

1 Supporting Information

2 A flexible micro-thermoelectric device from carbon nanotube-epitaxially 3 grown (Bi,Sb)₂Te₃ nanocrystal

4 *Qun Jin^{1,2}, Yang Zhao^{1,3}, Xuehao Long⁴, Song Jiang^{1,2}, Ziqiang Wang^{4,5}, Pengyan Mao^{1,3},*
5 *Xiaoqi Li^{1,3}, Kan Cui^{1,3}, Jianhang Qiu^{1,3}, Ye Wan⁶, Kaiping Tai^{1,3,7*}, Ning Gao^{4,8*}, Jun Tan^{7*},*
6 *Chang Liu^{1,3*}, Hui-Ming Cheng^{1,9}*

7 ¹ Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy
8 of Sciences, Shenyang, China.

9 ² University of Chinese Academy of Sciences, Shenyang, China.

10 ³ Department of Materials Science and Engineering, University of Science and Technology of China,
11 Shenyang, China.

12 ⁴ Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle
13 Irradiation (MOE), Shandong University, Qingdao, China.

14 ⁵ Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun, China.

15 ⁶ School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, China.

16 ⁷ Ji Hua Laboratory, Advanced Manufacturing Science and Technology Guangdong Laboratory,
17 Foshan, China.

18 ⁸ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.

19 ⁹ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

20 *Corresponding authors

21 E-mails: kptai@imr.ac.cn; ning.gao@sdu.edu.cn; tanjun@jihualab.com; cliu@imr.ac.cn

22 This file includes:

Contents	Page S2
Supplementary Notes 1-11	Page S3-S23
Supplementary Figs. 1-26	Page S24-S49
Supplementary Table 1	Page S50
Supplementary References	Page S51-S52

Contents

24	<u>Supplementary Note 1</u>	S3
25	<u>Supplementary Note 2</u>	S5
26	<u>Supplementary Note 3</u>	S8
27	<u>Supplementary Note 4</u>	S10
28	<u>Supplementary Note 5</u>	S12
29	<u>Supplementary Note 6</u>	S13
30	<u>Supplementary Note 7</u>	S15
31	<u>Supplementary Note 8</u>	S17
32	<u>Supplementary Note 9</u>	S19
33	<u>Supplementary Note 10</u>	S20
34	<u>Supplementary Note 11</u>	S21
35	<u>Supplementary Fig. 1</u>	S24
36	<u>Supplementary Fig. 2</u>	S25
37	<u>Supplementary Fig. 3</u>	S26
38	<u>Supplementary Fig. 4</u>	S27
39	<u>Supplementary Fig. 5</u>	S28
40	<u>Supplementary Fig. 6</u>	S29
41	<u>Supplementary Fig. 7</u>	S30
42	<u>Supplementary Fig. 8</u>	S31
43	<u>Supplementary Fig. 9</u>	S32
44	<u>Supplementary Fig. 10</u>	S33
45	<u>Supplementary Fig. 11</u>	S34
46	<u>Supplementary Fig. 12</u>	S35
47	<u>Supplementary Fig. 13</u>	S36
48	<u>Supplementary Fig. 14</u>	S37
49	<u>Supplementary Fig. 15</u>	S38
50	<u>Supplementary Fig. 16</u>	S39
51	<u>Supplementary Fig. 17</u>	S40
52	<u>Supplementary Fig. 18</u>	S41
53	<u>Supplementary Fig. 19</u>	S42
54	<u>Supplementary Fig. 20</u>	S43
55	<u>Supplementary Fig. 21</u>	S44
56	<u>Supplementary Fig. 22</u>	S45
57	<u>Supplementary Fig. 23</u>	S46
58	<u>Supplementary Fig. 24</u>	S47
59	<u>Supplementary Fig. 25</u>	S48
60	<u>Supplementary Fig. 26</u>	S49
61	<u>Supplementary Table 1</u>	S50
62	<u>Supplementary References</u>	S51

63 **Supplementary Note 1 | Computational simulation methods**

64 Different computational models were built to compare with the experimental results in this
65 work. The SWCNTs with a bundle structure were built by rolling up single graphene along the
66 armchair direction¹, as shown in Supplementary Fig. 8. Since it is not obvious that the chiral
67 angle of SWCNT has any impact on the growth of the nanocrystals according to our
68 experimental results, all the SWCNTs used in the computational studies were armchair-type
69 tubes. The electronic structure of SWCNTs is similar to that of a graphene sheet where each
70 carbon atom has three sp^2 -hybridized electrons, forming strong covalent σ -bonds with the
71 nearest neighbors, and a nonhybridized electron in p_z -orbitals, forming the weaker delocalized
72 π -bonds which has a key influence on the electronic properties of SWCNTs². Due to the
73 curvature of the SWCNTs, the lengths of C-C bonds and the direction of p_z -orbitals are different
74 from the case of a graphene sheet. Furthermore, grooves with unique properties are formed
75 between neighboring SWCNTs in a bundle (Supplementary Figs. 9-11), and these are expected
76 to have strong interactions with the deposited atoms³.

77 In this work, the diameter of SWCNTs is \sim 1.6 nm, which is similar to the actual value. The
78 deposited nanocrystals contained tens to one hundred atoms and were initially located around
79 one groove of SWCNT bundle to build the SWCNT bundle-nanocrystal computational model.
80 Geometrical optimization and *ab initio* molecular dynamics (AIMD) simulations were carried
81 out for SWCNT-nanocrystal systems using the CP2K program as described in Supplementary
82 Note 2. CP2K is an open-source software to perform atomistic simulations and provides a
83 general framework for different modeling methods such as Density Functional Theory (DFT)
84 using mixed Gaussian and plane waves approaches⁴. It has higher precision than the Molecular
85 Dynamics (MD) software (e.g. LAMMPS⁵) using a traditional empirical potential function and

86 a lower computational cost than other DFT software (e.g. Vienna Ab initio Simulation
87 Package⁶). AIMD is an algorithm using forces obtained from accurate electronic structure
88 calculations to generate the finite temperature MD trajectories in an accurate and unbiased way⁷.
89 The total number of atoms used in the CP2K simulation was up to ~1,200. The time interval
90 was 0.5 fs for AIMD and the maximum simulation time was up to 4.5 ps. The simulation
91 temperature for AIMD relaxation was from 300 K to 800 K. Classical MD simulations were
92 also performed for Sb₂Te₃ nanocrystals to calculate the lattice thermal conductivity and the
93 flexibility as described in Supplementary Notes 7 and 11, by using the LAMMPS package⁵ with
94 a two-body interatomic potential⁸. The time interval was 1 ps for LAMMPS and the simulation
95 temperature was from 270 K to 330 K.

96 **Supplementary Note 2 | Epitaxial growth mechanism for the highly ordered**
97 **microstructures**

98 SWCNTs have unique electrical, thermal and mechanical properties and are a promising
99 candidate for building high-performance hybrid materials. The deposited atoms preferentially
100 nucleate at grooves in the SWCNT bundle and grow into nanocrystals. The preferred
101 crystallographic growth orientation of a nanocrystal can be controlled by the deposition
102 conditions (such as temperature, pressure, etc.), lowering the surface/interface energy. The
103 $(\text{Bi},\text{Sb})_2\text{Te}_3$ alloy is a layer-structured TE material, consisting of quintuple $\text{Te}_1\text{-Bi}(\text{Sb})\text{-Te}_2\text{-Bi}$
104 $(\text{Sb})\text{-Te}_1$ layers stacked perpendicular to the $\langle 000l \rangle$ direction. The crystallographic orientations
105 of the neighboring nanocrystals are well-aligned with the groove, and low-angle tilt boundaries
106 are thus formed between them (Fig. 2). Such highly ordered microstructures can only be
107 obtained at a temperature higher than ~ 600 K so that the deposited Bi-Sb-Te atoms have enough
108 energy to overcome diffusion barriers and grow into energetically favorable crystal orientations
109 and microstructures.

110 To explain the experimental observations, a SWCNT- $(\text{Bi},\text{Sb})_2\text{Te}_3$ system was
111 computationally simulated (Supplementary Fig. 9). After structural relaxation, we see that the
112 $(\text{Bi},\text{Sb})_2\text{Te}_3$ nanocrystals deposited on the surface of the SWCNT bundle always keep their
113 bottoms away from the SWCNT surface with a separation distance greater than ~ 0.3 nm in all
114 computational simulations. This distance is larger than the typical chemical bond length (~ 0.2
115 nm) between a deposited atom and a SWCNT, but close to the typical van der Waals (vdW)
116 distance (~ 0.33 nm) between carbon nanotubes⁹. The electronic density calculations clearly
117 show that no structural or chemical bond is formed between the $(\text{Bi},\text{Sb})_2\text{Te}_3$ nanocrystal and
118 SWCNT bundle, even at the groove region (Supplementary Fig. 9). Therefore, both the

119 computational and experimental results indicate that the periodic distribution of vdW
120 interactions along the CNT axis may play an important role in determining the growth of the
121 (Bi,Sb)₂Te₃ nanocrystals to form highly ordered microstructures along the 1D SWCNT bundle
122 axis. The geometry of the SWCNT bundle results in a periodic distribution of vdW forces
123 around the SWCNTs grooves along the axis, as shown in Supplementary Fig. 10. We see that
124 the groove region has lower energy for deposited atoms and nanocrystals compared with other
125 regions on the SWCNT surface (Supplementary Fig. 11), indicating the SWCNT groove has a
126 strong vdW interaction with the deposited atoms.

127 The energy of the SWCNT-Bi₂Te₃ nanocrystal hybrid with different orientations was
128 calculated using CP2K software. These calculated results are not influenced by Bi/Sb
129 substitution. It was found that the SWCNT-(000*l*) Bi-Te atomic plane has the minimum surface
130 energy compared with the (1 $\bar{1}$ 00), (01 $\bar{1}$ 5) and (01 $\bar{1}$ 10) orientations, as shown in Supplementary
131 Fig. 12. These results suggest that the Bi₂Te₃ nanocrystal deposits on the SWCNT bundle with
132 the (000*l*) atomic plane parallel to the top surface of the bundle, forming an energetically
133 favorable crystal orientation. The underlying mechanism is determined by the intrinsic
134 properties of Bi₂Te₃ nanocrystal¹⁰. Furthermore, the dependence of the total energy of the
135 SWCNT-Bi₂Te₃ nanocrystal on the rotation angle of the Bi₂Te₃ nanocrystal along the <000*l*>
136 direction has also been calculated (Fig. 2f). The results suggest that the most stable state is for
137 the deposited Bi₂Te₃ nanocrystal to have its <1 $\bar{2}$ 10> direction parallel to the SWCNT axis,
138 which is consistent with the experimental results.

139 Based on these results, we see that the nanocrystals nucleate at the SWCNT bundle groove
140 and are highly aligned with a specific orientation parallel to the SWCNT axis by a strong

141 SWCNT-nanocrystal vdW interaction, to achieve a minimum energy state. There is therefore a
142 specific crystallographic orientation of the nanocrystals parallel to the SWCNT bundle grooves
143 held there by vdW forces to minimize the free energy. Furthermore, it is shown that due to a
144 long-range periodic vdW interaction, the SWCNT bundle can be generally used to guide the
145 epitaxial growth of various nanocrystals with highly ordered microstructures, such as Pt, Au,
146 Cu, Si, etc. (Supplementary Figs. 1-7). The static energy of truncated polyhedral Pt nanocrystals
147 with different orientations and different positions relative to a SWCNT was also investigated
148 and the results are shown in Supplementary Fig. 11. They show that the total energy of the
149 system decreases to achieve a stable state as the Pt nanocrystal gets closer to the SWCNT
150 groove region, and a truncated polyhedral Pt nanocrystal with its <100> direction aligned with
151 the SWCNT axis/groove gives the minimum energy state. These results and analysis are clearly
152 compatible with the experimental observations (Supplementary Fig. 3).

153 In contrast, the conventional approach for epitaxial growth using a 2D substrate requires a
154 small lattice mismatch and an atomically flat surface, and thus extremely limits the kind and
155 quality of epitaxial nanostructures⁹. Our results show that at a suitable deposition temperature,
156 the deposited atoms have enough energy to overcome the barrier for rearrangement and
157 diffusion, resulting in the epitaxial growth of nanocrystals with a specific crystallographic
158 orientation.

159 **Supplementary Note 3 | Epitaxial growth of the SWCNT-(Bi,Sb)₂Te₃ hybrid**

160 At the beginning of the deposition, the Bi-Sb-Te atoms reach the surface of SWCNTs
161 (Supplementary Fig. 13) and epitaxially nucleate at a bundle groove by a strong vdW
162 interaction^{11,12} and the neighbouring nuclei merge into larger ones through surface diffusion.
163 The nanocrystals are individually and separately anchored on the SWCNT scaffold, indicating
164 that the early deposited atoms preferentially aggregate to grow into nanocrystals rather than
165 occupying the bare surface of the SWCNT bundle (Fig. 2a). Most of the nanocrystals have very
166 similar hexagonal morphology of nanosheets and have an in-plane size of hundreds of
167 nanometers and a thickness of a few nanometers (Supplementary Fig. 14). The long edge of
168 each nanosheet is parallel to the local axis/groove of the SWCNT bundle (Fig. 2a-c), indicating
169 fast diffusion and the growth direction¹³. All the hexagonal atomic planes appear to be
170 approximately perpendicular to the e-beam in the SEM/TEM (Fig. 2g,h), suggesting a preferred
171 crystallographic orientation with minimum free energy. As shown by the SEM and TEM
172 analysis, the hexagon is the (Bi,Sb)₂Te₃ (000*l*) atomic plane (Fig. 2a,b), which is approximately
173 parallel to the hybrid free surface. With the growth of the (1 $\bar{2}$ 10) atomic plane, the nanosheet
174 gradually covered the whole SWCNT bundle (Fig. 2a). With increasing deposition time, Bi-Sb-
175 Te atoms are stacked on the formed (000*l*) atomic plane to make it thicker, forming a flat surface
176 with an atomic-level height step edge (Fig. 2d and Supplementary Video 1). After ~40 minutes
177 of deposition, the thickness of the hybrid had increased to ~720 nm and the spaces in the
178 SWCNTs network could not be fully filled by the depositing atoms, forming irregular and
179 randomly distributed nanopores between the nanocrystals. Supplementary Fig. 15 shows X-ray
180 diffraction (XRD) patterns of the deposited hybrid, and the characteristic diffraction peaks can
181 be indexed to rhombohedral (Bi,Sb)₂Te₃ (JCPDS no. 49-1713). The orientation factors *F* of the

182 hybrids were calculated using Lotgering's method^{12,14} and are given in Supplementary Table 1.
183 The Bi_{0.5}Sb_{1.5}Te₃ nanocrystals have a strong out-of-plane (000*l*)-texture, consistent with the
184 SEM and TEM analyses (Fig. 2 and Supplementary Fig. 1).

185 **Supplementary Note 4 | Thermoelectric properties of SWCNT-(Bi,Sb)₂Te₃ hybrids**

186 The in-plane electrical conductivity (σ) values of all samples decrease with increasing
187 temperature, showing a degenerate semiconductor behaviour. The σ values of the hybrids are
188 lower than those of the dense film and the σ value of (000*l*)-textured hybrid is higher than that
189 of the non-textured one (Fig. 3a). The carrier concentration (n) and carrier mobility (μ) values
190 of samples with different Bi:Sb ratios are shown in Supplementary Fig. 16. In the hybrids, n
191 rapidly increases with the decreasing mole content of Bi atoms and the μ values change
192 inversely which could be because of the increase of Sb_{Te} antisite defects¹⁵. Although the
193 contribution of SWCNTs to the TE performance is limited (Supplementary Figs. 17 and 18),
194 the SWCNTs play an important role in guiding the highly ordered growth¹¹ of the freestanding
195 hybrid with unique microstructures that cause little carrier scattering and suppress the phonon
196 transport¹⁶. The TE properties of the hybrids were tested at 370 K for ~120 h (Supplementary
197 Figs. 19 and 20) to evaluate their long-term durability, and almost no change was observed in
198 the Seebeck coefficient (α) and σ values, indicating good thermal stability. All the in-plane α
199 values are positive (Fig. 3b), indicating p-type hole carrier conduction. α reaches a maximum
200 value at ~390 K, because of the bipolar effect¹⁷. The SWCNT is an intrinsic n-type
201 semiconductor¹⁸ and the deposited (Bi,Sb)₂Te₃ is p-type. When the (Bi,Sb)₂Te₃ nanocrystals
202 are attached to the SWCNTs, p-n heterojunctions are formed at the interfaces, which could
203 consume the hole carriers and result in a decrease of n . Although the volume fraction of the
204 SWCNTs is as low as ~1.4%, the (Bi,Sb)₂Te₃/SWCNT interfacial area is large because of the
205 very small diameter of the nanotubes. Because of the misalignment between their band
206 structures, there could be a band bending effect at the (Bi,Sb)₂Te₃/SWCNT interface. The
207 carriers would generally suffer energy-dependent scattering at the interface because of the

208 bending potential^{19,20}, which could lead to an increase in α . However, the α values of the hybrid
209 are close to that of dense film, indicating the interfacial effect on filtering out low-energy
210 electrons is weak in the hybrid, consistent with the changes in α (Fig. 3b) and μ (Supplementary
211 Fig. 16).

212 **Supplementary Note 5 | Scattering parameter estimation based on the Pisarenko
213 expression**

214 Assuming a simple parabolic electronic band structure for degenerate semiconductors, the
215 relationship between α and n values can be estimated by the following formula²¹⁻²³:

216
$$\alpha = \frac{8\pi^2 k_B^2 m^* T}{3e\hbar^2} \cdot \left(\frac{\pi}{3n}\right)^{\frac{2}{3}} \cdot (1+r) \quad (S1)$$

217 where m^* is the carrier density-of-states effective mass, and r is the scattering parameter.

218 Although the calculation may not be accurate due to the complicated scattering processes and
219 the non-parabolic behavior of the conduction band of Bi_2Te_3 -based alloys²⁴, the relationship
220 between $|\alpha|$, r and m^* can be approximately described by this formula²⁵⁻²⁷. The m^* of the hybrid
221 cannot obviously be changed by the SWCNTs because of their low volume content. Therefore,
222 based on the above expression and the measured $|\alpha|$ and n values of the hybrids and a dense
223 $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ film (Supplementary Fig. 16), their scattering parameter values can be calculated.

224 Assuming the charge carriers are predominantly scattered by acoustic phonons, the ratio of
225 scattering parameter values for the dense $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ film (n_1), and the ~ 720 -nm-thick $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ -SWCNT hybrids with different Bi doping levels ($x = 0.3, 0.4, 0.5, 0.55$; $n = n_2, n_3, n_4, n_5$)
226 can be expected to be given by the measured Seebeck coefficients and carrier concentrations
227 based on the above equation:

229
$$(\alpha_1 \cdot n_1^{\frac{2}{3}}) : (\alpha_2 \cdot n_2^{\frac{2}{3}}) : (\alpha_3 \cdot n_3^{\frac{2}{3}}) : (\alpha_4 \cdot n_4^{\frac{2}{3}}) : (\alpha_5 \cdot n_5^{\frac{2}{3}}) = (1+r_1) : (1+r_2) : (1+r_3) : (1+r_4) : (1+r_5) \quad (S2)$$

230 Based on the measured α and n values, the scattering parameter values for the hybrids and dense
231 $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ film are calculated to be approximately equal, implying that the SWCNTs have little
232 influence on the carrier scattering mechanism of the hybrid, which is in good agreement with
233 the analysis of the fitted electrical conductivity (Supplementary Fig. 16).

234 **Supplementary Note 6 | Calculation of thermal conductivity contribution**

235 To reveal the underlying mechanism for the reduced thermal conductivity of the hybrid, the

236 lattice (κ_l^h), electron (κ_e^n) and bipolar (κ_b^h) thermal conductivities were calculated using the

237 Wiedemann-Franz relationship. $\kappa_l^h + \kappa_b^h = \kappa_{\text{tot}} - \kappa_e^n$, $\kappa_e^n = L \cdot \sigma \cdot T$, where L is the Lorenz

238 number. The estimate of the Lorenz number is based on the measured Seebeck coefficient²⁸:

239 $L = 1.5 + \exp(-|S|/116)$ (where L is in units of $10^{-8} \text{ W } \Omega \text{ K}^{-2}$ and S in $\mu\text{V K}^{-1}$). It was found that

240 the $\kappa_l^h + \kappa_b^h$ values are smaller than those of a dense film^{29,30}, and slightly increase with

241 increasing temperature (Supplementary Fig. 21b) due to an increase of the κ_b^h effect¹⁷. The

242 contributions of phonons with different mean free paths to κ_l were recently calculated for the

243 Bi₂Te₃-based alloys³¹. In the (Bi,Sb)₂Te₃ alloy, the phonons with mean free paths shorter than

244 $\sim 200 \text{ nm}$ make more than a $\sim 95\%$ contribution to the total κ_l (ref. ³²). Therefore, multiscale

245 defects, including point defects, dislocations, grain boundaries, stacking faults, twin boundaries,

246 pore boundaries, interfaces, etc., that are of the same or a smaller size strongly scatter the

247 phonon transport, substantially decreasing the lattice thermal conductivity. Such structures may

248 therefore produce a highly decreased κ_l . The phonons in the hybrid have a wide range of

249 wavelengths and are scattered by the combined effect of many different multiscale defects.

250 Phonons with a short-wavelength are mainly scattered by the short-range intrinsic defects, such

251 as point defects, dislocations, stacking faults, twin boundaries, etc.; the phonons with mid-to-

252 long wavelength are strongly scattered by the long-range defects, such as the

253 (Bi,Sb)₂Te₃/SWCNT interfaces, grain boundaries and pore boundaries etc. (ref. ³¹). In the p-

254 type (Bi,Sb)₂Te₃ alloy, the point defects of Sb_{Te} and Bi_{Te} antisites or V_{Sb} and V_{Bi} vacancies are

255 the main reasons for the acceptor conduction behavior¹⁵. Because the carrier concentrations and

256 average grain size in the (000*l*)-textured film and the hybrid are comparable^{29,30}, their influences

257 on phonon conduction are similar. Therefore, the nanoporous structure, the
258 (Bi,Sb)₂Te₃/SWCNT interfaces and the randomly distributed, irregularly shaped nanopore
259 boundaries in the hybrids could account for such ultralow lattice thermal conductivity³³. The
260 nanopores with large specific pore boundary areas scatter the phonons more effectively than
261 the micropores³³, as illustrated in Fig. 1. The (Bi,Sb)₂Te₃/SWCNT interfaces also lower the
262 lattice thermal conductivity without much effect on the electrical conductivity, which is
263 demonstrated by modifying the interface structure using a plasma-treated SWCNT deposition
264 matrix¹⁶.

265 **Supplementary Note 7 | MD simulation of the effect on the value of κ_l of grain
266 boundaries with tilt angles**

267 The thermal transport properties of Sb₂Te₃ nanocrystals with small and large tilt angle grain
268 boundaries were calculated using the non-equilibrium molecular dynamics (NEMD) method in
269 a large-scale atomic/molecular massively parallel simulator (LAMMPS). The Sb₂Te₃ models
270 were constructed by combining two neighboring grains with a tilt angle (θ) of 0-30°, as shown
271 in Supplementary Fig. 22. According to Fourier's law, the thermal conductivity κ is defined
272 by the following equation:

273
$$J = -\kappa \nabla T \quad (S3)$$

274 where J is the heat flux in units of energy per area per time and ∇T is the spatial gradient of
275 temperature. In this work, the kinetic energy is swapped between atoms in two different layers
276 of the simulation box, which induces a temperature gradient between them. The transferred
277 cumulative energy can also be obtained after full relaxation to calculate the heat flux. With the
278 calculated heat flux and temperature gradient, the thermal conductivity κ can be obtained
279 using the above equation. During the relaxation, a free boundary condition was applied along
280 all directions. The pair potential was applied for the Sb₂Te₃ nanocrystals since there is no
281 suitable ternary empirical potential function for the (Bi,Sb)₂Te₃ system. The underlying
282 mechanism of the effect of grain boundaries on phonon transport and lattice thermal
283 conductivity should be the same in Sb₂Te₃ and (Bi,Sb)₂Te₃ alloys.

284 After minimizing the energy of the system using the conjugate gradient method, the
285 simulation system was then relaxed using a canonical ensemble at 300 K for 20 ps, followed
286 by further relaxation at 300 K using the microcanonical ensemble for another 20 ps. The
287 temperature distribution was then changed by adding and subtracting the thermal energy from

288 the hot and cold regions at the two ends of the model, respectively, at a constant rate by velocity
289 scaling along the $<1\bar{2}10>$ direction under total energy conservation. The region containing grain
290 boundaries was located at the center of the computational box along the $<1\bar{2}10>$ direction in
291 order to avoid the influence of the artificial addition and removal of thermal energy.

292 After full relaxation, the temperature gradient was then determined, as shown by the inset
293 image in Supplementary Fig. 22b. Following the method provided in ref. ³⁴, the generated
294 temperature distribution curve along the y axis was then obtained. The lattice thermal
295 conductivity of Sb_2Te_3 nanocrystals was calculated using the following formula:

$$296 \quad \kappa = \frac{Q}{t} \times \frac{L}{A \cdot \Delta T} \quad (\text{S4})$$

297 where κ is the thermal conductivity in $\text{W}/(\text{m}\cdot\text{K})$, Q is the amount of heat transferred through
298 the material in Watts, L is the distance between the two isothermal planes, A is the area of the
299 surface that is perpendicular to the heat transfer direction in square meters, and ΔT is the
300 temperature difference in Kelvin. Following the above method, it is clear that for the heat
301 transfer process of Sb_2Te_3 models containing different grain boundaries, only the ΔT value is
302 different. Therefore, the normalized thermal conductivity (κ_{norm}) of a Sb_2Te_3 nanocrystal with
303 grain boundaries formed by rotating one grain along $[000/]$ by different angles, θ , can be
304 calculated by comparison with a nanocrystal without grain boundaries:

$$305 \quad \kappa_{\text{norm}} = \frac{\kappa_\theta}{\kappa_0} = \frac{\Delta T_\theta}{\Delta T_0} \quad (\text{S5})$$

306 The results shown in Supplementary Fig. 22c clearly show that the lattice thermal conductivity
307 of Sb_2Te_3 nanocrystals is strongly impacted by grain boundaries even with small tilt angles.

308 **Supplementary Note 8 | Calculation of the P_c , COP , Q , P_g , power density values of a**
 309 **micro-TED**

310 The internal electrical resistance (R) of the micro-TED module consists of the electrical
 311 resistance of the two p-n couples (R_{p-n}), the Pt leads (R_{lead}) and the contact resistance ($R_{contact}$)
 312 between the p-n couples and the Pt leads. R_{p-n} is $\sim 130 \Omega$, as measured by a four-probe technique,
 313 and R is $\sim 258 \Omega$ at RT determined by applying a voltage and measuring the electric current
 314 through the whole micro-TE module. Because the p- and n-type hybrids have different thermal
 315 and electrical conductivities, the p- and n-leg are designed with different dimensions to optimize
 316 the n-p couple TE performance. The p and n couples both have dimensions of $\sim 50 \mu\text{m}$ wide
 317 (W), $\sim 50 \mu\text{m}$ long (L) and $\sim 0.72 \mu\text{m}$ (D_p) and $0.65 \mu\text{m}$ (D_n) thick (Fig. 4a). The maximum
 318 cooling power P_c^{max} of a TE module including two ($N = 2$) p-n couples is defined as the
 319 maximum cooling ability at a temperature difference of zero ($\Delta T=0 \text{ K}$) across the module and
 320 can be estimated by the following equation³⁵:

321
$$P_c^{max} = N \times (S_{p-n} T_c I_{max} - 0.5 \times I_{max}^2 R) \quad (\text{S6})$$

322 where S_{p-n} , R , I_{max} and T_c are the Seebeck coefficient, the electrical resistance, cooling current
 323 at the highest cooling effect and the temperature of the cold side of the TE module, respectively.
 324 Using the measured S_{p-n} , R and T_c values. The maximum cooling power density Q_c^{max} is
 325 estimated by dividing P_c^{max} by the total cross-sectional area (A_c) of the two p-n couples along
 326 the heat flow direction, as shown in Fig. 4c.

327
$$Q_c^{max} = \frac{P_c^{max}}{A_c} = \frac{P_c^{max}}{N \times W \times (D_p + D_n)} \quad (\text{S7})$$

328 The COP values with the cooling current (I) at $\Delta T=0 \text{ K}$ are expressed by the following equation:

329
$$COP = \frac{(S_{p-n} T_c I - 0.5 \times I^2 R)}{I^2 R} \quad (\text{S8})$$

330 For the micro-TEG, when the load resistance matches the TE module resistance, the maximum
331 output electrical power (P_g^{\max}) can be approximately estimated by the expression:

332
$$P_g^{\max} = \frac{V^2}{4R} \quad (S9)$$

333 where V is the open circuit thermal voltage, R is the internal resistance of the TE module. The
334 maximum output power density (Q_g^{\max}) is estimated by dividing P_g^{\max} by the total cross-

335 sectional area (A_c) of the two p-n couples along the heat flow direction, as shown in Fig. 4g.

336 Both P_c^{\max} and P_g^{\max} are inversely proportional to the R of the TE module and can therefore
337 be improved by reducing the resistance of the TE module.

338 **Supplementary Note 9 | Dependence of cooling ΔT on an applied current of micro-TEC**

339 In a closed system, the dependence of net cooling on applied electrical current is caused by
340 three primary competing mechanisms. First, the charge carriers carry heat from the target
341 cooled area to the heat sink through the Peltier effect which varies linearly with the applied
342 current. Second, the electrical current also heats the whole device by Joule heating because of
343 the electrical resistance and this varies as the square of the current. There thus exists a certain
344 current, at which the cooling power reaches its maximum value. When the electrical current is
345 larger than a certain value, Joule heating dominates the heat balance and decreases the total
346 cooling performance. Third, there is a cooling loss by thermal conduction from the TEC hot
347 side to the cold side due to the temperature gradient.

348 **Supplementary Note 10 | Estimation of the bending strain of the hybrid**

349 When a deposited film and a compliant substrate have the same Young's modulus, the strain in
 350 the top sample ($\varepsilon_{\text{sample}}$) is as follows³⁶,

$$351 \quad \varepsilon_{\text{sample}} = \frac{(d_{\text{sample}} + d_{\text{substrate}})}{2R} \quad (\text{S10})$$

352 where the thickness and Young's modulus of the deposited film and substrate are d_{sample} and
 353 $d_{\text{substrate}}$, Y_{sample} and $Y_{\text{substrate}}$, respectively, and R is the bending radius. When the film and
 354 substrate have different moduli ($Y_{\text{sample}} > Y_{\text{substrate}}$), the neutral plane moves toward the more
 355 rigid film, and $\varepsilon_{\text{sample}}$ is given by:

$$356 \quad \varepsilon_{\text{sample}} = \frac{(d_{\text{sample}} + d_{\text{substrate}})}{2R} \frac{(1+2\eta+\chi\eta^2)}{(1+\eta)(1+\chi\eta)} \quad (\text{S11})$$

$$357 \quad \varepsilon_{\text{sample}} = 0.83 \times \frac{(d_{\text{sample}} + d_{\text{substrate}})}{2R} \quad (\text{S12})$$

358 where $\eta = d_{\text{sample}} / d_{\text{substrate}}$ and $\chi = Y_{\text{sample}} / Y_{\text{substrate}}$. Equations (S11) and (S12) provide the
 359 theoretical basis for evaluating the SWCNT-(Bi,Sb)₂Te₃/polyimide samples³⁷⁻⁴⁰. The equations
 360 allow us to obtain the approximate value of $\varepsilon_{\text{sample}}$, which for the freestanding SWCNT-
 361 (Bi,Sb)₂Te₃ couple with an average thickness (d) of p- and n-type hybrids, is given by:

$$362 \quad \varepsilon_{\text{sample}} = \frac{d}{2R} \quad (\text{S13})$$

363 The bending of the freestanding p-n couple could be driven by AFM, and a schematic and the
 364 relationship between strain and moving distance, are shown in Supplementary Fig. 25.

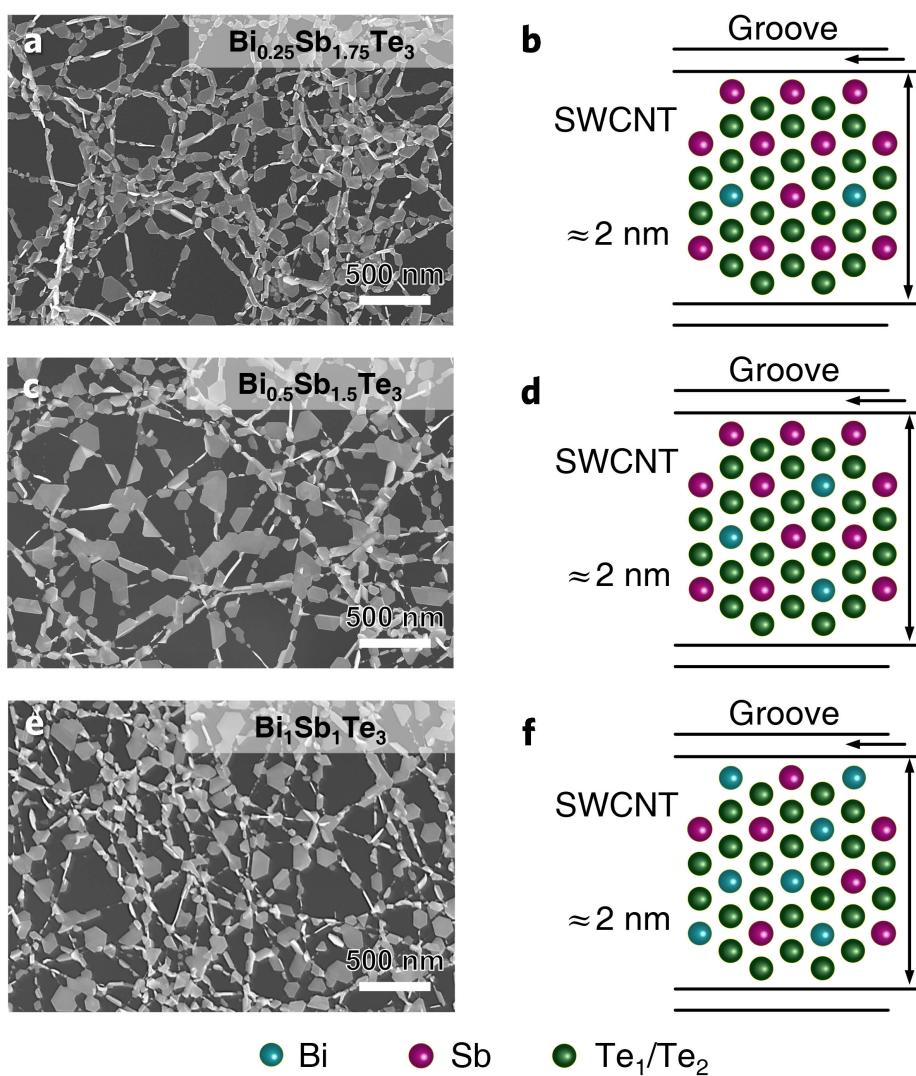
365 **Supplementary Note 11 | MD simulation of the flexibility of highly ordered nanocrystals**

366 The bending of Sb_2Te_3 nanocrystals with low and high angle tilt grain boundaries has been
367 simulated using the LAMMPS code with the two-body interatomic potential developed by
368 Prabudhya et.al., which has been successfully used in calculations of the thermal conductivity
369 and mechanical properties of Sb_2Te_3 (ref. ⁸). Considering the non-negligible size effect of the
370 nanocrystals with low-tilt-angle grain boundaries, the AIMD method is not suitable because of
371 the limit on the number of atoms in the calculation. Because of the lack of a precise ternary
372 empirical potential function for $(\text{Bi},\text{Sb})_2\text{Te}_3$, only Sb_2Te_3 bending is simulated but the
373 underlying bending mechanism should be the same. SWCNTs are not considered in this
374 simulation because of their ultra-high flexibility and good interfacial adhesion force (no
375 nanocrystals peel-off during the bending test). The results of Sb_2Te_3 coupled with the previous
376 simulation studies for Bi_2Te_3 (ref. ¹¹) should indicate the underlying mechanisms of the
377 crystallographic-orientation-dependent bending of $(\text{Bi},\text{Sb})_2\text{Te}_3$ nanocrystals.

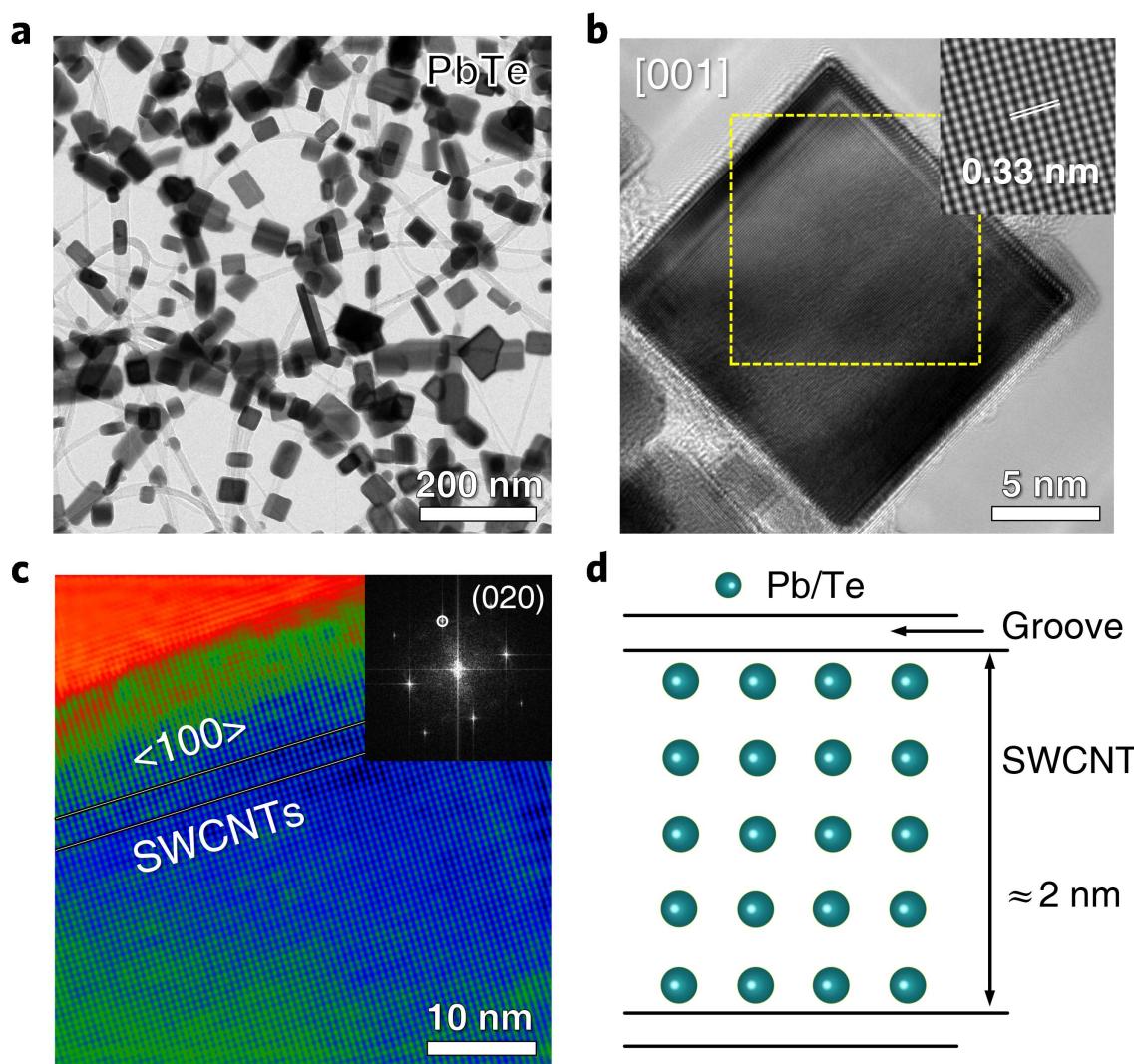
378 Structural models used in our simulations are built using three neighboring Sb_2Te_3

379 nanocrystals with the same $(000l)$ orientation (along the Z direction) as shown in Supplementary
380 Fig. 26, corresponding to the $(000l)$ -textured structure in our experimental samples. Two grain
381 boundaries are formed between these three grains. Low (5°) and high (15°) angle tilt grain
382 boundaries are generated between the neighbouring nanocrystals by rotating the middle one
383 around the normal direction to the $(000l)$ atomic plane (Z -axis) by the given angle. The total
384 number of atoms used in the Sb_2Te_3 simulation model is up to $\sim 54,000$. Following the method
385 reported in ref. ¹¹, the system is first relaxed before bending is applied by adding forces along
386 the positive Z -axis on atoms at the central bottom region of the middle grain, while forces along
387 the negative Z -axis on atoms at the bottom of two side grains, as shown in Supplementary Fig.

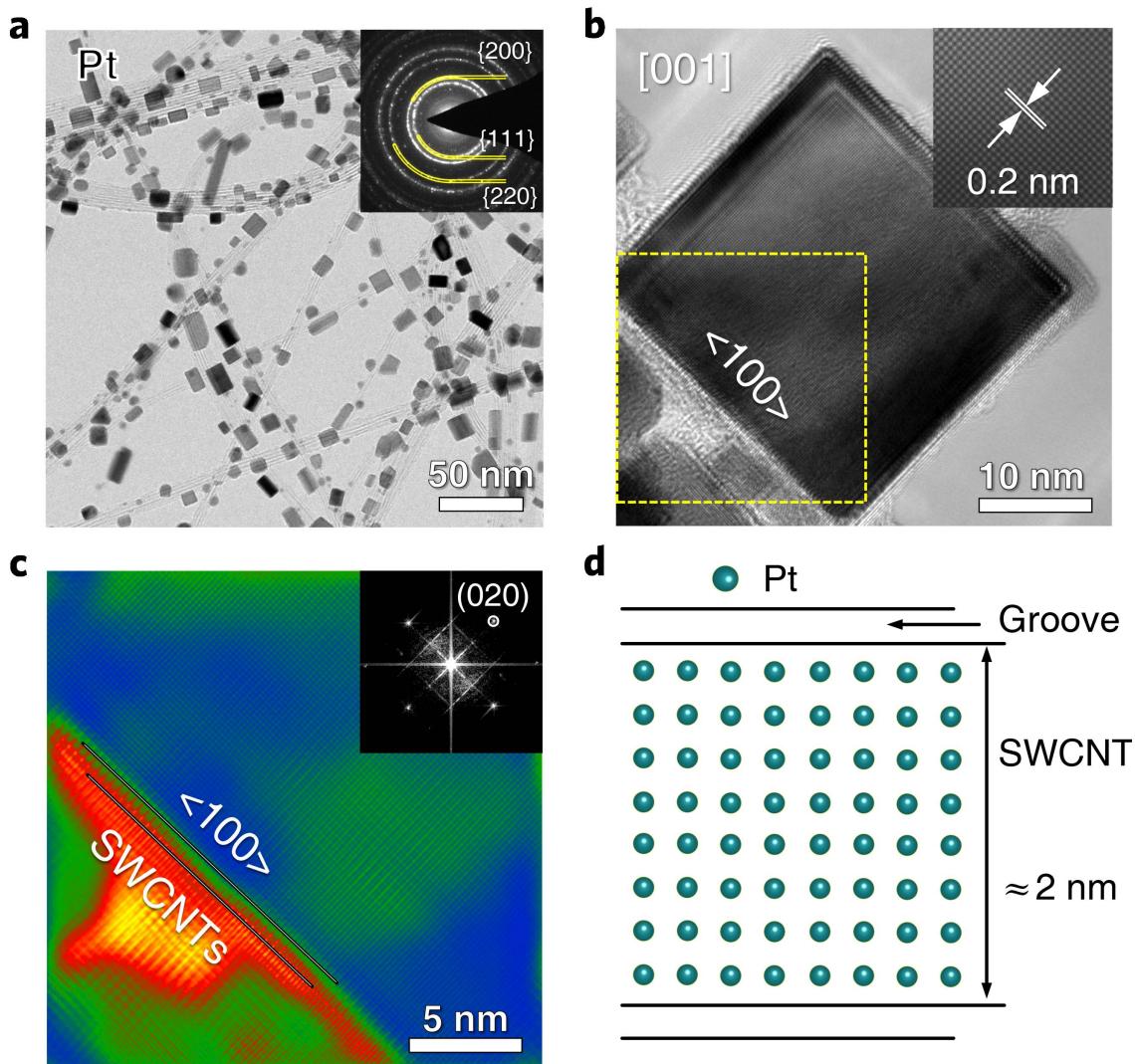
388 26a. After each movement, the stress tensor is calculated to show the stressed state of the grain
389 boundaries, especially to check whether the stress concentration has been formed.

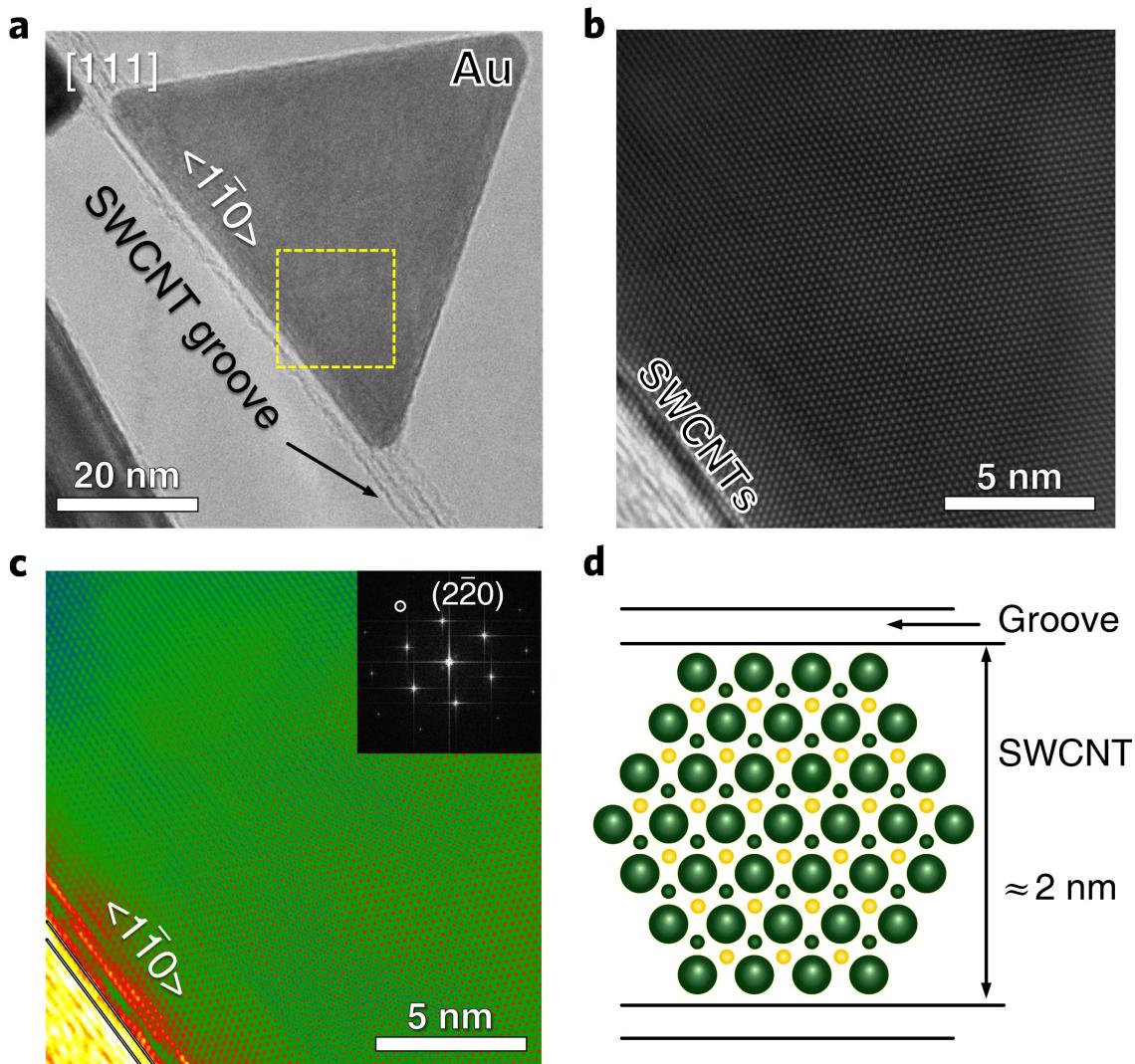

390 For the $<1\bar{2}10>$ -5° grain boundary model, the low-angle between two neighboring grains
391 results in a smooth connection between them after relaxation. A stress concentration is only
392 observed in the limited mismatched region, while the other matched region efficiently releases
393 the in-plane stress/strain concentrations by the slight sliding of neighbouring Te₁-Te₁ layers
394 connected by vdW force, as shown in Fig. 5c-e and Supplementary Fig. 26b. In contrast, for the
395 $<1\bar{2}10>$ -15° model, a larger mismatched region with significant stress concentrations prevents
396 the atomic plane from sliding across the nanocrystals, resulting in discontinuous atomic
397 displacements and the rearrangement of atoms at the grain boundaries. Different from the
398 models of nanocrystals aligned along $<1\bar{2}10>$ direction, a strong stress concentration and
399 discontinuous atomic displacements are observed both at low-angle (5°) boundaries when the
400 nanocrystals are aligned along the $<1\bar{1}00>$ direction, indicating that $<1\bar{2}10>$ is the easy sliding
401 direction on the (000*l*) atomic plane.

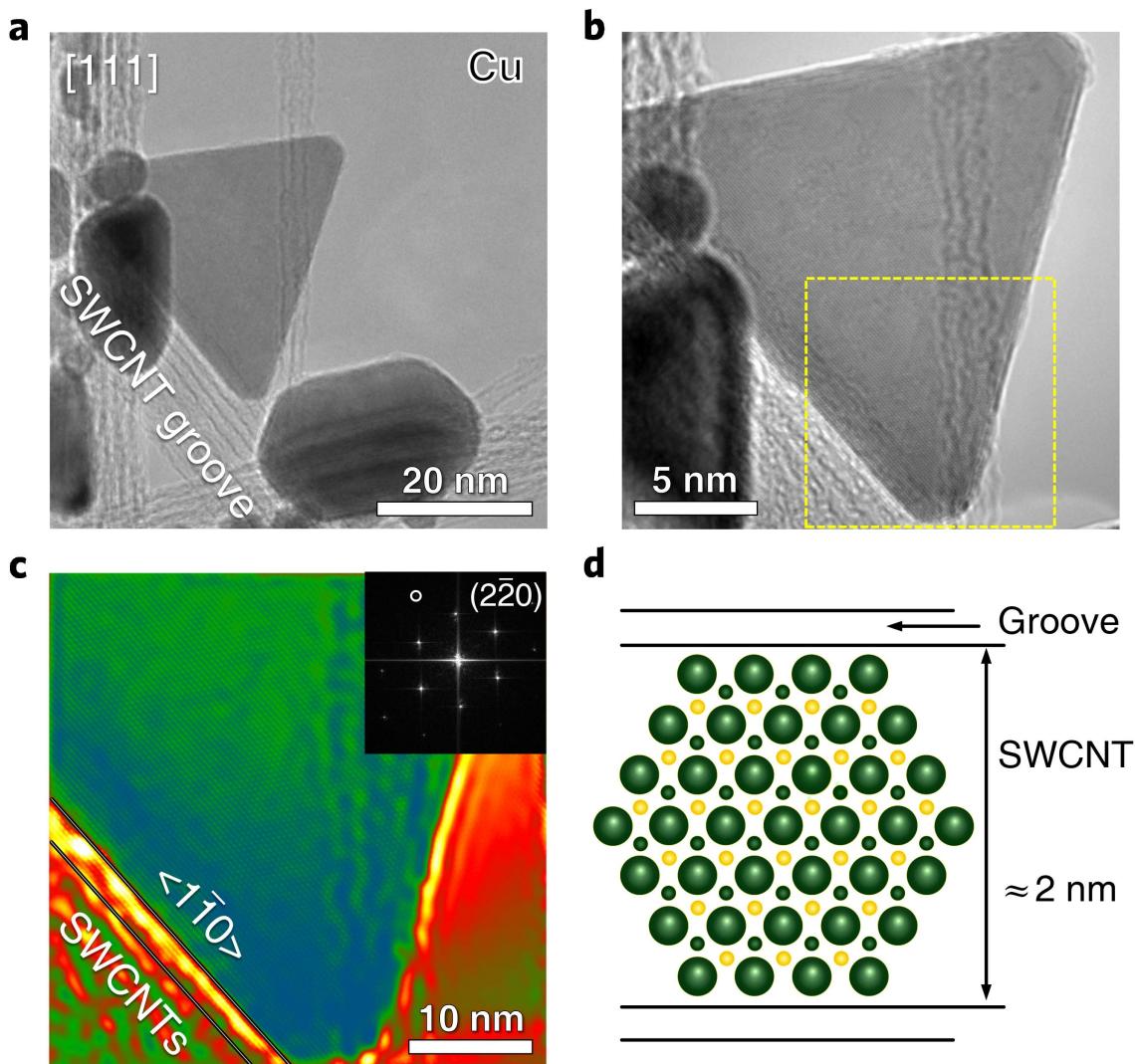
402 The cyclic bending of Sb₂Te₃ nanocrystals with 5°, 15° and 30° tilt boundaries along the
403 $<1\bar{2}10>$ direction has been simulated at room temperature. First, external forces are applied on
404 the nanocrystals as shown in Supplementary Fig. 26a to produce bending. The nanocrystals
405 were then relaxed, and the bending-relaxation processes were repeated ~40 times. After the
406 bending cycles, the low (5°) angle tilt boundaries almost returned to their initial states, while
407 the microstructures of the region near the grain boundaries with high (15° and 30°) tilt angles
408 were irreversibly changed. The yellow lines in Fig. 5f indicate the mismatch of (000*l*) atomic
409 layers between the two neighboring nanocrystals with the low- and high-angle tilt boundaries.


410 Such distortions could substantially scatter the electron transport and decrease the electrical
411 conductivity.

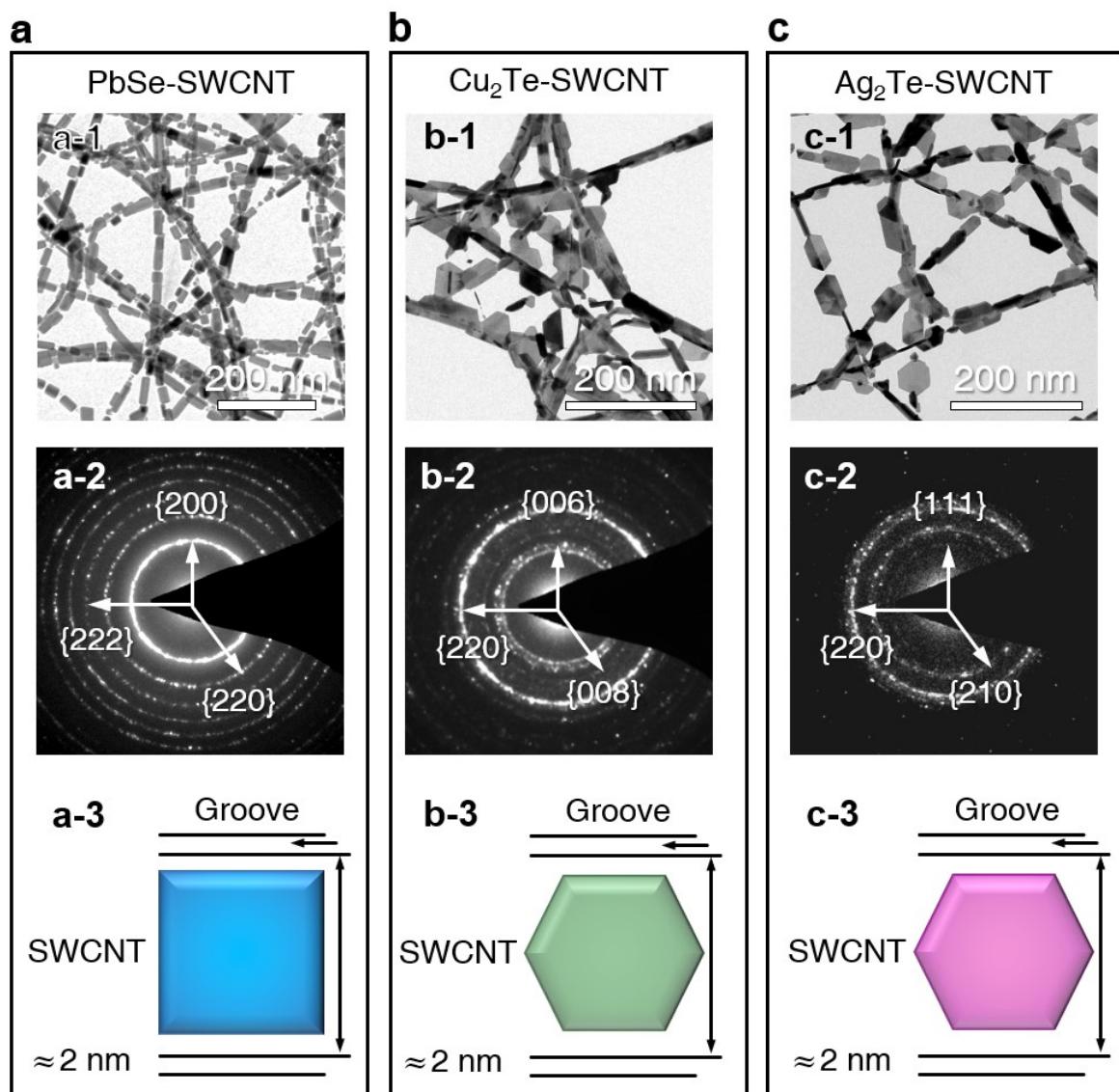
412 It is concluded that the nanocrystals in the $(000l)$ orientation with a low tilt-angle grain
413 boundary along the $<1\bar{2}10>$ direction have much better flexibility than others, such as
414 nanocrystals in the $(01\bar{1}5)$ or $(000l)$ orientations with a tilt boundary along the $<1\bar{1}00>$ direction.


415 These results have clearly explained the reason for the excellent flexibility of $(\text{Bi},\text{Sb})_2\text{Te}_3$
416 nanocrystals deposited on bundles of SWCNTs with $(000l)$ atomic plane and the alignment with
417 their $<1\bar{2}10>$ direction parallel to the grooves in the bundle.

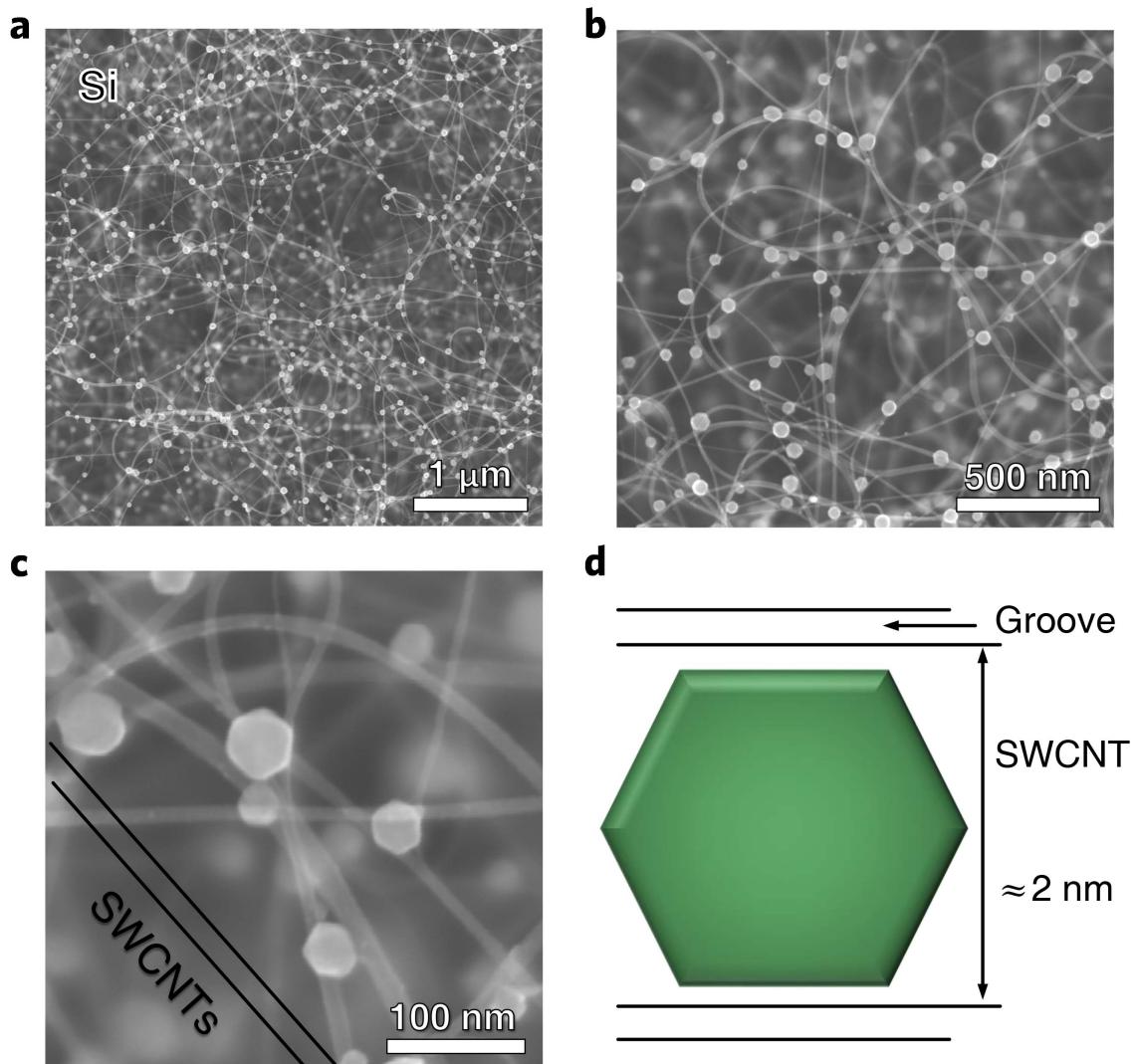

420 **Supplementary Fig. 1 | SEM images of highly ordered SWCNT- $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ hybrids with**
 421 **different Bi doping levels. a-b,** SWCNT- $\text{Bi}_{0.25}\text{Sb}_{1.75}\text{Te}_3$ hybrid and a schematic of the
 422 orientation relationship. **c-d,** SWCNT- $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ hybrid and a schematic of the orientation
 423 relationship. **e-f,** SWCNT- $\text{Bi}_1\text{Sb}_1\text{Te}_3$ hybrid and a schematic of the orientation relationship.


426 **Supplementary Fig. 2 | a-b Bright-field TEM images of a highly ordered SWCNT-PbTe**
 427 **hybrid.** Inset in **b** is the inverse-fast Fourier transform (FFT) image. **c**, False-color inverse-FFT
 428 image from the area outlined in **b**. Inset is the corresponding FFT. **d**, Schematic of the
 429 orientation relationship between PbTe and SWCNT.

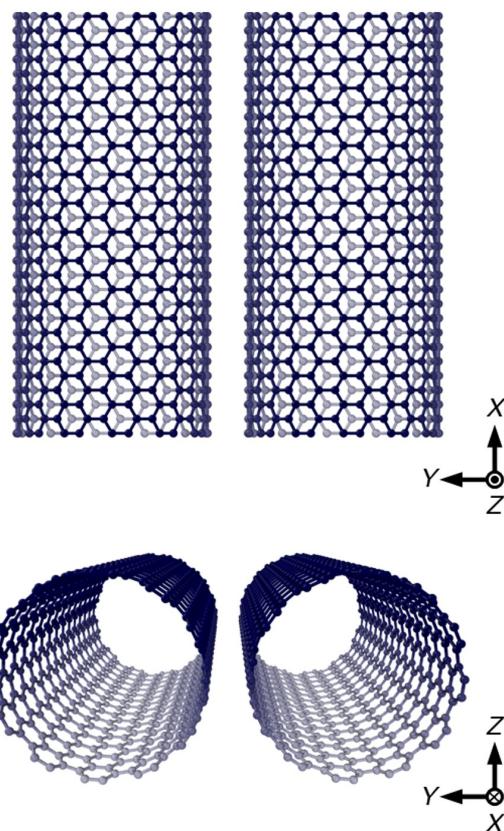
432 **Supplementary Fig. 3 | a-b, Bright-field TEM images of a highly ordered SWCNT-Pt**
 433 **hybrid.** Inset in **b** is the inverse-fast FFT image. **c**, False-color inverse-FFT image from the
 434 area outlined in **b**. Inset is the corresponding FFT. **d**, Schematic of the orientation relationship
 435 between Pt and SWCNT. Supplementary Fig. 3a is also shown in Fig. 2a.



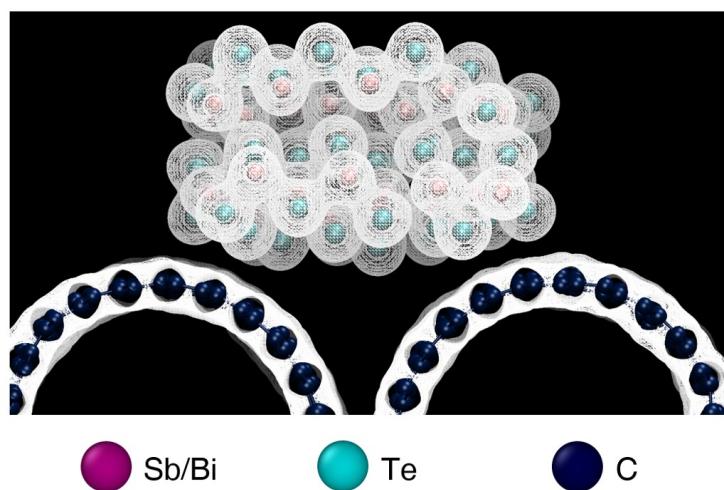
438 **Supplementary Fig. 4 | a-b, Bright-field TEM images of a highly ordered SWCNT-Au**
 439 **hybrid.** Inset in b is the inverse-fast FFT image. **c,** False-color inverse-FFT image from the
 440 area outlined in **b.** Inset is the corresponding FFT. **d,** Schematic of the orientation relationship
 441 between Au and SWCNT.


443

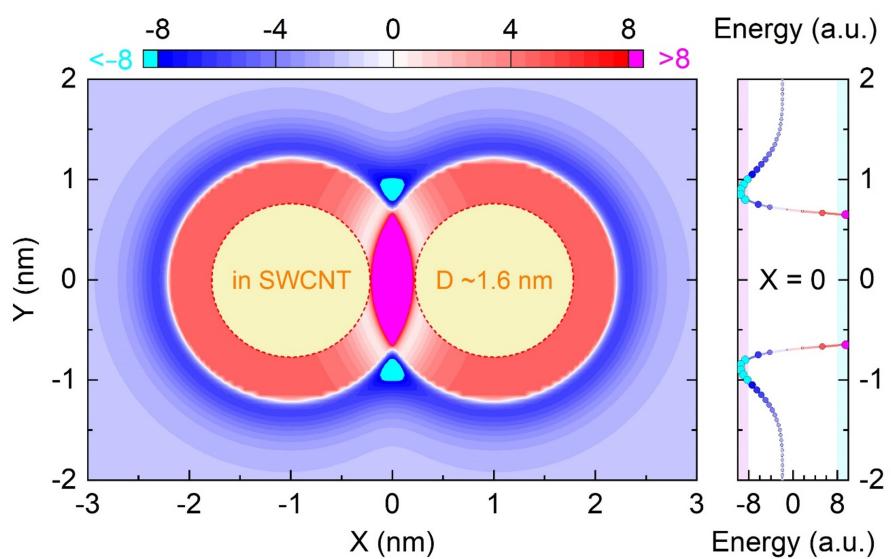
444 **Supplementary Fig. 5 | a-b, Bright-field TEM images of a highly ordered SWCNT-Cu**
 445 **hybrid.** Inset in b is the inverse-fast FFT image. **c,** False-color inverse-FFT image from the
 446 area outlined in **b.** Inset is the corresponding FFT. **d,** Schematic of the orientation relationship
 447 between Cu and SWCNT.


450 **Supplementary Fig. 6 | Microstructural characterization of highly ordered SWCNT-PbSe,**
 451 **SWCNT-Cu₂Te and SWCNT-Ag₂Te hybrids.** **a**, SWCNT-PbSe, **b**, SWCNT-Cu₂Te, **c**,
 452 SWCNT-Ag₂Te, Bright-field TEM images (**a-1**, **b-1**, **c-1**), the corresponding SAED patterns
 453 (**a-2**, **b-2**, **c-2**) and schematics of orientation relationships between the two components (**a-3**,
 454 **b-3**, **c-3**). Supplementary Fig. 6c-1 is also shown in Fig. 2a.

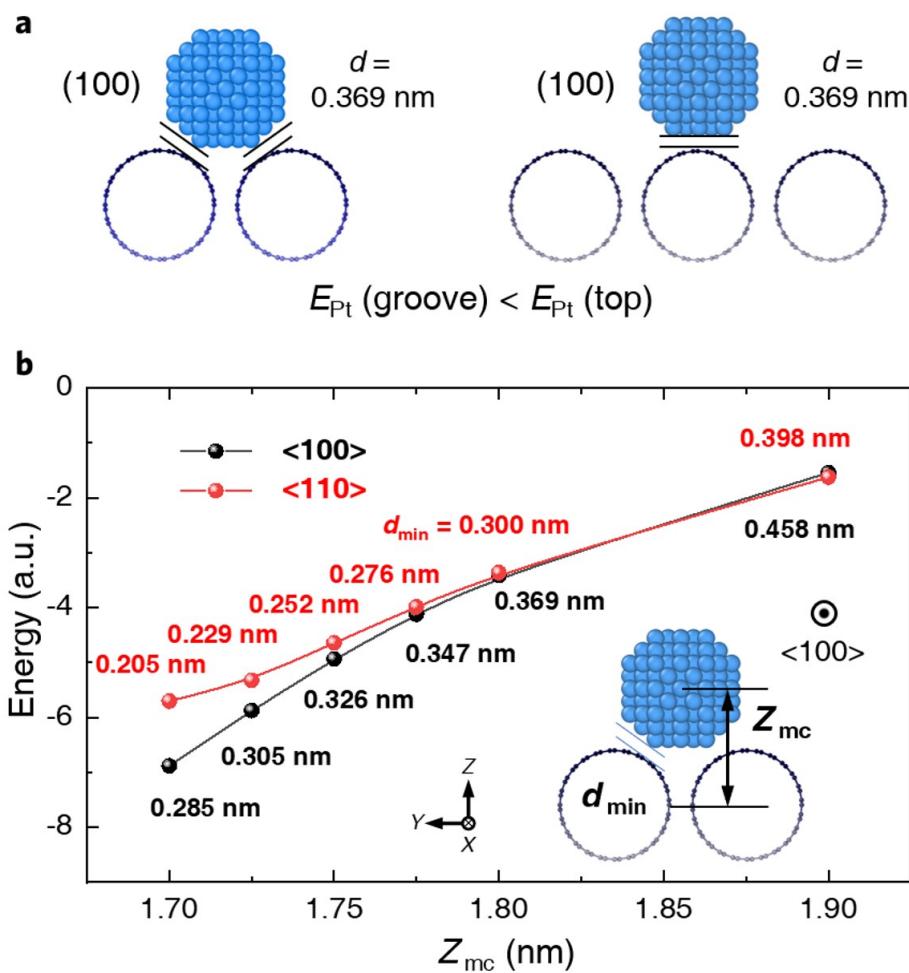
455 **Supplementary Fig. 7**


456

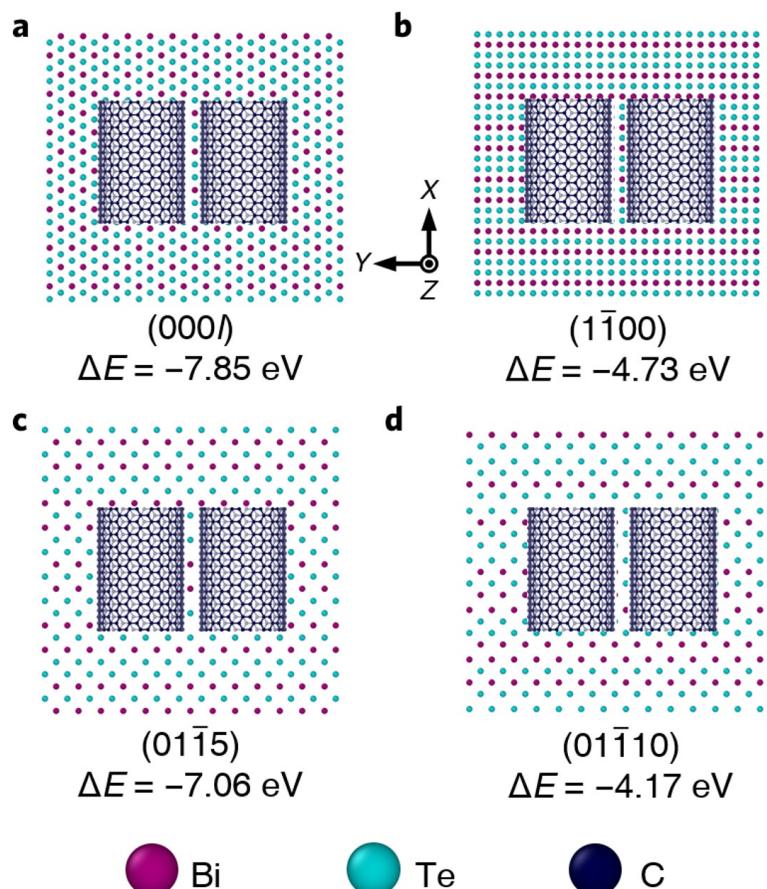
457 **Supplementary Fig. 7 | Microstructural characterization of a highly ordered SWCNT-Si**
458 **hybrid. a-c, SEM images. d, Schematic of the orientation relationship between the Si**
459 **nanocrystal and a SWCNT.**


461

462 **Supplementary Fig. 8 | Illustration of the structure of SWCNTs used in the computational**
463 **simulation.** Because the chiral angle of the SWCNTs has no obvious impact on the growth of
464 the nanocrystal in our experimental results, all the SWCNTs used in simulations are armchair-
465 type tubes.

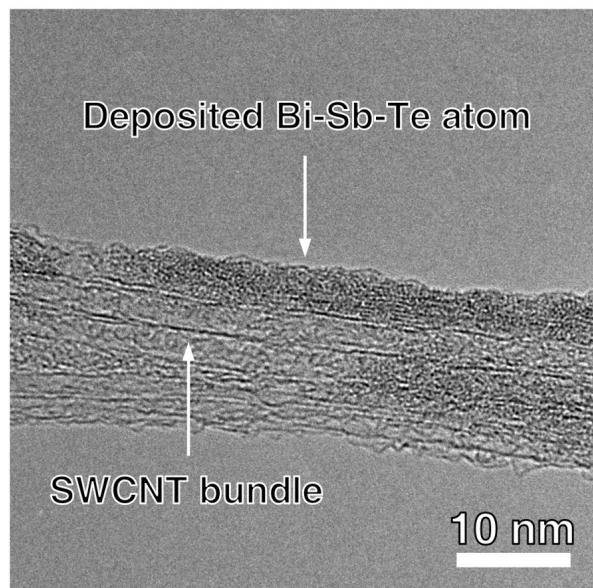

468 **Supplementary Fig. 9 | The valence charge-density contour surface for a $(\text{Bi},\text{Sb})_2\text{Te}_3$**
469 **nanocrystal deposited on the groove region of a SWCNT bundle.** The SWCNT- $(\text{Bi},\text{Sb})_2\text{Te}_3$
470 system is fully relaxed using the AIMD process. The white wireframe around the atoms is the
471 isosurface of the valence charge-density. The strong overlap of the charge-density isosurface
472 between metal atoms (Bi or Sb) and Te atoms indicates chemical bonding, while the empty
473 black background between the $(\text{Bi},\text{Sb})_2\text{Te}_3$ nanocrystal and the SWCNT bundle shows no
474 formation of chemical bonding between them.

475 **Supplementary Fig. 10**


476

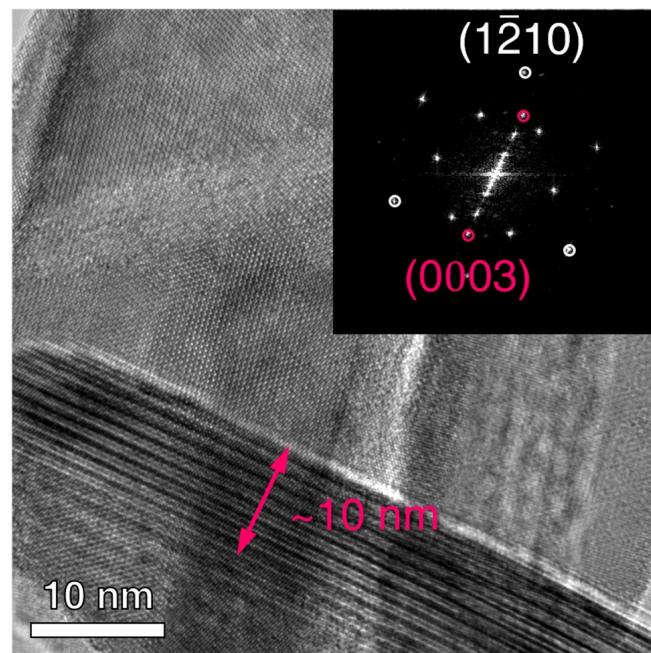
477 **Supplementary Fig. 10 | Schematic of the vdW interaction energy around SWCNTs.** The
478 SWCNT bundle groove has a stronger vdW force to guide an epitaxial growth than other areas.

479 **Supplementary Fig. 11**


480

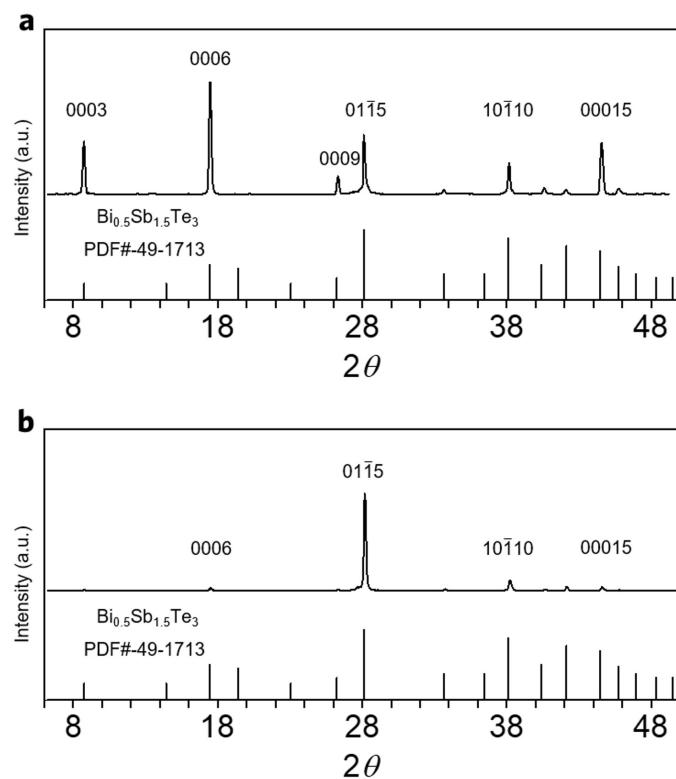
481 **Supplementary Fig. 11 | Comparison of the calculated energy of a Pt nanocrystal with a**
 482 **truncated polyhedron shape with SWCNTs. a,** Energy of Pt nanocrystals at the groove and
 483 other areas of SWCNTs. **b,** Energy of Pt nanocrystals at groove region with different
 484 orientations and positions. The Pt nanocrystal (100) atomic plane is parallel to the X-Y plane.
 485 Two sets of (100)-oriented Pt nanocrystals with $<100>$ and $<110>$ directions aligned with the
 486 SWCNT groove (X-axis) are calculated for the energy comparison. Inset: illustration of a
 487 SWCNT-Pt nanocrystal hybrid. Z_{mc} is the distance from the mass center of the Pt nanocrystal
 488 to the SWCNT. d_{min} is the minimum distance between the Pt nanocrystal and SWCNT atoms.
 489 d_{min} values are shown in the figure.

492 **Supplementary Fig. 12 | Illustration of the calculated interface energy between different**
 493 **Bi₂Te₃ atomic planes and a SWCNT bundle. a, (000l)/SWCNT. b,**
 494 **(1-100)/SWCNT. c, (01-15)/SWCNT. d, (01-110)/SWCNT. The interface energy is calculated by the formula:**
 495 $\Delta E = E_{\text{Bi}_2\text{Te}_3\text{-SWCNT}} - (E_{\text{CNT}} + E_{\text{Bi}_2\text{Te}_3})$. The result clearly shows that the (000l) Bi₂Te₃ atomic
 496 plane/ SWCNT bundle has the minimum interface energy.


497 **Supplementary Fig. 13**

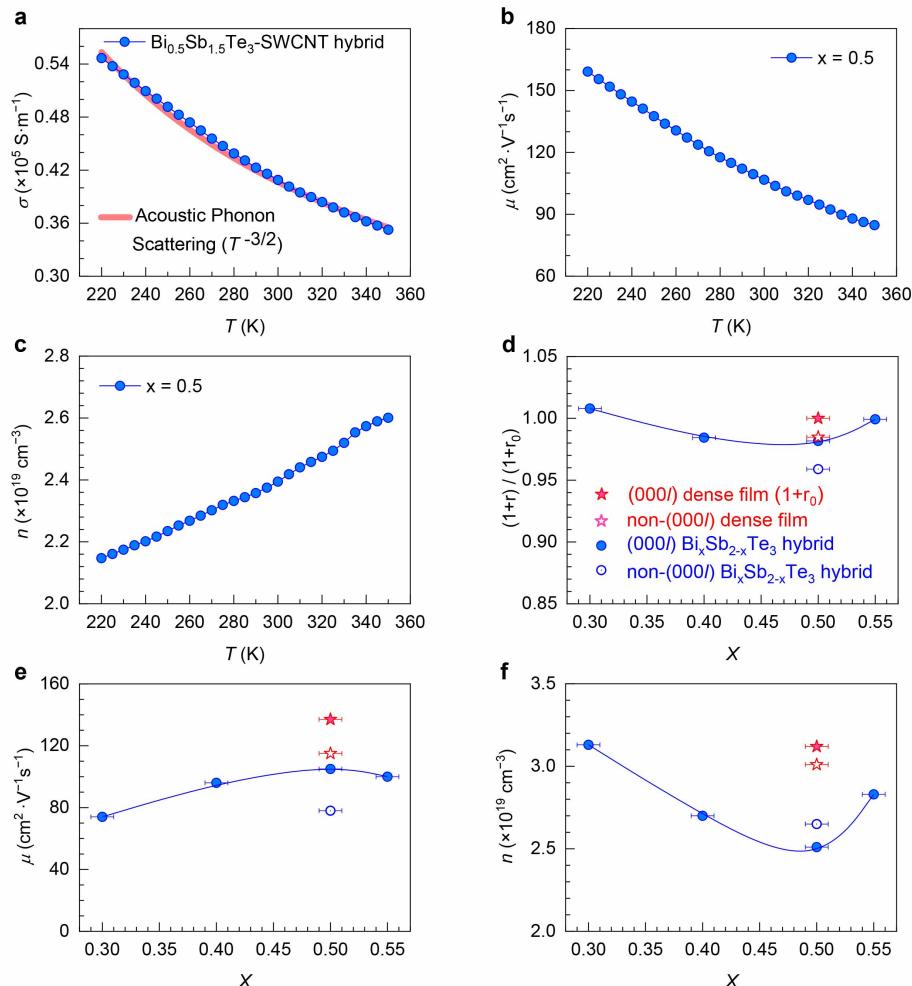
498

499 **Supplementary Fig. 13 | Bright-field TEM image of Bi-Sb-Te atoms deposited on a**
500 **SWCNT bundle.**

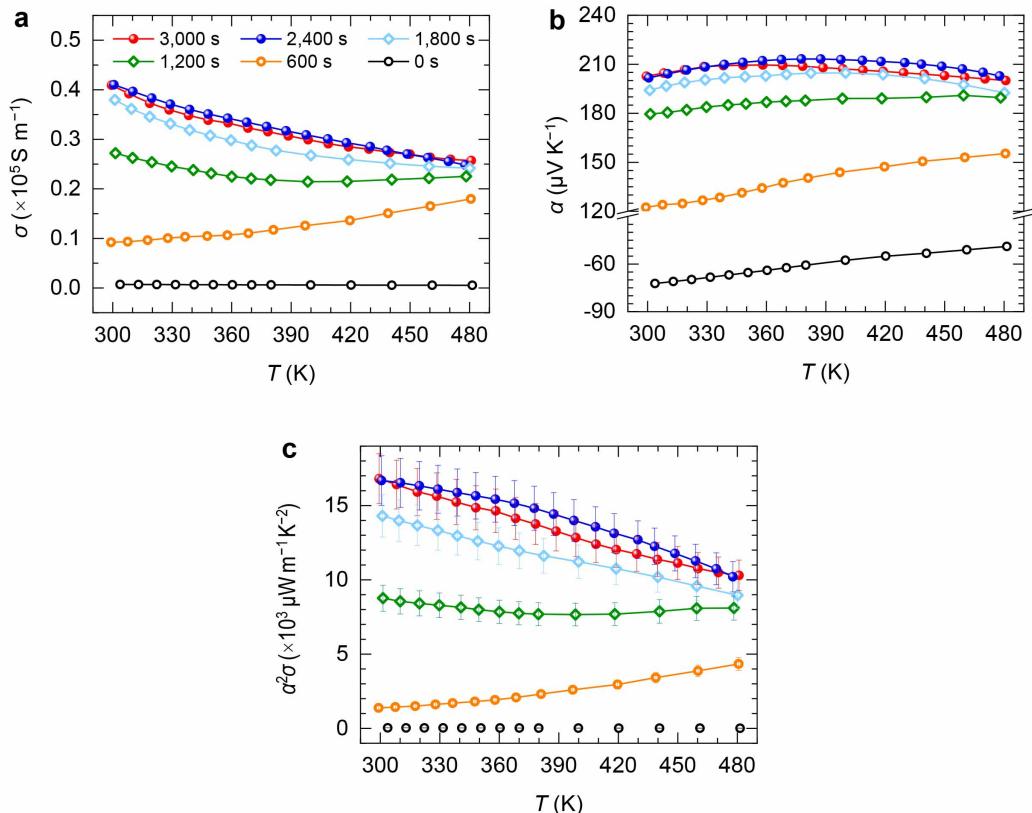

501 **Supplementary Fig. 14**

502

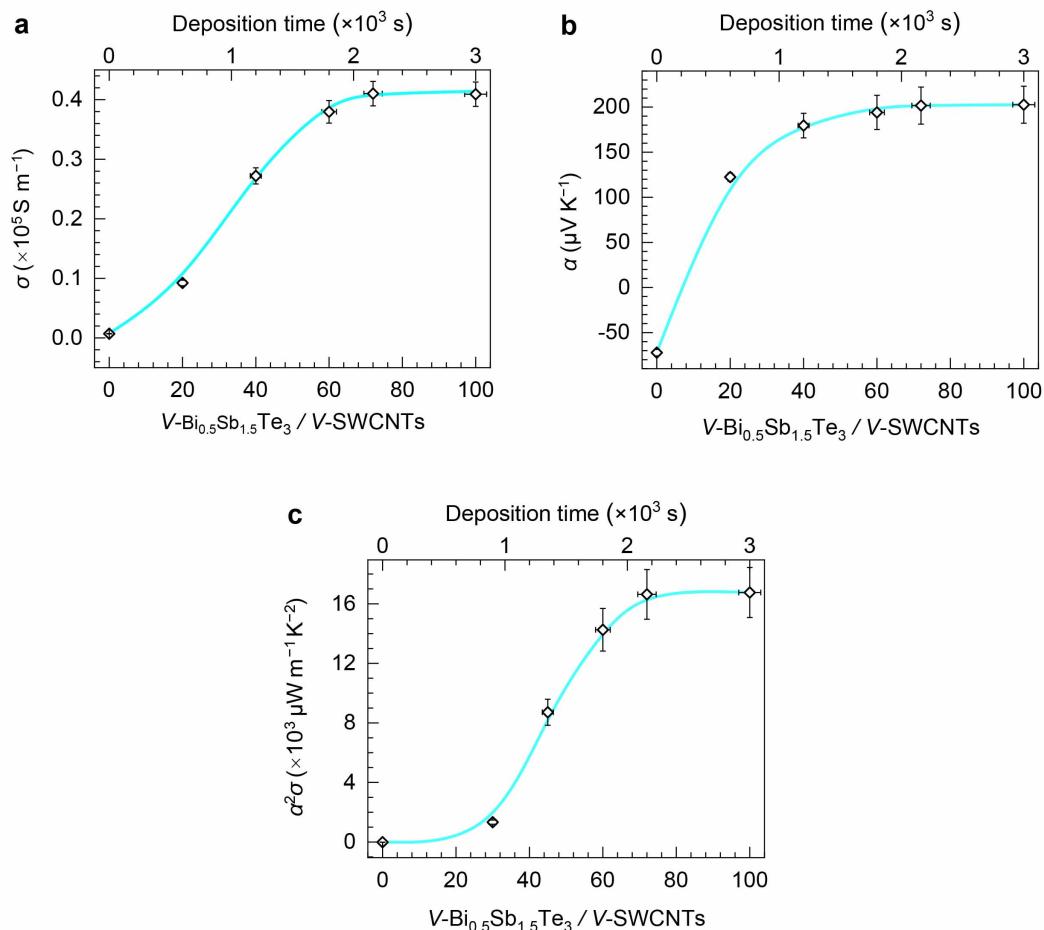
503 **Supplementary Fig. 14 | Cross-sectional high magnification bright-field TEM image of a**
504 **(Bi,Sb)₂Te₃ nanocrystal anchored on a SWCNT bundle.** Inset is the corresponding FFT
505 image.


506 **Supplementary Fig. 15**

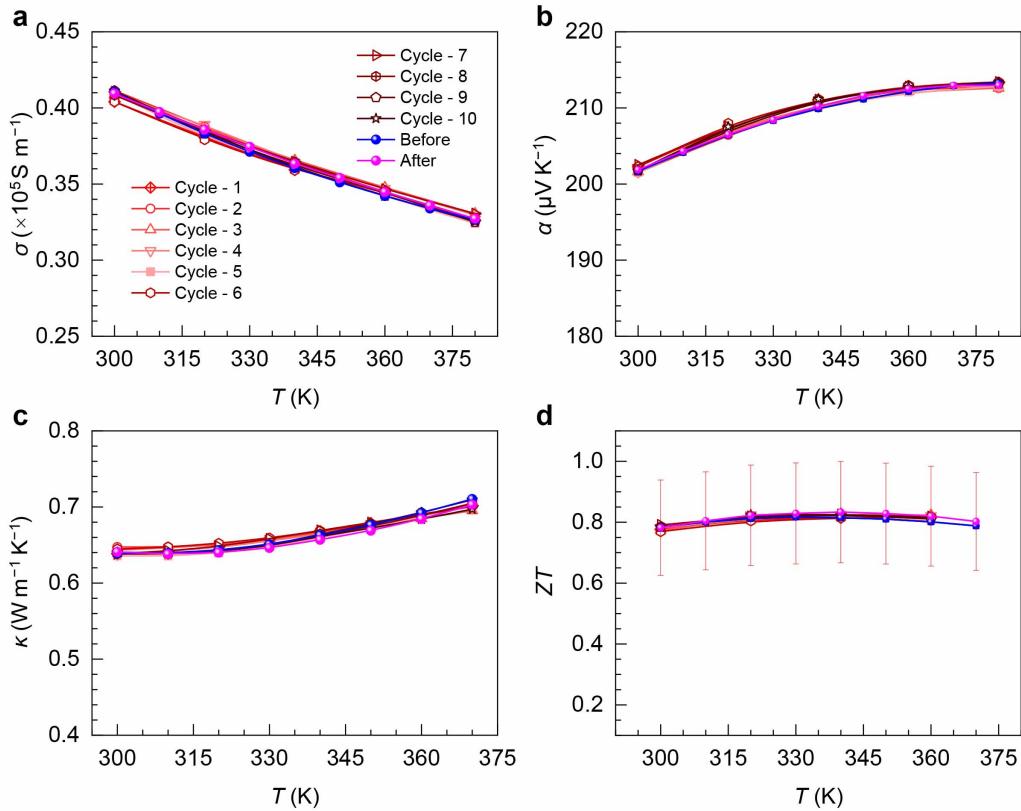
507


508 **Supplementary Fig. 15 | X-ray diffraction (XRD) patterns of the SWCNT-(Bi,Sb)₂Te₃**
509 **hybrids. a, The (000l)-textured SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrid. b, the non-(000l)-textured**
510 **SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrid.**

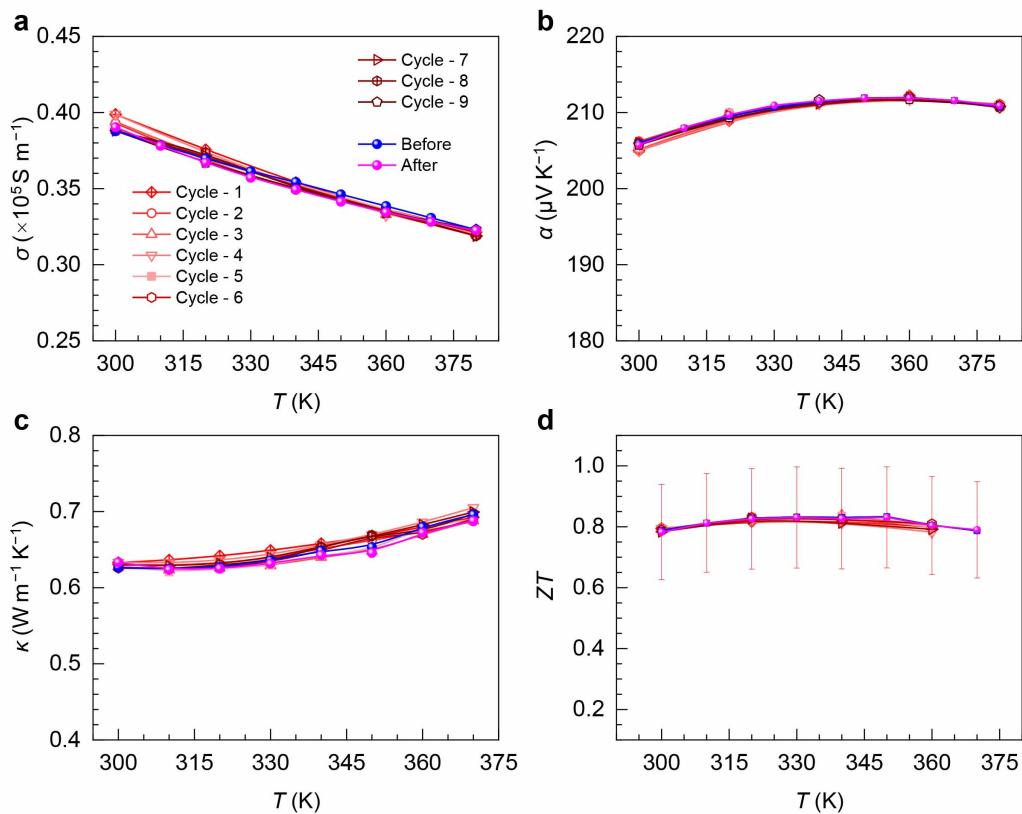
511 **Supplementary Fig. 16**

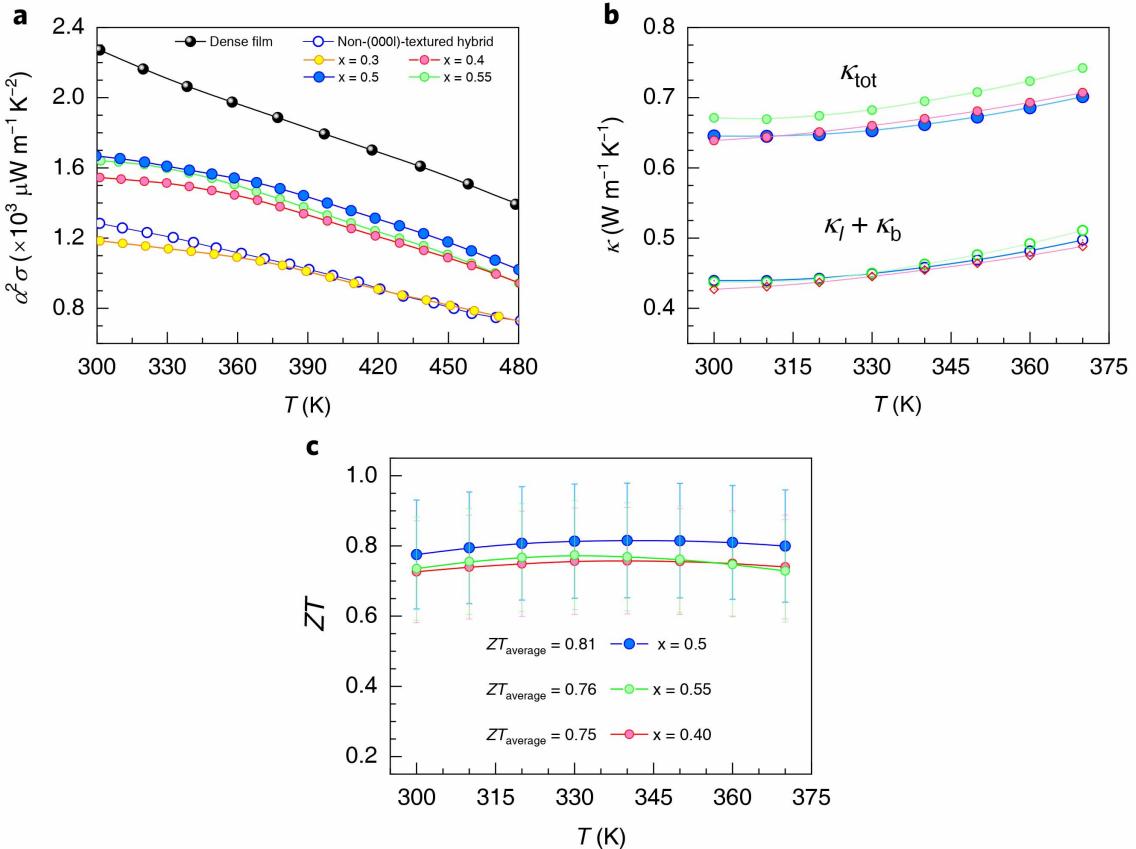

512

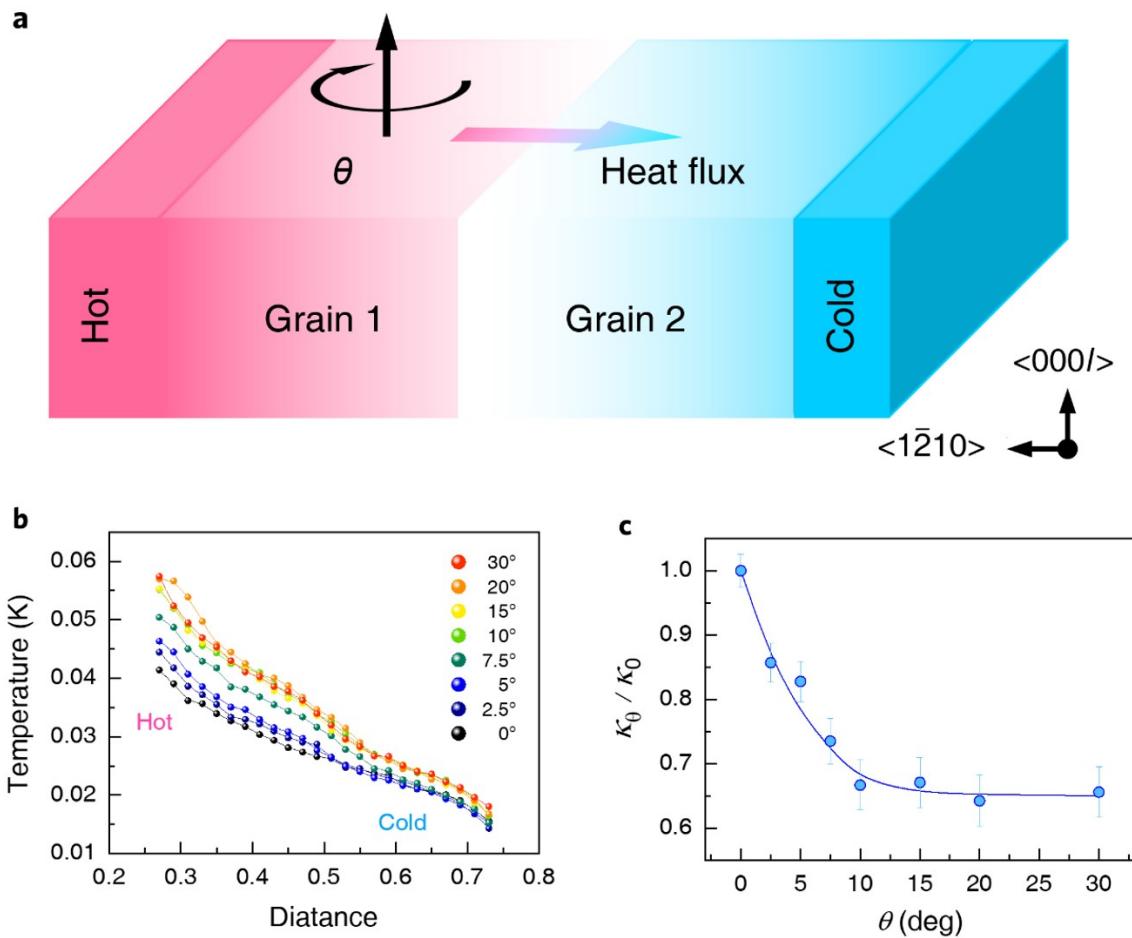
513 **Supplementary Fig. 16 | Measurement of electrical properties of SWCNT-(Bi,Sb)₂Te₃**
 514 **hybrids and a (Bi,Sb)₂Te₃ dense film. a,** Temperature-dependent electrical conductivity. **b,**
 515 **Carrier mobility. c,** Carrier concentration. **d,** Bi-doping concentration-dependent relative
 516 $m^*(1+r)$ values. **e,** Carrier mobility. **f,** Carrier concentration.

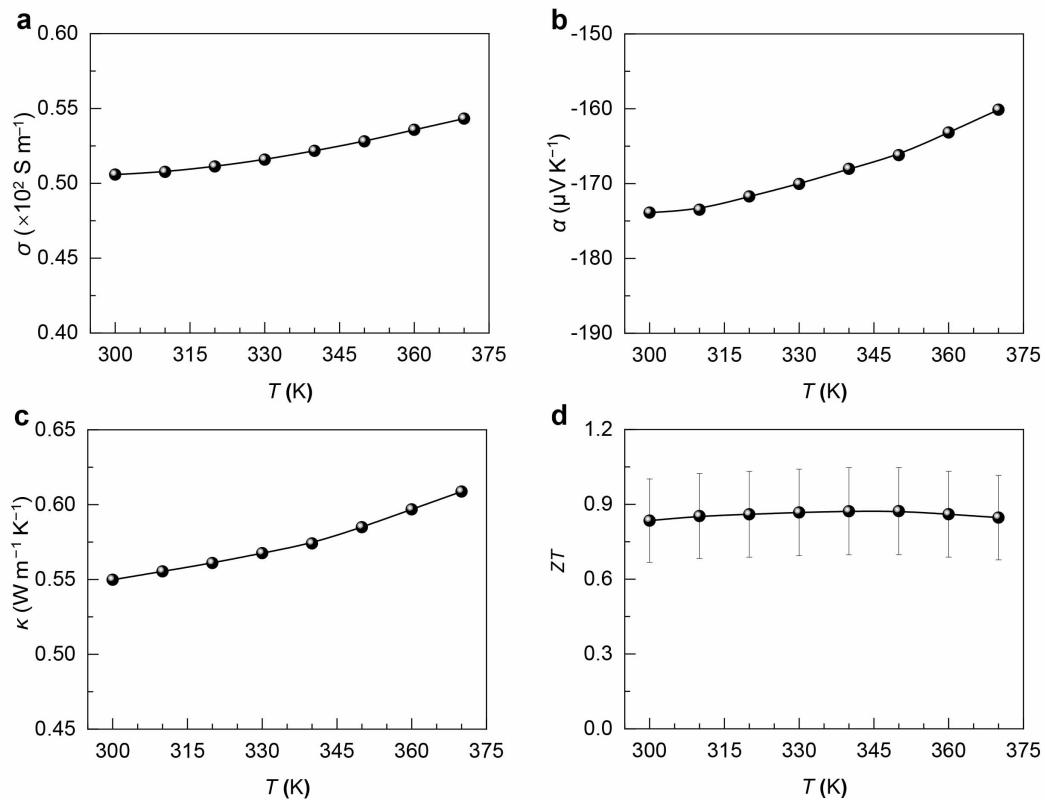

517 **Supplementary Fig. 17**

518

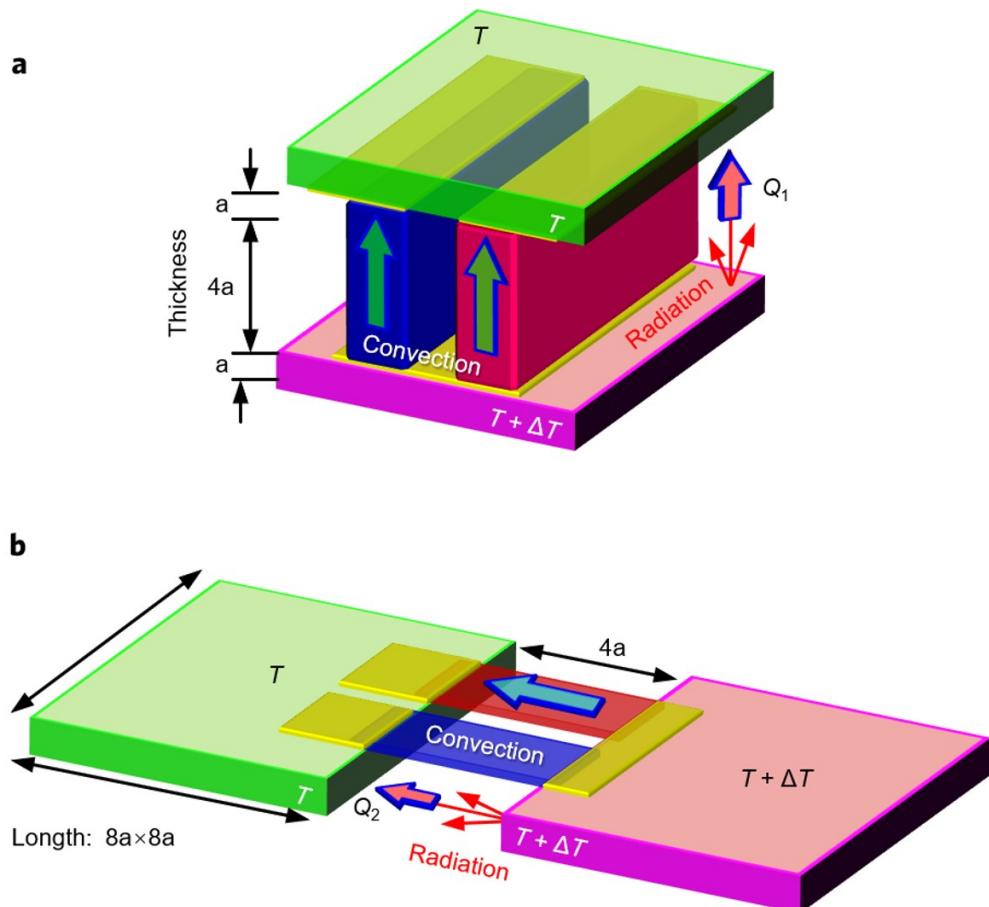

519 **Supplementary Fig. 17 | TE properties of the (000l)-textured SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrid**
 520 **with different Bi_{0.5}Sb_{1.5}Te₃ deposition times. a, Electrical conductivity. b, Seebeck coefficient.**
 521 **c, Power factor, its measurement uncertainty is about 10%.**


524 **Supplementary Fig. 18 | Dependence of the room temperature TE performances of (000l)-**
 525 **textured SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrids on the Bi_{0.5}Sb_{1.5}Te₃ deposition time (Bi_{0.5}Sb_{1.5}Te₃**
 526 **volume ratios, *V*- Bi_{0.5}Sb_{1.5}Te₃/V-SWCNT). a, Electrical conductivity. b, Seebeck coefficient.**
 527 **c, Power factor. The respective measurement uncertainties for a-c are about 5%, 3% and 10%.**

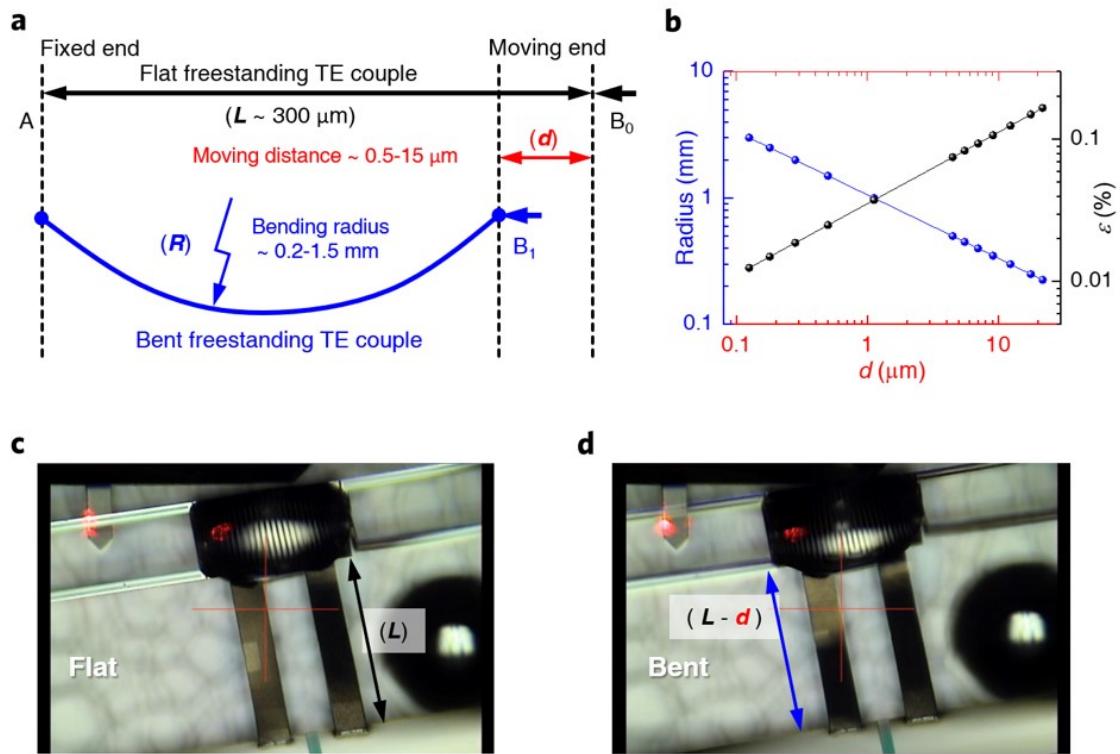

530 **Supplementary Fig. 19 | TE performance stability test of a 720-nm-thick (000l)-textured**
 531 **SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrid.** **a**, Electrical conductivity. **b**, Seebeck coefficient. **c**, Thermal
 532 conductivity. **d**, Calculated ZT value. The respective measurement uncertainties for **a-d** are
 533 about 5%, 3%, 10% and 20%.


536 **Supplementary Fig. 20 | TE performance stability test of a 720-nm-thick (000l)-textured**
 537 **SWCNT-Bi_{0.5}Sb_{1.5}Te₃ hybrid.** **a**, Electrical conductivity. **b**, Seebeck coefficient. **c**, Thermal
 538 conductivity. **d**, Calculated *ZT* value. The respective measurement uncertainties for **a-d** are
 539 about 5%, 3%, 10% and 20%.

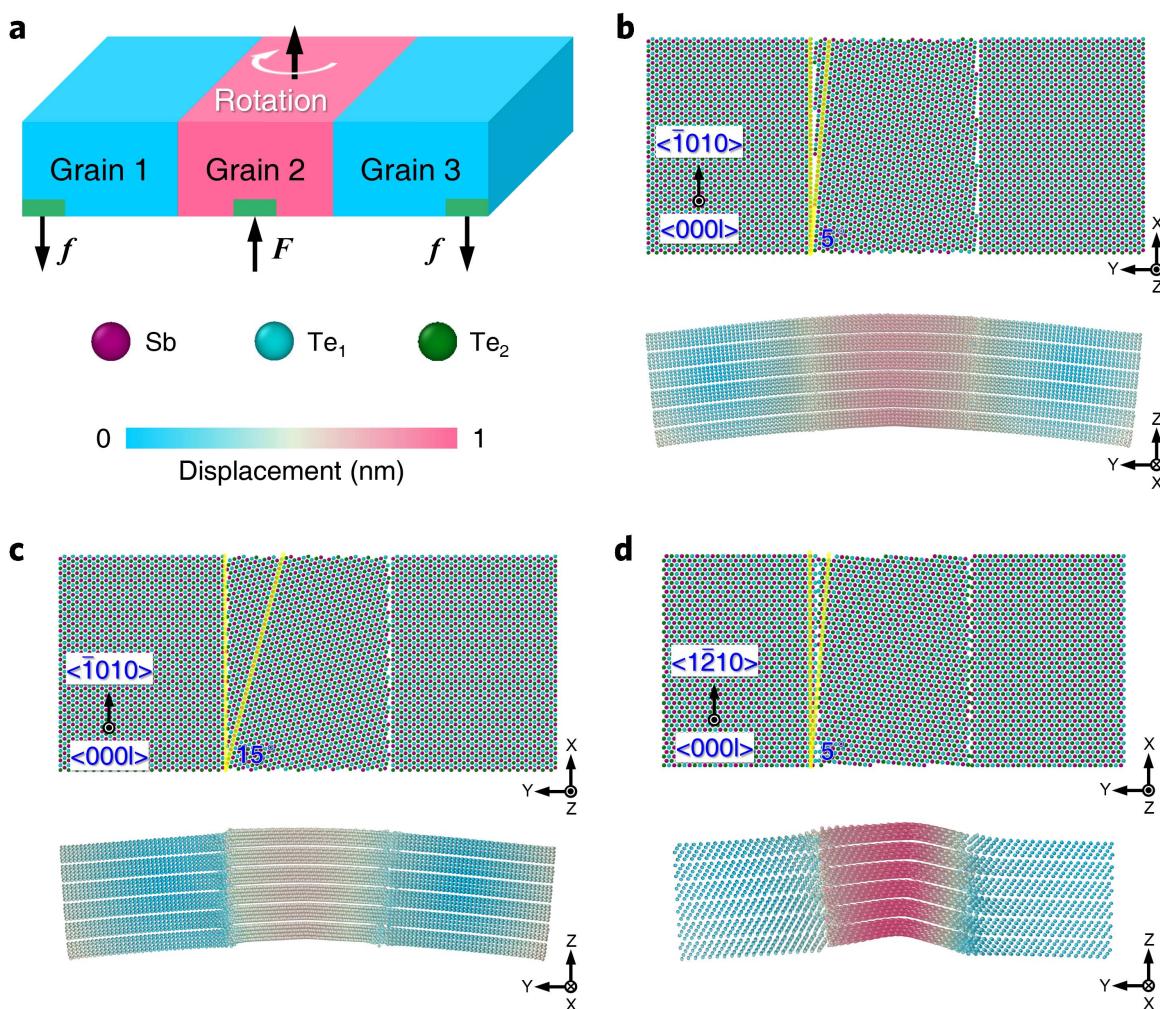
542 **Supplementary Fig. 21 | Thermoelectric characterization of the (000l)-textured SWCNT-
543 $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ -hybrid, a (000l)-textured dense $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ film and a non-(000l)-textured
544 SWCNT- $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ hybrid. a, Calculated power factors, b, Total in-plane thermal
545 conductivity and contributions from lattice thermal conductivity and a bipolar effect, c,
546 Calculated ZT values. Error bars for the calculated ZT are $\sim 20\%$, as determined from the
547 measurement uncertainties in the Seebeck coefficient ($\sim 3\%$), electrical conductivity ($\sim 5\%$) and
548 thermal conductivity ($\sim 10\%$).**


551 **Supplementary Fig. 22 | The influence of tilt boundaries with different angles (θ) on the**
 552 **thermal conductivity of a Sb_2Te_3 nanocrystal. a, Illustration of heat conduction across**
 553 **neighboring nanocrystals with a tilt boundary. b, Illustration of the temperature gradients of**
 554 **nanocrystals after full relaxation. The thermal conductivity (κ) is inversely proportional to the**
 555 **value of ΔT . The result shows that the κ value rapidly decreases with the increase of tilt angle**
 556 **from 0° to 10° and then slowly decreases from 10° to 30° . c, Thermal conductivity of two Sb_2Te_3**
 557 **nanocrystals with a tilt boundary.**

559


560 **Supplementary Fig. 23 | TE properties of the n-type SWCNT-Bi₂Te₃ hybrid.** **a**, Electrical
 561 conductivity. **b**, Seebeck coefficient. **c**, Thermal conductivity. **d**, Calculated ZT value. The Error
 562 bar of calculated ZT is $\sim \pm 20\%$.

563 **Supplementary Fig. 24**



564

565 **Supplementary Fig. 24** | Illustration of direct radiative and convective heat transfer between
566 the heat source and heat sink. Comparison of TEDs with a vertical structure (a) and a lateral
567 structure (b).

570 **Supplementary Fig. 25 | Flexibility evaluation of a freestanding p-n couple of a micro-
571 TED by an AFM instrument.** **a**, Schematic of the bending a freestanding p-n couple driven
572 by an AFM probe. **b**, Dependence of the bending radius of curvature (R) and the strain (ε) of
573 the freestanding p-n couple on the distance moved (d). **c**, **d** are the photographs of the flat and
574 bent freestanding p-n couple.

577 **Supplementary Fig. 26 | MD simulation of Sb_2Te_3 nanocrystals under bending.** **a**,
578 Illustration of the three-point model used for MD simulation. Sb_2Te_3 nanocrystals with low 5°
579 (b) and high 15° (c) angle tilt boundaries along $\text{Sb}_2\text{Te}_3 \langle\bar{1}210\rangle$ direction, and low 5° (d) angle
580 tilt boundaries along $\text{Sb}_2\text{Te}_3 \langle\bar{1}\bar{1}00\rangle$ direction. The $(000l)$ atomic planes of Sb_2Te_3 nanocrystals
581 are parallel to the X-Y plane before bending simulations. The atomic displacement and shear
582 strain of each case under bending deformation are shown on the Y-Z plane.

583 **Supplementary Table 1 | Calculated orientation factors F(X) of the SWCNT-(Bi,Sb)₂Te₃**
584 **hybrids**

(X)	0006	0115	10110	00015
000l	0.3483	-0.3253	-0.1467	0.0952
non-000l	0.0051	0.7487	-0.1358	-0.0468

585

586 **Supplementary References**

1. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes-the route toward applications. *Science* **297**, 787-793 (2002).
2. Kharlamova, M. V. Electronic properties of pristine and modified single-walled carbon nanotubes. *PHYS-USP+* **56**, 1047-1073 (2013).
3. Feng, C., Wang, J., Cheng, Y., He, P. & Liew, K. M. Diffusion mechanism of platinum nanoclusters on well-aligned carbon nanotubes. *RSC Adv.* **4**, 60711-60719 (2014).
4. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. *WIREs Comput. Mol. Sci.* **4**, 15-25 (2014).
5. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. *J. Comput. Phys.* **117**, 1-19 (1995).
6. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **6**, 15-50 (1996).
7. Tuckerman, M. E. Ab initiomolecular dynamics: basic concepts, current trends and novel applications. *J. Phys. Condens. Matter* **14**, R1297-R1355 (2002).
8. Roy Chowdhury, P., Feng, T. & Ruan, X. Development of interatomic potentials for the complex binary compound Sb_2Te_3 and the prediction of thermal conductivity. *Phys. Rev. B* **99**, 155202 (2019).
9. Dahal, A. & Batzill, M. Graphene–nickel interfaces: a review. *Nanoscale* **6**, 2548-2562 (2014).
10. Mishra, S. K., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. *J. Phys. Condens. Matter* **9**, 461-470 (1997).
11. Jin, Q., *et al.* Flexible layer-structured Bi_2Te_3 thermoelectric on a carbon nanotube scaffold. *Nat. Mater.* **18**, 62-68 (2019).
12. Mu, X., *et al.* Enhanced electrical properties of stoichiometric $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ film with high-crystallinity via layer-by-layer in-situ growth. *Nano Energy* **33**, 55-64 (2017).
13. Liao, H.-G., *et al.* Facet development during platinum nanocube growth. *Science* **345**, 916-919 (2014).
14. Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structure. *J. Inorg. Nucl. Chem.* **9**, 113-123 (1959).
15. Kim, Y., *et al.* Structural and thermoelectric transport properties of Sb_2Te_3 thin films grown by molecular beam epitaxy. *J. Appl. Phys.* **91**, 715-718 (2001).
16. Zhao, Y., *et al.* Decoupling phonon and carrier scattering at carbon nanotube/ Bi_2Te_3 interfaces for improved thermoelectric performance. *Carbon* **170**, 191-198 (2020).
17. Gong, J. J., *et al.* Investigation of the bipolar effect in the thermoelectric material CaMg_2Bi_2 using a first-principles study. *PCCP* **18**, 16566-16574 (2016).
18. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. *Science* **287**, 1801-1804 (2000).
19. Faleev, S. V. & Léonard, F. Theory of enhancement of thermoelectric properties of materials with nanojunctions. *Phys. Rev. B* **77**, 214304 (2008).
20. Martin, J., Wang, L., Chen, L. & Nolas, G. S. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. *Phys. Rev. B* **79**, 115311 (2009).
21. Kim, M., Freeman, A. J. & Geller, C. B. Screened exchange LDA determination of the ground and excited state properties of thermoelectrics: Bi_2Te_3 . *Phys. Rev. B* **72**, 035205 (2005).
22. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. *Nat. Mater.* **7**, 105-114 (2008).
23. Cutler, M., Leavy, J. F. & Fitzpatrick, R. L. Electronic transport in semimetallic cerium sulfide. *Phys.*

630 *Rev.* **133**, A1143-A1152 (1964).

631 24. Larson, P., Mahanti, S. D. & Kanatzidis, M. G. Electronic structure and transport of Bi_2Te_3 and
632 BaBiTe_3 . *Phys. Rev. B* **61**, 8162-8171 (2000).

633 25. Zheng, Y., *et al.* Mechanically robust BiSbTe alloys with superior thermoelectric performance: a
634 case study of stable hierarchical nanostructured thermoelectric materials. *Adv. Energy Mater.* **5**,
635 1401391 (2015).

636 26. Hu, L. P., *et al.* Shifting up the optimum figure of merit of p-type bismuth telluride-based
637 thermoelectric materials for power generation by suppressing intrinsic conduction. *NPG Asia Mater.*
638 **6**, e88 (2014).

639 27. Zhang, Q., *et al.* Constructing nanoporous carbon nanotubes/ Bi_2Te_3 composite for synchronous
640 regulation of the electrical and thermal performances. *J. Appl. Phys.* **121**, 055104 (2017).

641 28. Kim, H. S., Gibbs, Z. M., Tang, Y., Wang, H. & Snyder, G. J. Characterization of Lorenz number
642 with Seebeck coefficient measurement. *APL Mater.* **3**, 105 (2015).

643 29. Takashiri, M., Tanaka, S. & Miyazaki, K. Improved thermoelectric performance of highly-oriented
644 nanocrystalline bismuth antimony telluride thin films. *Thin Solid Films* **519**, 619-624 (2010).

645 30. Schumacher, C., *et al.* Optimizations of pulsed plated p and n-type Bi_2Te_3 -based ternary compounds
646 by annealing in different ambient atmospheres. *Adv. Energy Mater.* **3**, 95-104 (2013).

647 31. Wang, Y. G., Qiu, B., H., M. A. J., Xiulin, R. & Xianfan, X. Mode-wise thermal conductivity of
648 bismuth telluride. *J. Heat Transfer* **135**, 091102 (2013).

649 32. Fang, T., *et al.* Complex band structures and lattice dynamics of Bi_2Te_3 -based compounds and solid
650 solutions. *Adv. Funct. Mater.* **29**, 1900677 (2019).

651 33. Qiao, J., *et al.* Tailoring nanoporous structures in Bi_2Te_3 thin films for improved thermoelectric
652 performance. *ACS Appl. Mater. Interfaces* **11**, 38075-38083 (2019).

653 34. Wirsberger, P., Frenkel, D. & Dellago, C. An enhanced version of the heat exchange algorithm with
654 excellent energy conservation properties. *J. Chem. Phys.* **143**, 124104 (2015).

655 35. Rowe, D. M. *Thermoelectrics Handbook: Macro to Nano* (CRC, Boca Raton, 2006).

656 36. Suo, Z., Ma, E. Y., Gleskova, H. & Wagner, S. Mechanics of rollable and foldable film on foil
657 electronics. *Appl. Phys. Lett.* **74**, 1177-1179 (1999).

658 37. Huang, B. L. & Kaviany, M. Ab initio and molecular dynamics predictions for electron and phonon
659 transport in bismuth telluride. *Phys. Rev. B* **7720**, 125209 (2008).

660 38. Jenkins, J. O., Rayne, J. A. & Ure, R. W. Elastic moduli and phonon properties of Bi_2Te_3 . *Phys. Rev.*
661 *B* **5**, 3171 (1972).

662 39. Huang, J., *et al.* Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and
663 mechanical properties. *Polymer* **44**, 4491-4499 (2003).

664 40. Oikawa, E., Motomi, K. & Aoki, T. Synthesis and properties of polyimide-clay hybrid films. *J.*
665 *Polym. Sci., Part A: Polym. Chem.* **35**, 2493-2498 (1997).