

Supplementary Methods

2 Analytical outbreak risk derivation

3 We consider the generalised renewal equation transmission model outlined in the
4 Methods section of the main text, and define the following additional quantities:

- $g(\alpha)$ is the probability density function of the distribution of possible individual infectiousness factors. For generality, we initially derive an equation satisfied by the outbreak risk for an arbitrary distribution (with mean value one), before considering a gamma distribution with shape (dispersion) parameter k as assumed in the main text.
- $q_{t,\tau}(\alpha)$ is the extinction probability (one minus the outbreak risk) if a single infected individual with infectiousness factor α , who was infected on calendar day t , is introduced into the population at (the start of) day since infection τ (i.e., on calendar day $(t + \tau)$), assuming there are no other infected individuals at the time of introduction (and no further external pathogen introductions into the population).
- $q_t = \int_0^\infty q_{t,1}(\alpha)g(\alpha)d\alpha$ is the overall extinction probability (averaged over the distribution of possible infectiousness factors) following the introduction one day post infection (note that we assume transmission cannot occur on the day of infection, i.e., $w_0 = 0$) of an individual infected on day t . The outbreak risk is then $p_t = 1 - q_t$.

21 To derive an expression for $q_{t,\tau}(\alpha)$ (and therefore q_t), we condition on the number of
 22 transmissions generated by the first infected individual on the day of introduction,
 23 which follows a Poisson distribution with mean $\alpha R_{t+\tau} w_\tau$, to obtain

30
$$q_{t,\tau}(\alpha) = \sum_{j=0}^{\infty} \frac{(\alpha R_{t+\tau} w_{\tau})^j e^{-\alpha R_{t+\tau} w_{\tau}}}{j!} q_{t,\tau+1}(\alpha) q_{t+\tau}^j. \quad (\text{S1})$$

24 Here, $q_{t,\tau+1}(\alpha) q_{t+\tau}^j$ gives the extinction probability conditional on j transmissions
 25 occurring (since infection lineages are assumed to be independent). This sum can
 26 be evaluated as

31
$$q_{t,\tau}(\alpha) = q_{t,\tau+1}(\alpha) e^{-\alpha R_{t+\tau} w_{\tau}} \sum_{j=0}^{\infty} \frac{(\alpha R_{t+\tau} w_{\tau} q_{t+\tau})^j}{j!}$$

 32
$$= q_{t,\tau+1}(\alpha) e^{-\alpha R_{t+\tau} w_{\tau}(1-q_{t+\tau})}. \quad (\text{S2})$$

27 Therefore, assuming $q_{t,\infty}(\alpha) = 1$, we have

33
$$q_{t,1}(\alpha) = q_{t,2}(\alpha) e^{-\alpha R_{t+1} w_1(1-q_{t+1})}$$

 34
$$= \dots = q_{t,\infty}(\alpha) \prod_{\tau=1}^{\infty} e^{-\alpha R_{t+\tau} w_{\tau}(1-q_{t+\tau})}$$

 35
$$= \exp \left(-\alpha \sum_{\tau=1}^{\infty} R_{t+\tau} w_{\tau} (1 - q_{t+\tau}) \right). \quad (\text{S3})$$

28 Finally, we have

36
$$q_t = \int_0^{\infty} q_{t,1}(\alpha) g(\alpha) d\alpha = \int_0^{\infty} \exp \left(-\alpha \sum_{\tau=1}^{\infty} R_{t+\tau} w_{\tau} (1 - q_{t+\tau}) \right) g(\alpha) d\alpha. \quad (\text{S4})$$

29 Therefore, the outbreak risk, $p_t = 1 - q_t$, satisfies

37
$$p_t = 1 - \int_0^{\infty} \exp \left(-\alpha \sum_{\tau=1}^{\infty} R_{t+\tau} w_{\tau} p_{t+\tau} \right) g(\alpha) d\alpha. \quad (\text{S5})$$

38 In the specific case where the infectiousness factors, α , follow a gamma distribution
 39 with shape parameter k and (to ensure a mean value of one) scale parameter $1/k$,
 40 we then have

44

$$\begin{aligned}
p_t &= 1 - \int_0^\infty \frac{k^k}{\Gamma(k)} \alpha^{k-1} \times \exp\left(-\alpha\left(k + \sum_{\tau=1}^\infty R_{t+\tau} w_\tau p_{t+\tau}\right)\right) d\alpha \\
&= 1 - \left(1 + \frac{1}{k} \sum_{\tau=1}^\infty R_{t+\tau} w_\tau p_{t+\tau}\right)^{-k},
\end{aligned} \tag{S6}$$

41 where the second equality follows by noting that the integrand in the first expression
 42 is proportional to the probability density function of a gamma distribution with shape
 43 parameter k and scale parameter $(k + \sum_{\tau=1}^\infty R_{t+\tau} w_\tau p_{t+\tau})^{-1}$.

45 **Outbreak risk with periodic transmissibility**

46 We now suppose that the instantaneous reproduction number, R_t is a periodic
 47 function of time with period T (i.e., $R_{t+T} = R_t$), so that the outbreak risk, p_t , must also
 48 be periodic with the same period. For $1 \leq t \leq T$, equation S6 then gives

$$\begin{aligned}
53 \quad p_t &= 1 - \left(1 + \frac{1}{k} \sum_{j=0}^\infty \sum_{s=1}^T R_{t+jT+s} w_{jT+s} p_{t+jT+s}\right)^{-k} \\
54 \quad &= 1 - \left(1 + \frac{1}{k} \sum_{s=1}^T R_{t+s} v_s p_{t+s}\right)^{-k},
\end{aligned} \tag{S7}$$

49 where $v_s = \sum_{j=0}^\infty w_{jT+s}$. Note that if the generation time is always shorter than the
 50 period, T , then we simply have $v_s = w_s$. Now, equation S7 can be re-written as

$$55 \quad p_t = 1 - \left(1 + \frac{1}{k} \sum_{s=1}^T B_{t,s} p_s\right)^{-k}, \tag{S8}$$

51 where $B_{t,s}$ is the $(t,s)^{\text{th}}$ entry of the $T \times T$ matrix,

$$56 \quad B = \begin{pmatrix} v_T R_1 & v_1 R_2 & \cdots & v_{T-1} R_T \\ v_{T-1} R_1 & v_T R_2 & \cdots & v_{T-2} R_T \\ \vdots & \vdots & \ddots & \vdots \\ v_2 R_1 & v_3 R_2 & \cdots & v_1 R_T \\ v_1 R_1 & v_2 R_2 & \cdots & v_T R_T \end{pmatrix} \tag{S9}$$

52 Equation S8 gives a closed system of T equations in T variables (p_1, \dots, p_T) , which

57 can be solved numerically. While equation S8 always has a solution with each p_t
58 equal to zero, in all our numerical examples we obtained a (numerical) solution with
59 each p_t strictly between zero and one, which was assumed to give the true outbreak
60 risk values (this can be verified using model simulations, as in Figure 1E of the main
61 text).

62 **Calculation of COVID-19 susceptibility profile**

63 Here, we provide details of the calculation of the expected susceptibility, $\bar{S}(\tau)$, of an
64 individual included in annual vaccination campaigns, as a function of time since most
65 recent vaccine dose, τ .

66 We considered a large synthetic cohort of $n = 10,000$ individuals, labelled $i = 1, \dots, n$.
67 For each individual, we sampled each antibody dynamics model parameter, $\theta_i \in$
68 $\{H_i, m_i, K_i, \mu_i, \tau_{d,i}, D_i, \delta_i\}$ as $\theta_i = \theta_{pop} \exp(\omega_\theta \varepsilon_{\theta,i})$, where θ_{pop} and ω_θ are the
69 assumed population (median) parameter and standard deviation of random effect,
70 respectively (as listed in Extended Data Table 1), and $\varepsilon_{\theta,i}$ is a random variate drawn
71 from a normal distribution with mean zero and standard deviation one (independently
72 for different parameters and individuals). The individual parameter values were then
73 used to generate an individual antibody titre profile, $A_i(\tau)$, given by the periodic
74 solution of the antibody dynamics model (equations 7-8 in the main text) with period
75 $T = 365$ days. This periodic solution was generated by numerically solving equations
76 7-8 on $\tau \geq -5T$ with boundary condition $A_i(-5T) = 0$, and with vaccination assumed
77 to occur at each time jT for integer $j \geq -5$, and then taking the resulting solution for
78 $\tau \in [0, T]$. Equation 9 in the main text was then used to obtain the individual
79 susceptibility profile, $S_i(\tau)$. We then calculated the expected susceptibility,

83
$$\bar{S}(\tau) = \frac{1}{n} \sum_{i=1}^n S_i(\tau). \quad (\text{S10})$$

80 Additionally, we calculated 95% prediction intervals for individual antibody titres and
81 susceptibility levels at each time τ (although these were not used in outbreak risk
82 calculations).