Hyperparameters considered in the fine-tuning process while training.
These are the python codes used to determined the hyper-parameters to fine tune during the training process.
1. SVM model
model = svm.SVC(probability = True, random_state = 0, max_iter = 1000000)
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
define grid ------------------------
weights = [{1:1}, {1:2}, {1:3}, {1:4},{1:5},{1:8},{1:10}, {1:25},{1:50},{1:75},{1:99},{1:100},{1:500}]
param_grid = dict(class_weight =weights, kernel =kernels)
2. Random Forest
model = RandomForestClassifier(max_features = None, n_jobs=-1, bootstrap = True, random_state = 0)
define grid ------------------------
weights = [{1:1}, {1:2}, {1:3}, {1:4},{1:5},{1:8},{1:10}, {1:25},{1:50},{1:75},{1:99},{1:100},{1:500}]
criteria = ['gini', 'entropy']
depth = [10, 20, None]
param_grid = dict(class_weight =weights, criterion = criteria, max_depth = depth)
3. Extreme Gradient Boost
model = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic', eval_metric = 'auc')
define grid ------------------------
weights = [1, 2,3,4,5, 8, 10, 25, 50, 75, 99, 100, 500]
boosters = ['gbtree', 'gblinear']
lambdas = [1, 5,10, 100]
alphas = [0, 10, 100]
param_grid = dict(scale_pos_weight=weights, booster = boosters, reg_lambda = lambdas, reg_alpha = alphas)
4. Long short-term memory
clf == 'LSTM':
batch_size = [10, 20, 60, 100, 250, 500]
epochs = [10, 50, 100, 500]
dropout_rate = [0.2, 0.5]
param_grid = dict(batch_size=batch_size, epochs=epochs, dropout_rate=dropout_rate)
 X_train = X_train.reshape(len(X_train),1,X_train.shape[1]); X_valid = X_valid.reshape(len(X_valid),1,X_valid.shape[1])
 def create_model(dropout_rate = 0.0):
 model = Sequential()
 model.add(layers.LSTM(80, activation='relu', input_shape=(1, X_train.shape[2])))
 model.add(layers.Dropout(dropout_rate))
 model.add(layers.Dense(10, activation='relu'))
 model.add(layers.Dropout(dropout_rate))
 model.add(layers.Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='adam')#, metrics=['accuracy'])
 return model
 model = KerasClassifier(build_fn=create_model, verbose=0)
5. Gated recurrent Unit
 elif clf == 'GRU':
 batch_size = [10, 20, 60, 100, 250, 500]
 epochs = [10, 50, 100, 500]
 dropout_rate = [0.2, 0.5]
 param_grid = dict(batch_size=batch_size, epochs=epochs, dropout_rate=dropout_rate)
 X_train = X_train.reshape(len(X_train),1,X_train.shape[1]); X_valid = X_valid.reshape(len(X_valid),1,X_valid.shape[1])
 def create_model(dropout_rate = 0.0):
 model = Sequential()
 model.add(layers.GRU(80, activation='relu', input_shape=(1, X_train.shape[2])))
 model.add(layers.Dropout(dropout_rate))
 model.add(layers.Dense(10, activation='relu'))
 model.add(layers.Dropout(dropout_rate))
 model.add(layers.Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='adam')#, metrics=['accuracy'])
 return model
