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1 Supplementary results

(a) (b) (c)

r=0.90r=0.58r=0.37

Supplementary Figure 1: Correlation of energy differences (|∆E|) with the three measures of
structural differences: (a) root mean square deviation (RMSD), (b) mean absolute error of
interatomic distances (D-MAE), and (c) geodesic distance. The energy and structure differences
were calculated for 1,000 randomly selected pairs of structures optimized by the MMFF and DFT methods.
Both the x- and y-axes are plotted on a log-log scale and have been adjusted for better visualization. Pearson’s
correlation coefficients (r) quantify the linear relationship between the energy differences and each structural
measurement.
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Supplementary Table 3: Comparison of RMSD, D-MAE, and norm distance at q-coordinates for
different models on the QM9 [6] test set. This table shows root mean square deviation (RMSD),
mean absolute error of interatomic distances (D-MAE), and norm distance at q-coordinates for the predicted
structures by MMFF, E-DSM, R-DSM, and R-DSM∗. R-DSM∗ refers to the R-DSM model trained only on
noisy structures generated by Euclidean noise-sampling.

RMSD (Å) D-MAE (Å) ||q0 − q̂0||2
Mean Median Mean Median Mean Median

MMFF 0.200 0.137 0.0717 0.0571 0.131 0.115
E-DSM 0.166 0.091 0.0454 0.0280 0.0612 0.0487
R-DSM 0.104 0.031 0.0256 0.0095 0.0269 0.0119
R-DSM∗ 0.162 0.087 0.0435 0.0257 0.0440 0.0286
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Geodesic on Euclidean
Geodesic on
Energy minimization path

Supplementary Figure 2: Energy profile comparisons between energy minimization paths (red
lines) and geodesics in Euclidean space (green lines) the Riemannian manifold (orange lines),
using a dozen examples from the QM9 dataset. The left and right endpoints correspond to the MMFF
structure and the reference DFT structure, respectively.
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(a)

(c)

(b)

(d)

Supplementary Figure 3: Comparison of molecular structures sampled from noisy distributions
of Euclidean and Riemannian spaces. The distributions of (a) RMSD, (b) absolute energy difference
|∆E|, (c) mean absolute error of interatomic distances (D-MAE), and (d) norm distance at q-coordinates; for
molecular structures obtained by MMFF (orange), Riemannian noise-sampling (blue), and Euclidean noise-
sampling (green), with the DFT structures as reference. Each distribution is plotted with 1,000 randomly
selected molecules for each method; however, 23 samples are excluded from the Euclidean noise-sampled
structures due to failure to converge in the self-consistent field (SCF) calculation.
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(a) (b) (c) (d)

Supplementary Figure 4: Comparative analysis of molecular structures predicted by R-DSM, E-
DSM, and MMFF. Histograms compare the distributions of (a) root mean square deviation (RMSD),
(b) mean absolute error of interatomic distances (D-MAE), and (c) norm distance at q-coordinates, and
(d) absolute energy difference (|∆E|); predicted by R-DSM (blue) and E-DSM (yellow) models and MMFF
(green). The sampling was performed on the QM9 [6] set, and the energy values were obtained from single
point DFT calculations.

(a) (b) (c)

(d) (e)

Supplementary Figure 5: Visualization of starting structures diverged in optimization using R-
DSM. (a) and (b) show the starting structures obtained by ConfGF, while (c) presents the starting structure
from GeoDiff. (d) and (e) show the starting structures from ETKDG. Extremely short bond lengths or
collapsing structures can be observed.
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Supplementary Figure 6: Distribution of RMSD between reference conformations of the GEOM-
QM9 [1] test set.
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2 Training details
This section outlines the training details for R-DSM. The loss function of R-DSM is defined as:

L(θ) = EP

∫ tmax

0

σ2
t

∥∥∥∥∥sθ(Xt, t)−
exp−1

Xt
(X0)

σ2
t

∥∥∥∥∥
2

g

dt

 . (1)

By reformulating sθ with fθ/σ
2
t , Eq. 1 becomes

L(θ) = EP

[∫ tmax

0

1

σ2
t

∥∥∥fθ(Xt)− exp−1
Xt

(X0)
∥∥∥2
g
dt

]
. (2)

Thus, the neural network fθ(Xt) is trained to predict exp−1
Xt

(X0), the direction vector on the tangent plane.
To train the R-DSM model efficiently, we adopted a two-step approach. Initially, R-DSM was pretrained

using noisy structures generated through Euclidean noise-sampling, which can be obtained immediately.
This was followed by fine-tuning using noisy structures obtained from Riemannian noise-sampling.

During pretraining, we approximate the logarithmic map exp−1
xt

(x0) for computational efficiency as fol-
lows:

exp−1
xt

(x0) ≈
ProjTxtM

(q0 − qt)

∥ProjTxtM
(q0 − qt)∥2

∥q0 − qt∥2, (3)

where qt and q0 denotes the vector of q-coordinate in R|E| corresponding to xt and x0, respectively, and
ProjTxtM

represents the projection of (q0 − qt) onto the tangent plane at qt which is subspace of R|E|. The
size relationship among the three vectors is as follows: ∥ exp−1

xt
(x0)∥g ≥ ∥q0 − qt∥2 ≥ ∥ProjTxtM

(q0 − qt)∥2.
To correct the reduction in length due to projection, we rescale the vector to match ∥q0 − qt∥2. Accurately
computing exp−1

xt
(x0), by determining the geodesic path between x0 and xt on the manifold and obtaining the

associated tangent vector, involves a non-negligible computational cost. For efficiency, this approximation is
applied instead.

As described in the main text, the noisy structure xt in Riemannian space is obtained as follows:

xt = expx0
(σtεt), (4)

where εt ∈ Tx0
M is a tangent vector representing the direction of noise. In our implementation, the

diffusion process is simulated by sampling velocity vectors within the tangent space Txt
M to represent

small incremental changes. These sampled tangent vectors are then mapped back onto the manifold via the
exponential map expxt

, effectively solving the geodesic equation with the initial velocity provided by the
sample. We use the Runge-Kutta method to discretize and solve Eq. 4 numerically. For efficiency, noisy
structures were pre-generated and stored for use in the training phase, with three noisy structures for each
reference structure in QM9 [6] and one for each in GEOM-QM9 [1].

Details on hyperparameters related to E-DSM and R-DSM can be found in Supplementary Table 4.
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Supplementary Table 4: Hyperparameters of R-DSM and E-DSM.
parameter R-DSM E-DSM
β1 1e-7 1e-7
βT 2e-3 2e-3
β scheduler sigmoid sigmoid
T 5,000 5,000
tmax 1,500 5,000
hidden dimension 128 128
layers 7 7
activation swish swish
batch size 300 300
epoch 3,000 3,000
sampling method ODE ODE
sampling steps 128 128

3 Performance and the number of function evaluations
This section examines the performance of E-DSM and R-DSM models in terms of convergence of accuracy
and computational efficiency as a function of the number of function evaluations (nfe).

In Supplementary Figure 7, convergence of accuracy is analyzed by plotting various measurements
(RMSD, D-MAE, and ∥q0 − q̂0∥2) as a function of nfe. R-DSM† demonstrates stable accuracy even at low
nfe values, indicating that the model maintains robustness with fewer function evaluations. Both E-DSM
and R-DSM† converge across all three measurements by nfe=128.

Compared to E-DSM, R-DSM† requires exponential mapping, which introduces additional computational
cost. Given the trade-off between performance convergence and inference time, selecting an appropriate nfe
is crucial for efficiency. When nfe is sufficiently large, the denoising of molecular structures on the manifold
can be approximated in smaller, linear segments, allowing the tangent vectors to be applied in Euclidean
space without the need for exponential mapping.

To explore this further, we evaluate R-DSM without exponential mapping at nfe=16 and 128, comparing
its accuracy and computational efficiency with R-DSM† (see Supplementary Table 5). The results show that
R-DSM achieves nearly equivalent performance to R-DSM† at nfe=128, while being approximately five times
faster. Therefore, in evaluations in the main text, we used E-DSM and R-DSM with nfe=128.

Supplementary Table 5: Elapsed CPU time per sample and comparison of RMSD, D-MAE, and
norm distance at q-coordinates for E-DSM and R-DSM models with the number of function
evaluations (nfe) of 16 and 128. Sampling for the two R-DSM models was performed both with and
without exponential mapping, referred to as R-DSM† and R-DSM, respectively. This table shows the root
mean square deviation (RMSD), mean absolute error of interatomic distances (D-MAE), and norm distance
at q-coordinates (∥q0 − q̂0∥2) for the predicted structures by E-DSM, R-DSM, and R-DSM† at two different
levels of function evaluations. Elapsed times were measured using 16 threads on a computing node equipped
with Intel(R) Xeon(R) Gold 6326 CPUs (2.90 GHz) and a batch size of 300.

RMSD (Å) D-MAE (Å) ∥q0 − q̂0∥2
Method Mean Median Mean Median Mean Median Time

E-DSM (nfe=16) 0.180 0.0971 0.0572 0.0302 0.0901 0.0510 0.046 s
R-DSM† (nfe=16) 0.109 0.0334 0.0270 0.00996 0.0273 0.0124 0.31 s
R-DSM (nfe=16) 0.109 0.0335 0.0270 0.00999 0.0299 0.0130 0.070 s
E-DSM (nfe=128) 0.166 0.0911 0.0454 0.0280 0.0612 0.0487 0.32 s
R-DSM† (nfe=128) 0.104 0.0315 0.0256 0.00952 0.0259 0.0118 2.40 s
R-DSM (nfe=128) 0.104 0.0314 0.0256 0.00951 0.0269 0.0119 0.55 s
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(b)(a) (c)

(e)(d) (f)

Supplementary Figure 7: Convergence analysis of different measurements based on the number of
function evaluations. (a)-(c) represent results obtained from E-DSM, while (d)-(f) correspond to R-DSM†

with exponential mapping. The measurements plotted include root mean square deviation (RMSD), mean
absolute error of interatomic distances (D-MAE), and norm distance as a function of the number of function
evaluations. Each subfigure shows the distribution of performance across different quartiles (Q1, Q2, Q3)
and the mean.
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