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Supplementary Methods

Analytical outbreak risk derivation

We consider the generalised renewal equation transmission model outlined in the

Methods section of the main text, and define the following additional quantities:

g(a) is the probability density function of the distribution of possible individual
infectiousness factors. For generality, we initially derive an equation satisfied
by the outbreak risk for an arbitrary distribution (with mean value one), before
considering a gamma distribution with shape (dispersion) parameter k as
assumed in the main text.

q. (@) is the extinction probability (one minus the outbreak risk) if a single
infected individual with infectiousness factor «, who was infected on calendar
day t, is introduced into the population at (the start of) day since infection t
(i.e., on calendar day (t + 1)), assuming there are no other infected individuals
at the time of introduction (and no further external pathogen introductions into
the population).

q: = f0°° q:1(a)g(a)da is the overall extinction probability (averaged over the
distribution of possible infectiousness factors) following the introduction one
day post infection (note that we assume transmission cannot occur on the day
of infection, i.e., w, = 0) of an individual infected on day t. The outbreak risk

isthen p, =1 —q;.

To derive an expression for g, .(«) (and therefore q,), we condition on the number of

transmissions generated by the first infected individual on the day of introduction,

which follows a Poisson distribution with mean aR;,,w,, to obtain
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> (aRt w. )je_aRt+TW1.' .
qeo(a) = z = Tj, qt,‘t+1(a)qg+‘r'
j=0 '

Here, qt,ﬁl(a)qgﬂ gives the extinction probability conditional on j transmissions

(S1)

occurring (since infection lineages are assumed to be independent). This sum can

be evaluated as

(“Rt+rWr‘h+r)j
j!

qe-(a@) = qery1(a)e ~ORe4We
j=0

=qt T+1(a)e_aRt+TWT(1_Qt+r)_
Therefore, assuming q; ., (@) = 1, we have

qt1 ((Z) = (t2 (a)e_“Rt+1W1(1—%+1)

[o]
— s — qtoo(a) | | e_aRt+TWT(1_qt+T)
=1

= €exp <—(l Z Rt+‘tW‘c(1 - Qt+‘c)> .
=1

Finally, we have

(o) °9)

q: = f qeq(a)g(a)da = f exp (—az Reywr (1 — qm)) g(a)da.
=1

0 0

Therefore, the outbreak risk, p; = 1 — q,, satisfies

1- f exp <_a Z Rt+‘L'W‘L'pt+T> g(a)da-
0 =1

Dt

(52)

(83)

(54)

(85)

In the specific case where the infectiousness factors, «, follow a gamma distribution

with shape parameter k and (to ensure a mean value of one) scale parameter 1/k,

we then have
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oo kk o
pe=1-— f ma"_l xexp| —a (k + Z Rt+rert+‘r> da
0 =1

oo -k
1
=1- (1 + Ez Rt+tert+T> ’ (36)
=1
where the second equality follows by noting that the integrand in the first expression

is proportional to the probability density function of a gamma distribution with shape

parameter k and scale parameter (k + X521 Ryt WiPrar) .
Outbreak risk with periodic transmissibility

We now suppose that the instantaneous reproduction number, R, is a periodic
function of time with period T (i.e., R;.7 = R;), SO that the outbreak risk, p;, must also

be periodic with the same period. For 1 <t < T, equation S6 then gives

(o] T —k
1
pp=1—-|1+ Ez Z RitjT+sWiT+sPe+jT+s
j=0s=1

T -k
1
=1- <1 + EZ Rt+svspt+s> ) (S7)
s=1
where v; = Y72, wjr4s. Note that if the generation time is always shorter than the

period, T, then we simply have v = w,. Now, equation S7 can be re-written as

-k

T
1
pr=1- (1 + Ez Bt,sps> ’ (S8)
s=1

where B, is the (¢, s)™ entry of the T x T matrix,

veRy ViR, - vr_4Rp
Vr-1Ry VrRy, - vr_ 3Ry
B = : : : (S9)
vo,2Ry v3R, -  WwiRp
viRi  Vv,Ry, -+ VrRp

Equation S8 gives a closed system of T equations in T variables (py, ..., pr), Which
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can be solved numerically. While equation S8 always has a solution with each p;
equal to zero, in all our numerical examples we obtained a (numerical) solution with
each p; strictly between zero and one, which was assumed to give the true outbreak
risk values (this can be verified using model simulations, as in Figure 1E of the main

text).
Calculation of COVID-19 susceptibility profile

Here, we provide details of the calculation of the expected susceptibility, S(z), of an
individual included in annual vaccination campaigns, as a function of time since most

recent vaccine dose, .

We considered a large synthetic cohort of n = 10,000 individuals, labelled i = 1, ..., n.
For each individual, we sampled each antibody dynamics model parameter, 6; €

{H;, m;, Ky, u;, 745, D;,8; } as 0; = 0,,, exp(wyeg,; ), where 8,,, and w, are the
assumed population (median) parameter and standard deviation of random effect,
respectively (as listed in Extended Data Table 1), and ¢4 ; is a random variate drawn
from a normal distribution with mean zero and standard deviation one (independently
for different parameters and individuals). The individual parameter values were then
used to generate an individual antibody titre profile, 4;(7), given by the periodic
solution of the antibody dynamics model (equations 7-8 in the main text) with period
T = 365 days. This periodic solution was generated by numerically solving equations
7-8 on T > —5T with boundary condition 4;(—5T) = 0, and with vaccination assumed
to occur at each time jT for integer j > —5, and then taking the resulting solution for
T € [0,T). Equation 9 in the main text was then used to obtain the individual

susceptibility profile, S;(r). We then calculated the expected susceptibility,
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_ v
(1) = Ez S.(0). (S10)
i=1

Additionally, we calculated 95% prediction intervals for individual antibody titres and
susceptibility levels at each time 7 (although these were not used in outbreak risk

calculations).



