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Figure S1. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway: Chemical Carcinogenesis — DNA adducts.
A KEGG pathway ‘Chemical Carcinogenesis — DNA adduct’ enriched liver tissues from mice fed fructose water, which was retrieved from transcriptome for KEGG p

athway terms.

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes
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Figure S2. Canonical Pathway: Mitochondrial dysfunction.

Colonic transcriptomics suggests that IDH2 KO-induced mitochondrial dysfunction is linked to the suppression of Complex 1V and V in comparison to WT mice.
Blue/red indicate observed inhibition/activation, while green/orange represent predicted inhibition/activation.

Abbreviations: IDH2, isocitrate dehydrogenase 2; KO, knockout; WT, wild type
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Figure S3. Canonical Pathway: Mitochondrial dysfunction.
Colonic transcriptomics reveals that 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP)-mediated mitochondrial dysfunction is linked to the suppression of
Complex | and IV In WT mice. Blue/red indicate observed inhibition/activation, while green/orange represent predicted inhibition/activation.

Abbreviations: IDH2, isocitrate dehydrogenase 2; KO, knockout; PhlIP, 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine; WT, wild type
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Figure S4. Canonical Pathway: Mitochondrial dysfunction.

Colonic transcriptomics suggests that IDH2 KO exacerbates PhIP-mediated mitochondrial dysfunction via overall suppression of the electron transport chain. Blue/red
Indicate observed inhibition/activation, while green/orange represent predicted inhibition/activation.

Abbreviations: IDH2, isocitrate dehydrogenase 2; KO, knockout; PhlIP, 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine
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Figure S5. Canonical Pathway: Mitochondrial dysfunction.
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Figure S6. Plasma metabolomics revealed that isocitrate denydrogenase 2 (IDH2) knockout (KO) may induce reductive TCA cycle.

Key metabolites of the TCA cycle in plasma of mice to validate IDH2 KO-mediated metabolic shift. Data are present as mean + standard error of the mean (n=6 per
group). A p-value of 0.05 or less was considered statistically significant; *p<0.05.

Abbreviations: IDH2, isocitrate dehydrogenase 2; KO, knockout; WT, wild type



Table S1. Activated or inhibited canonical pathwaysl in colon tissues by IDH2 knockout

Canonical Pathways -log(p-value) Z-Score?
Interferon alpha/beta signaling 10.7 3.606
Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza 8.53 2.887
|ISGylation Signaling Pathway 5.52 2.53
Pathogen Induced Cytokine Storm Signaling Pathway 2.61 2.496
DDX58/IFIH1-mediated induction of interferon-alpha/beta 2.29 2.236
Activation of IRF by Cytosolic Pattern Recognition Receptors 5.45 2.121
Neuroinflammation Signaling Pathway 3.76 2.111
Interferon Signaling 3.85 2
Antigen Presentation Pathway 2.67

SPINK1 Pancreatic Cancer Pathway 2 2
Immunogenic Cell Death Signaling Pathway 1.42 2
Death Receptor Signaling 1.33 2
Glucose metabolism 1.58 -2
Coronavirus Pathogenesis Pathway 2.07 -2.121
The citric acid (TCA) cycle and respiratory electron transport 2.98 -2.236
O-linked glycosylation 1.69 -2.236
lon channel transport 2.93 -2.333
Gap Junction Signaling 1.39 -2.333
Serotonin Receptor Signaling 2.55 -2.84

LActivity states were predicted by the IPA software using differentially expressed genes.

Calculated activity score. Positive and negative values indicate predicted activated and predicted inhibited, respectively.



