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Supplementary Methods 1 

Analytical outbreak risk derivation 2 

We consider the generalised renewal equation transmission model outlined in the 3 

Methods section of the main text, and define the following additional quantities: 4 

• 𝑔(𝛼) is the probability density function of the distribution of possible individual 5 

infectiousness factors. For generality, we initially derive an equation satisfied 6 

by the outbreak risk for an arbitrary distribution (with mean value one), before 7 

considering a gamma distribution with shape (dispersion) parameter 𝑘 as 8 

assumed in the main text. 9 

• 𝑞𝑡,𝜏(𝛼) is the extinction probability (one minus the outbreak risk) if a single 10 

infected individual with infectiousness factor 𝛼, who was infected on calendar 11 

day 𝑡, is introduced into the population at (the start of) day since infection 𝜏 12 

(i.e., on calendar day (𝑡 + 𝜏)), assuming there are no other infected individuals 13 

at the time of introduction (and no further external pathogen introductions into 14 

the population). 15 

• 𝑞𝑡 = ∫ 𝑞𝑡,1(𝛼)𝑔(𝛼)d𝛼
∞

0
 is the overall extinction probability (averaged over the 16 

distribution of possible infectiousness factors) following the introduction one 17 

day post infection (note that we assume transmission cannot occur on the day 18 

of infection, i.e., 𝑤0 = 0) of an individual infected on day 𝑡. The outbreak risk 19 

is then 𝑝𝑡 = 1 − 𝑞𝑡. 20 

To derive an expression for 𝑞𝑡,𝜏(𝛼) (and therefore 𝑞𝑡), we condition on the number of 21 

transmissions generated by the first infected individual on the day of introduction, 22 

which follows a Poisson distribution with mean 𝛼𝑅𝑡+𝜏𝑤𝜏, to obtain 23 
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𝑞𝑡,𝜏(𝛼) =∑
(𝛼𝑅𝑡+𝜏𝑤𝜏)

𝑗𝑒−𝛼𝑅𝑡+𝜏𝑤𝜏

𝑗!
𝑞𝑡,𝜏+1(𝛼)𝑞𝑡+𝜏

𝑗

∞

𝑗=0

. (S1) 30 

Here, 𝑞𝑡,𝜏+1(𝛼)𝑞𝑡+𝜏
𝑗

 gives the extinction probability conditional on 𝑗 transmissions 24 

occurring (since infection lineages are assumed to be independent). This sum can 25 

be evaluated as 26 

𝑞𝑡,𝜏(𝛼) = 𝑞𝑡,𝜏+1(𝛼)𝑒
−𝛼𝑅𝑡+𝜏𝑤𝜏∑

(𝛼𝑅𝑡+𝜏𝑤𝜏𝑞𝑡+𝜏)
𝑗

𝑗!

∞

𝑗=0

 31 

= 𝑞𝑡,𝜏+1(𝛼)𝑒
−𝛼𝑅𝑡+𝜏𝑤𝜏(1−𝑞𝑡+𝜏). (S2) 32 

Therefore, assuming 𝑞𝑡,∞(𝛼) = 1, we have 27 

𝑞𝑡,1(𝛼) = 𝑞𝑡,2(𝛼)𝑒
−𝛼𝑅𝑡+1𝑤1(1−𝑞𝑡+1) 33 

= ⋯ = 𝑞𝑡,∞(𝛼)∏𝑒−𝛼𝑅𝑡+𝜏𝑤𝜏(1−𝑞𝑡+𝜏)
∞

𝜏=1

 34 

= exp(−𝛼∑𝑅𝑡+𝜏𝑤𝜏(1 − 𝑞𝑡+𝜏)

∞

𝜏=1

) . (S3) 35 

Finally, we have 28 

𝑞𝑡 = ∫ 𝑞𝑡,1(𝛼)𝑔(𝛼)d𝛼

∞

0

= ∫ exp(−𝛼∑𝑅𝑡+𝜏𝑤𝜏(1 − 𝑞𝑡+𝜏)

∞

𝜏=1

)𝑔(𝛼)d𝛼

∞

0

. (S4) 36 

Therefore, the outbreak risk, 𝑝𝑡 = 1 − 𝑞𝑡, satisfies 29 

𝑝𝑡 = 1 − ∫ exp(−𝛼∑𝑅𝑡+𝜏𝑤𝜏𝑝𝑡+𝜏

∞

𝜏=1

)𝑔(𝛼)d𝛼

∞

0

. (S5) 37 

In the specific case where the infectiousness factors, 𝛼, follow a gamma distribution 38 

with shape parameter 𝑘 and (to ensure a mean value of one) scale parameter 1 𝑘⁄ , 39 

we then have 40 
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𝑝𝑡 = 1 −∫
𝑘𝑘

Γ(𝑘)
𝛼𝑘−1 × exp(−𝛼 (𝑘 +∑𝑅𝑡+𝜏𝑤𝜏𝑝𝑡+𝜏

∞

𝜏=1

))d𝛼
∞

0

= 1 − (1 +
1

𝑘
∑𝑅𝑡+𝜏𝑤𝜏𝑝𝑡+𝜏

∞

𝜏=1

)

−𝑘

,                                            (S6)

 44 

where the second equality follows by noting that the integrand in the first expression 41 

is proportional to the probability density function of a gamma distribution with shape 42 

parameter 𝑘 and scale parameter (𝑘 + ∑ 𝑅𝑡+𝜏𝑤𝜏𝑝𝑡+𝜏
∞
𝜏=1 )−1. 43 

Outbreak risk with periodic transmissibility 45 

We now suppose that the instantaneous reproduction number, 𝑅𝑡 is a periodic 46 

function of time with period 𝑇 (i.e., 𝑅𝑡+𝑇 = 𝑅𝑡), so that the outbreak risk, 𝑝𝑡, must also 47 

be periodic with the same period. For 1 ≤ 𝑡 ≤ 𝑇, equation S6 then gives 48 

𝑝𝑡 = 1 − (1 +
1

𝑘
∑∑𝑅𝑡+𝑗𝑇+𝑠𝑤𝑗𝑇+𝑠𝑝𝑡+𝑗𝑇+𝑠

𝑇

𝑠=1

∞

𝑗=0

)

−𝑘

 53 

= 1 − (1 +
1

𝑘
∑𝑅𝑡+𝑠𝜈𝑠𝑝𝑡+𝑠

𝑇

𝑠=1

)

−𝑘

, (S7) 54 

where 𝜈𝑠 = ∑ 𝑤𝑗𝑇+𝑠
∞
𝑗=0 . Note that if the generation time is always shorter than the 49 

period, 𝑇, then we simply have 𝜈𝑠 = 𝑤𝑠. Now, equation S7 can be re-written as 50 

𝑝𝑡 = 1 − (1 +
1

𝑘
∑𝐵𝑡,𝑠𝑝𝑠

𝑇

𝑠=1

)

−𝑘

, (S8) 55 

where 𝐵𝑡,𝑠 is the (𝑡, 𝑠)th entry of the 𝑇 × 𝑇 matrix, 51 

𝐵 =

(

 
 

𝜈𝑇𝑅1 𝜈1𝑅2 ⋯ 𝜈𝑇−1𝑅𝑇
𝜈𝑇−1𝑅1 𝜈𝑇𝑅2 ⋯ 𝜈𝑇−2𝑅𝑇
⋮ ⋮ ⋱ ⋮

𝜈2𝑅1 𝜈3𝑅2 ⋯ 𝜈1𝑅𝑇
𝜈1𝑅1 𝜈2𝑅2 ⋯ 𝜈𝑇𝑅𝑇 )

 
 

(S9) 56 

Equation S8 gives a closed system of 𝑇 equations in 𝑇 variables (𝑝1, … , 𝑝𝑇), which 52 



 4 

can be solved numerically. While equation S8 always has a solution with each 𝑝𝑡 57 

equal to zero, in all our numerical examples we obtained a (numerical) solution with 58 

each 𝑝𝑡 strictly between zero and one, which was assumed to give the true outbreak 59 

risk values (this can be verified using model simulations, as in Figure 1E of the main 60 

text). 61 

Calculation of COVID-19 susceptibility profile 62 

Here, we provide details of the calculation of the expected susceptibility, 𝑆̅(𝜏), of an 63 

individual included in annual vaccination campaigns, as a function of time since most 64 

recent vaccine dose, 𝜏. 65 

We considered a large synthetic cohort of 𝑛 = 10,000 individuals, labelled 𝑖 = 1, … , 𝑛. 66 

For each individual, we sampled each antibody dynamics model parameter, 𝜃𝑖 ∈67 

{𝐻𝑖 , 𝑚𝑖 , 𝐾𝑖 , 𝜇𝑖 , 𝜏𝑑,𝑖 , 𝐷𝑖 , 𝛿𝑖 } as 𝜃𝑖 = 𝜃𝑝𝑜𝑝 exp(𝜔𝜃𝜀𝜃,𝑖), where 𝜃𝑝𝑜𝑝 and 𝜔𝜃 are the 68 

assumed population (median) parameter and standard deviation of random effect, 69 

respectively (as listed in Extended Data Table 1), and 𝜀𝜃,𝑖  is a random variate drawn 70 

from a normal distribution with mean zero and standard deviation one (independently 71 

for different parameters and individuals). The individual parameter values were then 72 

used to generate an individual antibody titre profile, 𝐴𝑖(𝜏), given by the periodic 73 

solution of the antibody dynamics model (equations 7-8 in the main text) with period 74 

𝑇 = 365 days. This periodic solution was generated by numerically solving equations 75 

7-8 on 𝜏 ≥ −5𝑇 with boundary condition 𝐴𝑖(−5𝑇) = 0, and with vaccination assumed 76 

to occur at each time 𝑗𝑇 for integer 𝑗 ≥ −5, and then taking the resulting solution for 77 

𝜏 ∈ [0, 𝑇). Equation 9 in the main text was then used to obtain the individual 78 

susceptibility profile, 𝑆𝑖(𝜏). We then calculated the expected susceptibility, 79 
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𝑆̅(𝜏) =
1

𝑛
∑𝑆𝑖(𝜏).

𝑛

𝑖=1

(S10) 83 

Additionally, we calculated 95% prediction intervals for individual antibody titres and 80 

susceptibility levels at each time 𝜏 (although these were not used in outbreak risk 81 

calculations). 82 


