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Text S1: Preprocessing for flood modeling

Dataset

The data required for the flood modeling are displayed in Table S1.

Roughness Coeffiecient of Tapi River and 2D Domain

We adopted a Manning’s roughness coefficient of 0.03 for the Tapi River, aligning with
values reported in existing literature [1]. To validate this parameter, we simulated the
2013 flood event in the lower Tapi River for the period from September 22, 12:00 PM,
to September 26, 6:00 PM (103 hours). Model performance was evaluated by com-
paring the simulated water level time series with observed data at the Nehru Bridge
location during the 2013 flood. The comparison yielded a root mean square error
(RMSE) of 0.57 meters and a coefficient of determination (R²) of 0.96, as illustrated
in Supplementary (Fig. S1 (a,b)), indicating satisfactory model accuracy.
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Table S1 Dataset Used for Flood Modeling.

Data Resolution Source Remarks

Streamflow Hourly, Ukai reservoir
station

Surat Irrigation Circle
(SIC)

Available through request

Tapi river stage data Hourly, Nehru bridge
and Singanpur Wier
station

SIC, Central Water Com-
mission (CWC) and SMC

Available through request

Tide level data Hourly Literture [1] Digitized from literature

Land Cover Data 10 m NRSC Bhuvan Land Cover
Map[2] and World Cover
Annual Composites[3]

Open source data

Digital Elevation Model
(DEM)

30 m SRTM DEM Inland elevation data,
opensource

Coastal DEM 30 m NCEI DEM, NOAA Coastal bathymetry

River cross section Available at each
200m distance along
the river

SMC Available through request

River Defenses Data - Drainage Division Surat Available through request
(Includes location, levee
cross-section, and eleva-
tion)

Floodplain roughness was derived from the existing LULC map of the study area
and classified into five major land cover types: built-up (n = 0.150), agriculture (n
= 0.035), forest (n = 0.150), water (n = 0.030), and wasteland (n = 0.055). The
roughness coefficient (‘n’) values for each land class were obtained from the literature
[1, 4, 5]. The same roughness values were used for the 2006 flood model to validate
the 2D flood depth and for subsequent flood event simulations.

Text S2: Validation of Flood Model

The validation of the flood model is performed for the 2006 flood scenario. We simulate
the flood event from August 3, 2006 to August 11, 2006 at an hourly time scale for
the entire flood domain. The simulated output of flood extent and depth was then
validated against the observed flood depth and extent.

• To validate the simulated flood depth, we utilized observed flood depth data from 80
locations within the study region from the flood-affected area map of 2006 obtained
from the Surat Municpal Coorporation. The flood depth map was georeferenced to
align with the study region, and the observed flood depth points were digitized.
Corresponding points between the observed and simulated flood depths were identi-
fied to assess the model’s accuracy in replicating flood depths across various spatial
locations.

• To validate the simulated flood extent, we utilized available SMC 2006 flood extent
map data to extract the water-submerged area during the flood event. The map
diplayed the classification of submerged area in range of flood depths which area was
used as the observed flood extent for validation. Validation was conducted through
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an accuracy assessment using 1,000 stratified random sampling points generated
across the study region [6]. Each point was classified into flooded and non-flooded
categories based on both the observed and simulated flood extents. A confusion
matrix was constructed to calculate the overall accuracy of the validation process.
Additionally, Cohen’s kappa coefficient [7] and the weighted F1 score [8] were esti-
mated to further assess model performance. These metrics help address potential
biases arising from class imbalances.

κ =
Po − Pe

1− Pe
(1)

where κ is cohen’s kappa coefficient, Po is observed agreement and Pe is expected
chance agreement.

F1 =
2× (Precision× Recall)

Precision + Recall
(2)

where Precision is

Precision =
TP

TP + FP
(3)

and Recall is

Recall =
TP

TP + FN
(4)

where True Positives (TP ) refers to the number of correctly predicted positive
instances (i.e., the cases where the model correctly identifies a flood area). False
Positives (FP ) represents the number of instances where the model incorrectly
predicted a positive class (i.e., the model falsely identified a flood area when it
wasn’t flooded). False Negatives (FN) represents the number of instances where
the model failed to predict an actual flood area (i.e., the model missed some flooded
regions, falsely classifying them as non-flooded).

F1weighted =

∑n
i=1 wi · F1i∑n

i=1 wi
(5)

where wi is the weight for class i, typically the number of true instances for class
i, F1i is the F1 score for class i, and n is the total number of classes.

Table S2 Error matrix of accuracy assessment for 1D-2D hydrodynamic model with
Cohen’s Kappa value and F1 score

Actual \Predicted Non-Flooded Flooded Total Producer’s Accuracy
Non-Flooded 364 32 396 0.9192
Flooded 222 344 566 0.6078
Total 586 376 962
User’s Accuracy 0.6212 0.9149 Overall Accuracy = 0.74
Kappa Coefficient 0.49
Weighted F1-Score 0.73
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Text S3: Flood Frequency analysis

We employed the Generalized Extreme Value (GEV) distribution [9, 10] to analyze
streamflow return levels for 5-,25-,50-,100- and 250-year return periods. The analysis
followed the block maxima approach[11], where annual maximum streamflow values
were extracted from the dataset. The GEV distribution, characterized by the loca-
tion parameter (µ), scale parameter (σ), and shape parameter (ξ), was fitted to the
block maxima data. The return levels (xT ) corresponding to a return period (T ) were
calculated using the formula:

xT =

{
µ+ σ

ξ

[(
− ln

(
1− 1

T

))−ξ − 1
]
, if ξ ̸= 0,

µ− σ ln
(
− ln

(
1− 1

T

))
, if ξ = 0.

(6)

To ensure the suitability of the GEV distribution for modeling the streamflow
extremes, we performed a Kolmogorov-Smirnov (K-S) goodness-of-fit test. The test
yielded a K-S statistic of 0.10 and a p-value of 0.68, indicating an excellent fit of the
GEV distribution to the observed data, as the high p-value confirms the null hypothesis
that the data follows the specified distribution.

Text S4: Cost-Benefit Analysis

Expected Annual Loss

An Expected Annual Loss (EAL) approach was adopted to integrate damages from
floods of varying magnitudes, weighted by their probabilities of occurrence[12]. We
considered return periods of 5, 25, 50, 100, and 250 years. EAL was computed as

EAL =
∑
i

P(i) × L(i) (7)

where P(i) is the probability of the event with return period i and L(i) is the associated
economic loss. Including a range of events allowed us to assess not only moderate but
also extreme floods that could exacerbate residual risks under partial adaptation.

Cost of Levee Construction and Maintenance

The cost of levee construction was estimated based on a global meta-analysis dataset,
which provides unit costs in Million Euros per kilometer and per meter (reference year:
2014)[13]. We specifically extracted the unit cost for India and followed these steps for
cost estimation: Extracting Baseline Cost: The levee construction cost for India was
obtained from the global dataset (reference year: 2014). Currency Conversion: Costs
were converted from Euros to Indian Rupees using the exchange rate of the reference
year. Inflation Adjustment: The cost was adjusted to 2022 prices using the Consumer
Price Index (CPI) to account for inflation[14]. Maintenance Cost Estimation: A 1%
cost of construction was assumed based on standard engineering practices for levee
structures.

4



Estimation of Net Avoided Damage and Benefit-Cost Ratio

To assess the long-term economic feasibility of levee construction, we considered a
service life of 50 years and computed the Net Present Value (NPV) of expected annual
flood damages over this period.

Net Present Worth of Expected Annual Damage

The total flood damage over 50 years was discounted using a 6% discount rate, which
represents the time value of money in economic assessments. The Net Present Worth
(NPW) of expected annual damages (EADNPW ) was estimated as:

EADNPW =

50∑
t=1

EAL

(1 + r)t
(8)

where:r is the discount rate (6%) and t is the year in the assessment period (1 to 50).

Net Avoided Damage Over 50 Years

The Net Avoided Damage due to levee construction was computed as:

Net Avoided Damage = EADNPW−(Construction Cost +Maintenance Cost over 50 years)
(9)

Benefit-Cost Ratio (BCR)

The Benefit-Cost Ratio (BCR) determines the economic feasibility of adaptation
measures and is given by:

BCR =
Net Avoided Damage

Construction Cost +Maintenance Cost over 50 years
(10)

A BCR > 1 indicates that the levee investment is economically justified, whereas a
BCR < 1 suggests that the costs outweigh the benefits.

Table S3 Cost-Benefit Analysis Results

Parameter Lower Estimate Absolute Estimate Upper Estimate

Avoided Expected Annual Dam-
age (EAL) [Billion |]

0.94 2.02 3.15

Avoided EAL Net Present
Worth (50 years) [Billion |]

20.02 54.54 88.90

Cost of Construction + Mainte-
nance [Billion |]

37.55 37.55 37.55

Benefit-Cost Ratio 0.53 1.45 2.36
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a b

Fig. S1 (a) Spatial distribution of avoided expected annual loss (Base-Protected EAL). (b) Distri-
bution of avoided expected annual loss in downstream wards, expressed in net present worth over a
50-year service life, shown as a swarm-violin plot. The maximum negative ∆EAL is 800 million |.

6



Fig. S2 Study area of Surat (Both SMC and SUDA), located in the state of Gujarat, Western India.
The shaded wards/villages represent the areas considered for flood risk assessment, as they overlap
with the computational 2D flood domain.
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a. b.

c. d.

Fig. S3 Calibration and Validation: (a) Time series comparison of observed and simulated flood
levels (Location: Nehru Bridge) for the 2013 flood, used for model calibration. (b) Scatter plot of
simulated vs. observed water levels for accuracy assessment (2013 flood) . (c)Time series comparison
of observed and simulated flood levels (Location: Nehru Bridge) for the 2006 flood, used for model
validation. (d) Scatter plot of simulated vs. observed water levels for accuracy assessment (2006 flood).
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a

c

b

d

e

Fig. S4 Relative Depth-damage functions for different land use types. Fig.(a–e) depict the depth-
damage relationships for Residential, Commercial, Industrial, Transport, and Road, respectively. The
shaded region in all subfigures represents the 95% confidence interval.
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Fig. S5 Land use map of Study Area.
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