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Fig. S 1: Changes in atmospheric conditions during the occurrence of annual maxima WBGT
hours at 2 °C global warming. Average annual maximum hourly WBGT change (a). Changes in
2 m temperature (b, T2), 2 m specific humidity (c, Q2), sea level pressure (d, PSFC), 10 m zonal
(e, U10) and meridional wind (f, V10), downward longwave (g, LWDNB) and shortwave radiation
(h, SWDNB) at the surface, upward longwave (i, LWUPB) and shortwave (j, SWUPB) radiation
at the surface during the occurrence of annual maximum hourly WBGTs. The median month of

WBGT hourly maxima occurrence under the baseline climate (0.25 °C warming; k).
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Fig. S 2: Increases in annual average Yellow flag hours (YFHs) are the largest in coastal
regions around the Gulf of Mexico, Gulf of California, the southern U.S. Atlantic Coast,
and Caribbean islands with northern regions regularly becoming exposed to YFHs at 2°C
global warming. Baseline annual average YFH frequency in CONUS404 (a) and ERAS (b) at
0.25°C. Changes in annual average YFH frequency at 1 °C (c, CONUS404; d, ERAS), and 2°C
(e, CONUS404) global average warming.
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Fig. S 3: Average annual maximum nighttime minimum WBGTsS are increasing fastest in
northern land regions under continuous global warming. Average annual maximum nighttime
minimum WBGTSs during the baseline period (a, b). Changes in average annual maximum night-
time minimum WBGTs at 1 °C (c,d), and 2 °C global warming (e¢). CONUS404 results are shown
in the top row and ERAS results in the bottom row. Dashing in (c—) show areas with significant

changes according to a two-sided Mann-Whitney U Test (p=0.05).
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Fig. S 4: Green Flag Hours (GFH; WBGT > 26°C) get exceeded very frequently during
nighttime hours (20:00—-6:00 solar local time) under continuous global warming. Exceedance

frequencies of GFH during the night in the baseline period (a,b; 0.25°C global warming) and

corresponding changes at 1°C (c,d), and 2 °C global warming (e). Results from CONUS404 are

shown in the top row and results for ERAS are shown in the bottom row.
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Fig. S 5: A quadratic function offers the best fit for representing the empirical data of popu-
lation exposure to BFHs in most regions of North America. The black dots show the shows the
median population exposure for different global warming levels. Different colored lines show the
best fit of various functions to the empirical data (colors correspond to font colors in the legend).
The coefficient of determination (R?) is shown for each functional fit (higher is better).
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Fig. S 6: The change in the hourly WBGT probability density function (PDF) with global
warming can be very well approximated by rightwards shifting the baseline PDF. The black
flack hour (BFH) exceedance probability, thereby, increases approximately exponentially be-
tween -1°C - 2°C local warming. Hourly WBGT PDFs for Phoenix (a), Miami (c), Chicago
(e), and New York City (g) under the baseline (black), 1 °C (blue), and 2 °C (red) global warming.
The blue-dotted PFD is the baseline PDF shifted by 1 °C local warming in Phoenix and 1.3 °C in
the other cities. The lower row shows BFH exceedance probabilities (black line) when shifting the
baseline PDF to colder or warmer conditions. Different colored lines show the best fit of various
functions to this data (colors correspond to font colors in the legend) between -1°C — 2°C. The
coefficient of determination (R?) is shown for each functional fit in the inset table (higher is better).

The red dot shows the empirical BFH exceedance probability at 2 °C global warming derived from
the CONUS404 PGW data.
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Fig. S 7: Heatwave frequencies are increasing in the north but decreasing in the Gulf of
Mexico and California. The latter is caused by merging of individual heatwaves into mega
heatwaves that can last for several months under 2 °C global warming. Annual heatwave
frequencies in the baseline period (a; 0.25 °C global warming) and heatwave frequency changes
under 1°C (b), and 2°C (c) global warming. Similarly, the average annual maximum heatwave
duration and its changes are shown for the same warming levels in panels b, d, and f. Stippling
in panels c—f shows significant changes according to a two-sided Mann-Whitney U test (p=0.05).
The seven-day heatwave frequency contour is shown as a black line in the top panels. The 20-day
average annual maximum heatwave length is shown as a black contour line in the lower panels.
The baseline contour line is shown in the 2 °C global warming panels as a dashed blue contour

line.
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Fig. S 8: The linearized model to decomposite annual maximum WBGT changes is very
closely replicating the original annual maximum WBGT change at 2°C global warming.
Original annual maximum hourly WBGT change at 2 °C global warming (a) and the sum of the
compositional contribution from single variables (b; Equation 1 and Fig. 5 in the main manuscript).
The residual error from the total compositional contribution is mostly smaller than 0.1 °C (c).



