 12000 1.33 (0.69-3.01) 28.0% (14.4%-63.5%) N
Ireland 54875 1.18 (0.04-3.04) 29.2% (0.9%-75.5%) N
Swaziland 18750 1.16 (0.91-1.18) 97.8% (76.8%-99.3%) N
Trinidad and N
Tobago 4600 1.02 (1.02-1.02) 97.4% (97.4%-97.4%)

Mauritius 1900 0.96 (0.95-0.96) 95.1% (94.2%-95.1%) N
Slovenia 7725 0.85 (0.41-1.39) 48.3% (23.6%-79.3%) N
Cyprus 7950 0.81 (0.47-0.91) 83.9% (48.6%-93.6%) N
Equatorial N
Guinea 26550 0.79 (0.78-0.79) 97.7% (97.1%-97.7%)

Djibouti 21850 0.78 (0.67-0.78) 99.9% (85.3%-99.9%) Y
Portugal 6425 0.68 (0.2-3.73) 8.4% (2.4%-45.8%) N
Bhutan 20275 0.61 (0.59-0.73) 68.3% (66.1%-82.0%) Y
Romania 17425 0.6 (0.19-5.44) 3.8% (1.2%-34.5%) N
Ukraine 6475 0.59 (0.26-5.31) 1.6% (0.7%-14.2%) N
Uruguay 8975 0.55 (0.16-2.21) 17.7% (5.3%-71.5%) N
Western N
Sahara 257825 0.55 (0.28-0.55) 93.0% (47.2%-93.0%)

Guyana 212500 0.55 (0.54-0.55) 96.5% (95.9%-96.5%) N
Comoros 1425 0.54 (0.51-0.54) 82.6% (78.7%-82.6%) N
Czech N
Republic 4500 0.54 (0.13-3.47) 5.9% (1.5%-38.2%)

Fiji 16225 0.53 (0.53-0.53) 79.5% (79.3%-79.5%) N
Norway 12500 0.52 (0.18-1.23) 12.2% (4.2%-28.9%) N
Reunion 1875 0.52 (0.44-0.56) 77.3% (65.9%-82.6%) N
Greece 6775 0.49 (0.14-2.38) 5.5% (1.5%-26.9%) N
Suriname 146125 0.48 (0.48-0.48) 99.8% (99.7%-99.8%) N
Bahrain 525 0.46 (0.23-0.46) 83.8% (41.6%-83.8%) N
Brunei 5850 0.37 (0.37-0.37) 97.1% (97.1%-97.1%) N
Luxembourg 1575 0.37 (0.13-0.51) 70.1% (25.2%-96.4%) N
Russia 6125 0.35(0.13-4.59) 0.3% (0.1%-3.8%) Y
Belize 22325 0.33 (0.33-0.33) 97.5% (96.7%-97.5%) N
Cape Verde 3125 0.29 (0.24-0.31) 85.3% (71.1%-90.6%) N
Guadeloupe 1525 0.28 (0.28-0.28) 90.3% (90.3%-90.3%) N
Malta 225 0.27 (0.24-0.27) 82.1% (73.8%-82.1%) N
Macau 25 0.25 (0.25-0.25) 100.0% (100.0%-100.0%) N
French Guiana 84100 0.24 (0.24-0.24) 99.0% (99.0%-99.0%) N
Martinique 975 0.24 (0.24-0.24) 86.8% (86.8%-86.8%) N
Solomon Y
Islands 22075 0.24 (0.24-0.24) 77.7% (77.6%-77.7%)

Moldova 700 0.23 (0.14-1.21) 6.8% (4.1%-35.4%) N
Azerbaijan 2050 0.19 (0.06-1.51) 2.1% (0.6%-17.1%) N




Bahamas, The 9375 0.18 (0.17-0.18) 76.2% (72.1%-76.8%) N
French N
Polynesia 1500 0.16 (0.14-0.16) 80.1% (72.8%-80.1%)

Western N
Samoa 2400 0.15 (0.15-0.15) 93.5% (92.9%-93.5%)

Bosnia and N
Herzegovina 2425 0.15 (0.03-0.9) 4.7% (0.8%-28.0%)

New N
Caledonia 18225 0.15 (0.14-0.15) 79.9% (73.3%-80.2%)

Barbados 375 0.14 (0.14-0.14) 94.2% (94.2%-94.2%) N
Sao Tome and Y
Principe 850 0.13 (0.13-0.13) 92.6% (92.6%-92.6%)

Guam 475 0.12 (0.12-0.12) 80.2% (80.2%-80.2%) N
Georgia 700 0.12 (0.02-0.32) 3.4% (0.7%-9.5%) N
Mayotte 275 0.12(0.12-0.12) 80.1% (80.1%-80.1%) N
Vanuatu 10000 0.11(0.11-0.11) 78.1% (77.6%-78.1%) Y
Bulgaria 975 0.1(0.02-1.4) 1.7% (0.3%-23.8%) N
Antigua and N
Barbuda 375 0.06 (0.06-0.06) 97.3% (96.9%-97.3%)

Dominica 750 0.06 (0.06-0.06) 95.4% (95.4%-95.4%) N
Switzerland 175 0.05 (0.01-2.38) 0.7% (0.2%-32.0%) N
Grenada 275 0.05 (0.05-0.05) 87.3% (87.3%-87.3%) N
St. Vincent N
and the

Grenadines 300 0.05 (0.05-0.05) 98.2% (95.0%-98.2%)

Seychelles 125 0.05 (0.05-0.05) 69.7% (69.7%-69.7%) N
Sweden 175 0.04 (0-1.78) 0.5% (0.0%-21.8%) N
Tonga 275 0.04 (0.04-0.04) 69.9% (68.9%-69.9%) N
Man, Isle of 225 0.03 (0-0.05) 33.4% (0.0%-59.0%) N
Federated N
States of

Micronesia 350 0.02 (0.02-0.02) 71.6% (71.6%-71.6%)

Jersey 50 0.02 (0.01-0.04) 26.5% (6.6%-49.1%) N
St. Lucia 75 0.02 (0.02-0.02) 13.4% (13.4%-13.4%) N
Tajikistan 150 0.02 (0-1.3) 0.2% (0.0%-16.0%) N
St. Kitts and N
Nevis 150 0.02 (0.01-0.02) 62.8% (52.3%-62.8%)

American N
Samoa 50 0.02 (0.02-0.02) 45.9% (45.9%-45.9%)

Virgin Islands 175 0.02 (0.02-0.02) 73.6% (73.6%-73.6%) N
Northern N
Mariana

Islands 125 0.02 (0.02-0.02) 81.3% (81.3%-81.3%)

Albania 125 0.01 (0-0.42) 0.3% (0.0%-18.7%) N
British Virgin N
Islands 25 0.01 (0.01-0.01) 40.5% (40.5%-40.5%)

Uzbekistan 50 0 (0-0.89) 0.0% (0.0%-3.3%) N
Pacific Islands Y
(Palau) 250 0 (0-0) 71.0% (71.0%-71.0%)

Denmark 50 0(0-1.14) 0.1% (0.0%-25.7%) N
Montserrat 100 0(0-0) | 100.0% (100.0%-100.0%) N
Cayman N
Islands 100 0 (0-0) 3.9% (3.9%-3.9%)

Faroe Islands 50 0(0-0.02) 2.3% (0.0%-56.7%) N
Turks and N
Caicos Islands 100 0 (0-0) 43.6% (43.6%-43.6%)

Armenia 0 0(0-0.01) 0.0% (0.0%-0.0%) N
Andorra 0 0 (0-0) 0.0% (0.0%-15.2%) N
Byelarus 0 0 (0-0.58) 0.0% (0.0%-7.0%) N
Estonia 0 0 (0-0.36) 0.0% (0.0%-32.0%) N




Finland 0 0(0-0.31) 0.0% (0.0%-6.8%) N
Guernsey 0 0 (0-0) 0.0% (0.0%-66.3%) N
Greenland 0 0(0-0.02) 0.0% (0.0%-0.0%) N
Iceland 0 0 (0-0) 0.0% (0.0%-1.5%) N
Jan Mayen 0 0 (0-0) 0.0% (0.0%-6.7%) N
Kyrgyzstan 0 0(0-0.07) 0.0% (0.0%-0.2%) N
Kazakhstan 0 0(0-0.01) 0.0% (0.0%-0.5%) N
Latvia 0 0(0-0.35) 0.0% (0.0%-22.4%) N
Lithuania 0 0(0-0.99) 0.0% (0.0%-19.3%) N
Liechtenstein 0 0 (0-0) 0.0% (0.0%-0.0%) N
Lesotho 0 0 (0-0.46) 0.0% (0.0%-50.5%) N
Mongolia 0 0 (0-0.05) 0.0% (0.0%-0.0%) N
Macedonia 0 0(0-0) 0.0% (0.0%-2.8%) N
Monaco 0 0 (0-0) 0.0% (0.0%-0.0%) N
Montenegro 0 0 (0-0.05) 0.0% (0.0%-8.7%) N
St. Pierre and N
Miquelon 0 0 (0-0.01) 0.0% (0.0%-46.6%)

San Marino 0 0 (0-0) 0.0% (0.0%-38.5%) N
Svalbard 0 0 (0-0) 0.0% (0.0%-0.1%) N
Turkmenistan 0 0 (0-0.38) 0.0% (0.0%-7.4%) N

411

412 Table S10: Countries/regions where population weighted environmental suitability > 0.5 but no

413 confirmed cases in humans have been reported.

Local human scrub Environmental suitability

GMI code Country typhus occurrence (population weighted)

ATG Antigua and Barbuda N 0.8431415
AGO Angola N 0.7060163
BHR Bahrain N 0.5935044
BRB Barbados N 0.8235087
BWA Botswana N 0.6097312
BEL Belgium N 0.5446713
BHS Bahamas, The N 0.6562729
BLZ Belize N 0.8506504
BOL Bolivia N 0.5261988
BEN Benin N 0.8186688
BRA Brazil N 0.7707489
BRN Brunei N 0.9156949
BDI Burundi N 0.7044257
TCD Chad N 0.8026985
COG Congo N 0.8631865
ZAR Zaire N 0.8219726
CMR Cameroon N 0.8615318
COM Comoros N 0.7199026
COL Colombia N 0.7266011
MNP Northern Mariana Islands N 0.7243235
CRI Costa Rica N 0.8584681
CAF Central African Republic N 0.8071204
CUB Cuba N 0.8908176
CPV Cape Verde N 0.6142804
CYP Cyprus N 0.5468579




DMA Dominica N 0.8221209
DOM Dominican Republic N 0.7919364
ECU Ecuador N 0.6969346
EGY Egypt N 0.6297006
GNQ Equatorial Guinea N 0.9001058
ERI Eritrea N 0.6770846
SLV El Salvador N 0.9009198
ETH Ethiopia N 0.6561315
GUF French Guiana N 0.9039915
FJI Fiji N 0.7252437
FSM Federated States of Micronesia N 0.6155528
PYF French Polynesia N 0.5984889
GMB Gambia, The N 0.8105883
GAB Gabon N 0.9007281
GHA Ghana N 0.8620615
GRD Grenada N 0.7510616
GLP Guadeloupe N 0.8174323
GUM Guam N 0.7322897
GTM Guatemala N 0.8138361
GIN Guinea N 0.8109486
GUY Guyana N 0.8653698
ISR Gaza Strip N 0.6982115
HTI Haiti N 0.8759718
ISR Israel N 0.625336
ClvV Ilvory Coast N 0.8743957
IRQ Iraq N 0.626605
JAM Jamaica N 0.8452687
JOR Jordan N 0.5143677
KWT Kuwait N 0.6646774
LBN Lebanon N 0.5795968
LBR Liberia N 0.8993461
LUX Luxembourg N 0.5436459
LBY Libya N 0.5136242
MDG Madagascar N 0.6965172
MTQ Martinique N 0.7875484
MAC Macau N 0.9347954
MYT Mayotte N 0.6908741
MSR Montserrat N 0.8481452
MWI Malawi N 0.7359778
MLI Mali N 0.8172341
MUS Mauritius N 0.8245977
MRT Mauritania N 0.6924398
MLT Malta N 0.5239161
OMN Oman N 0.6924585
MEX Mexico N 0.6585243
MOz Mozambique N 0.752112




414

415
416

NCL New Caledonia N 0.6026257
NER Niger N 0.7735726
NGA Nigeria N 0.888163
SUR Suriname N 0.9087343
NIC Nicaragua N 0.862294
PRY Paraguay N 0.7404584
PAN Panama N 0.8557939
GNB Guinea-Bissau N 0.6897403
QAT Qatar N 0.6716459
REU Reunion N 0.6210277
PRI Puerto Rico N 0.887071
RWA Rwanda N 0.6676883
SAU Saudi Arabia N 0.674943
KNA St. Kitts and Nevis N 0.533497
SYC Seychelles N 0.617013
ZAF South Africa N 0.5488808
SEN Senegal N 0.6978806
SVN Slovenia N 0.5009149
SLE Sierra Leone N 0.9076485
SGP Singapore N 0.7234231
SOM Somalia N 0.7661952
SDN Sudan N 0.7667642
SYR Syria N 0.5253849
ARE United Arab Emirates N 0.6762679
TTO Trinidad and Tobago N 0.8951436
TON Tonga N 0.6164699
TGO Togo N 0.8758947
TUN Tunisia N 0.5083447
TZA Tanzania, United Republic of N 0.7863342
UGA Uganda N 0.7717489
USA United States N 0.5070344
BFA Burkina Faso N 0.8282123
VCT St. Vincent and the Grenadines N 0.8325873
VEN Venezuela N 0.8323584
VIR Virgin Islands N 0.6420539
NAM Namibia N 0.5602835
ISR West Bank N 0.5082296
ESH Western Sahara N 0.543527
WSM Western Samoa N 0.8119532
SWz Swaziland N 0.695571
YEM Yemen N 0.6732206
ZMB Zambia N 0.6338152
ZWE Zimbabwe N 0.6090861

Table S11: Predicted high environmental suitability areas and populations living in the
environmental suitable areas in 2001, 2010 and 2020.
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418
419
420
421
422

Worldwide

Area (km?) Uncertainty Change
2001 66,373,650 5361,0975-82,853,000 2001-2010 716,975
2010 67,090,625 54,485,500-82,875,850 2010-2020 873,350
2020 67,963,975 55,315,825-85,155,000 2001-2020 1590,325
Population Uncertainty Change
2001 3,163,442,997 2,749,422,428-3,557,279,550 2001-2010 558,968,110
2010 3,722,411,107 3,284,405,622-4,137,388,957 2010-2020 679,578,866
2020 4,401,989,973 3,855,816,571-4,895,784,723 2001-2020 1,238,546,976
Countries with confirmed human case
Area (km?) Uncertainty Change
2001 21,356,975 17,483,675-27,371,200 2001-2010 -309,00
2010 21,326,075 17,789,200-27,182,650 2010-2020 805,725
2020 22,131,800 18,477,275-28,172,625 2001-2020 774,825
Population Uncertainty Change
2001 2,039,459,989 1,915,091,037-2,145,480,086 2001-2010 312,157,042
2010 2,351,617,031 2,221,678,479-2,462,458,144 2010-2020 192,130,634
2020 2,543,747,665 2,428,123,320-2,687,674,384 2001-2020 504,287,676
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Figure S1 (a) Locations of the occurrence records used in model development, (b) number of

unique scrub typhus occurrence locations per year by country/region.
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437 Figure S2 Covariates included in the ensemble models (2020). The covariates are listed in
438 order from left to right and top to bottom as follows: max temperature, min temperature,
439 precipitation, relative humidity, wind speed, air pressure, NDVI, EVI, elevation, 17 types of
440 land use, population density, and urbanization (measured as travel time to major cities).
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453 Figure S6 Maps of uncertainty in environmental suitability estimates (95%Cl upper, 95%Cl
454 lower and width of the confidence interval).
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Figure S7 Standard error of robustness test result 100 bootstrap sampling.
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