Supplemental information for

Calcium channel-coupled transcription factors facilitate direct nuclear signaling

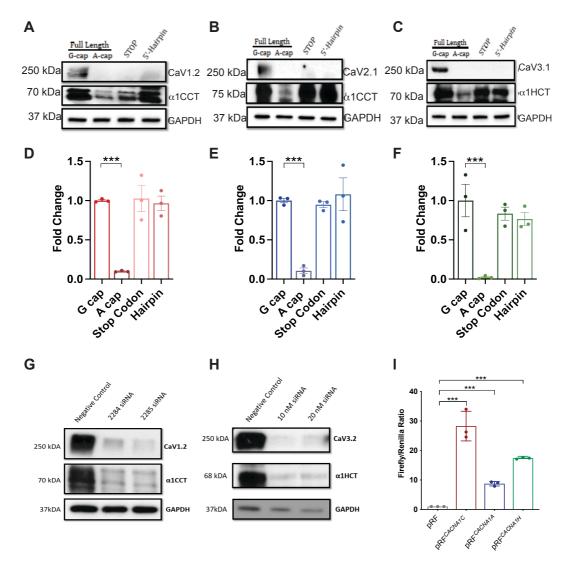
Eshaan R. Rao^{1*}, Tyler Thaxton^{1*}, Eric Gama¹, Jack Godfrey¹, Cenfu Wei¹, Qiaoshan Lin², Yan Li², Daniel Parviz Hejazi Pastor¹, Christian Hansel³, Xiaofei Du^{1#}, Christopher M. Gomez^{1#}

¹ Department of Neurology, University of Chicago, Chicago, IL 60637, USA

² Center for Research Informatics, University of Chicago, IL 60637, USA

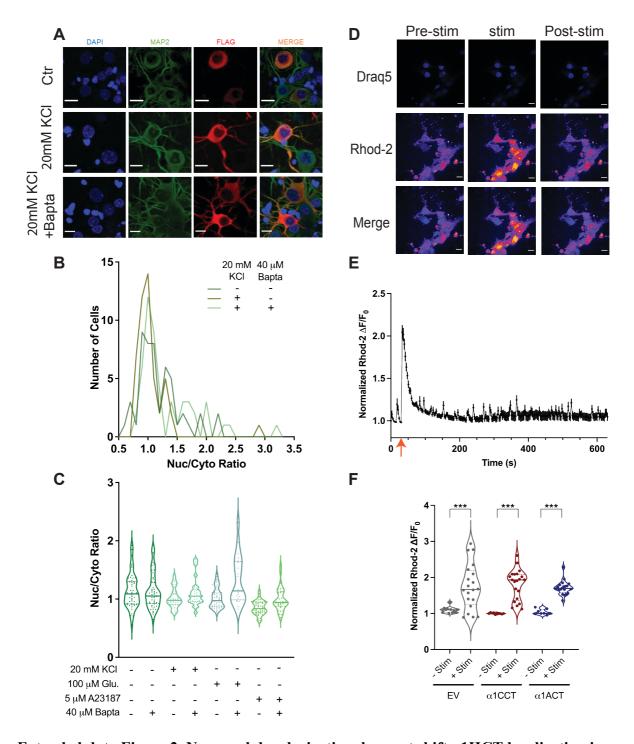
³ Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA

^{*}These authors contributed equally to this work


[#]Correspondence to: feliciad@uchicago.edu, gomez001@uchicago.edu

Inventory for Supplemental Information

- A. Extended data Figure and Figure Legends 1 to 5
- B. Tables S1 to S5
- C. Videos S1 to S4
- **Video S1** Live cell imaging of EV-emGFP in cultured rat cortical neurons. Neurons were imaged for 10 minutes following glutamate uncaging.
- **Video S2** Live cell imaging of α1CCT in cultured rat cortical neurons. Neurons were imaged for 10 minutes following glutamate uncaging.
- Video S3 Live cell imaging of α 1ACT in cultured rat cortical neurons. Neurons were imaged for 10 minutes following glutamate uncaging.
- Video S4 Live cell imaging of α 1HCT in cultured rat cortical neurons. Neurons were imaged for 10 minutes following glutamate uncaging.


D. Movie Legends

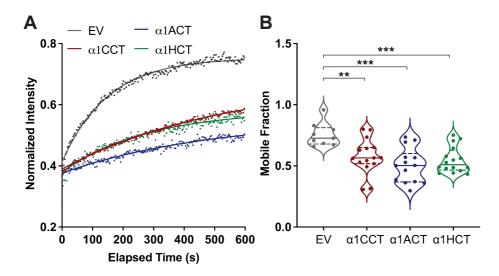
Videos showing live cell imaging of cultured rat cortical neurons infected with AAV virus expressing either EV-emGFP (A), α 1CCT-EmGFP (B), α 1ACT-EmGFP (C), or α 1HCT (D). Neurons were imaged for 10 minutes following glutamate uncaging. EV-emGFP showed no cyto-nuclear translocation, while α 1CCT and α 1ACT showing increased or decreased nuclear translocation following glutamate uncaging, respectively. Additionally, α 1HCT showed a slight trend of increased nuclear translocation following uncaging. Scale bars represent 20 uM.

Extended data Figure 1. CACNA1C, CACNA1A, and CACNA1H mRNAs encode two distinct proteins from overlapping cistrons through a cap-independent mechanism.

- (A, B, and C) Western blot analysis of protein lysates from HEK293Tcells transiently transfected with *CACNA1C* (A), *CACNA1A* (B), or *CACNA1H* (C) *in vitro* transcribed mRNA. Full-length mRNAs were capped with either an m7G or an m7A cap. STOP constructs had one or two premature termination codons inserted upstream of C-terminal protein start sites. 5'-hairpin constructs had a large hairpin structure inserted directly downstream of the initiating methionine.
- (D, E, and F) qPCR analysis of RNA collected from HEK293T cells transiently transfected with *CACNA1C* (D), *CACNA1A* (E), or *CACNA1H* (F) mRNA. (N = 6 for each condition).
- (G, H) Western blot analysis of protein lysates from HEK293 of cell lines stably expressing either *CACNA1C* or *CACNA1H* and transfected with siRNAs directed towards the 5' ends of the *CACNA1C* or *CACNA1H* genes.
- (I) Luciferase activity as measured by Firefly/Renilla ratio for the bicistronic vector pRF with 1000-bp insertions directly upstream from α 1CCT, α 1ACT, or α 1HCT initiating methionines, compared to empty vector. (N = 3 for each condition, p<0.001).

Extended data Figure 2. Neuronal depolarization does not shift $\alpha 1HCT$ localization in fixed rat cortical neurons, and intracellular Ca2+ changes with uncaged glutamate stimulation of live rat cortical neurons expressing EmGFP, $\alpha 1CCT$, or $\alpha 1ACT$.

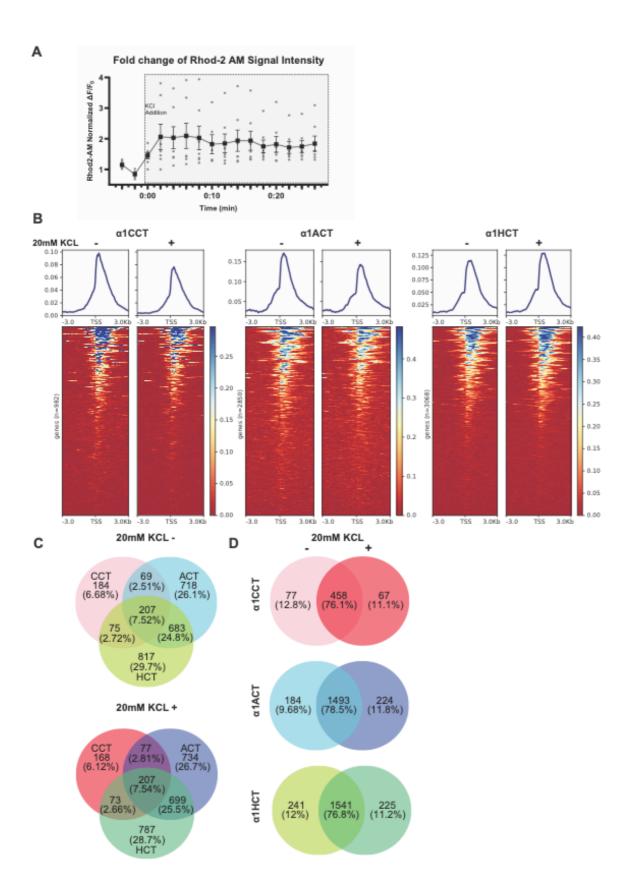
- (A) Representative images of fixed rat cortical neurons transfected with $\alpha 1HCT$ mRNA and treated with 100 μ M glutamate with or without BAPTA-AM. Fixed neurons were stained with DAPI (blue), MAP2 antibody (green), and 3XFLAG antibody (red). Scale bars = 10 microns.
- (B) Quantification of nuclear/cytosolic fluorescence signal of rat cortical neurons transfected with α1HCT mRNA with 20mM KCl with or without BAPTA-AM.


(C) Quantification of nuclear/cytosolic fluorescence signal of rat cortical neurons transfected with $\alpha 1HCT$ mRNA with different treatments.

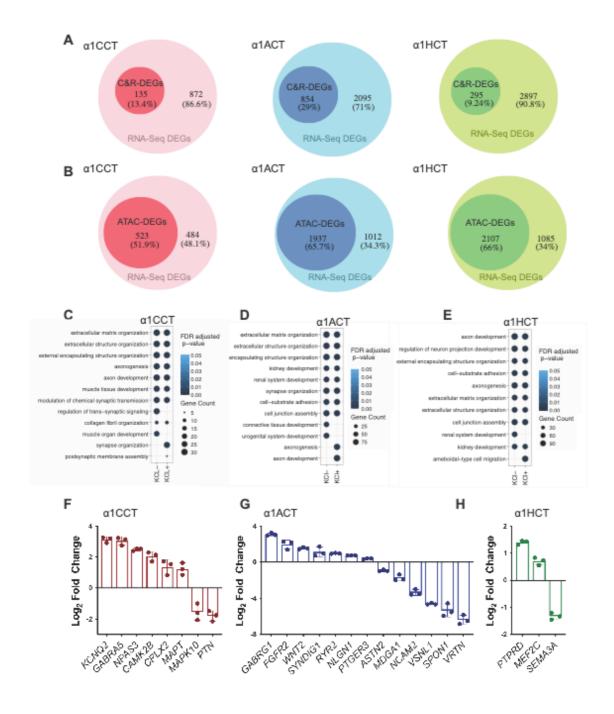
Neurons were treated with either 20 mM K^+ , 100 μ M glutamate, or the calcium ionophore A23187 with or without a 5-minute pretreatment of BAPTA-AM.

N > 50 cells for each condition, *p<0.05, **p<0.01, ***p<0.001.

- (D) Representative images of live rat cortical neurons loaded with both the live-cell nuclear stain Draq5 and the ratiometric calcium indicator Rhod-2, imaged pre-stimulation via uncaging glutamate (left panels), immediately after glutamate uncaging and consequent neuronal calcium stimulation (middle panels), and ten minutes post-stimulation (right panels). Scale bars = 10 microns.
- (E) Representative imaging trace of Rhod-2 $\Delta F/F_0$ over a ten-minute imaging period in a live rat cortical neuron. Arrow indicates glutamate uncaging pulses.
- (F) Quantification of Rhod-2 $\Delta F/F_0$ immediately pre- and post-stimulation in live rat cortical neurons.


N > 20 cells per condition for + Stim., N > 10 cells per condition for -Stim.

Extended data Figure 3. FRAP analysis of $\alpha 1CCT$, $\alpha 1ACT$, and $\alpha 1HCT$ in cultured rat cortical neurons.


- (A) FRAP recovery curves showing the normalized intensity over time for cultured rat cortical neurons expressing EmGFP, $\alpha 1CCT$ -EmGFP, $\alpha 1ACT$ -EmGFP, or $\alpha 1HCT$ -EmGFP. EV-expressing cells exhibit the highest fluorescence recovery, indicating greater mobility compared to $\alpha 1CCT$, $\alpha 1ACT$, and $\alpha 1HCT$. The recovery profiles represent a nonlinear fit to the average of individually photobleached cells imaged for 10 minutes post-bleach.
- (B) Quantification of the mobile fraction from the FRAP analysis. Cells expressing $\alpha 1CCT$, $\alpha 1ACT$, and $\alpha 1HCT$ all show significantly reduced mobile fractions compared to EV, indicating restricted mobility.

N > 10 cells per condition, *p<0.05, **p<0.01, ***p<0.001

Extended data Figure 4. Intracellular Ca2+ changes with 20mM KCl, and CTPs' influence on the effects of H3K4me3-related genomic binding sites.

- (A) Imaging trace of Rhod-2 $\Delta F/F_0$ in human neural progenitor cells (n=7) over a 26-minute imaging period. 20mM KCl was added to media 10 seconds before 0:00 minutes after a baseline was established. KCl addition indicated by gray box.
- (B) CUT&RUN-seq profiles for H3K4me3 enrichment distribution within ± 3000 bp TSS in hNPC stable cell lines expressing $\alpha 1$ CCT, $\alpha 1$ ACT, and $\alpha 1$ HCT under resting and depolarized conditions (± 20 mM KCl).
- (C) Venn diagrams depicting differentially enriched H3K4me3-associated DEGs in resting or depolarized conditions in hNPC stable cell linesexpressing α 1CCT, α 1ACT, and α 1HCT. Numbers indicate the count of unique and shared H3K4me3-associated DEGs.
- (D) Comparative Venn diagrams of H3K4me3-associated DEGs across hNPC stable cell linesexpressing α 1CCT, α 1ACT, and α 1HCT in resting and depolarized conditions. The overlap between CTPs highlights distinct and shared regulatory elements modulated by H3K4me3.

Extended data Figure 5. Integration of CUT&RUN-seq or ATAC-seq with RNA-seq in hNPCs stably expressing $\alpha 1CCT$, $\alpha 1ACT$, and $\alpha 1HCT$.

(A) Venn diagrams showing the percentage of C&R -DEGs within RNA-seq-DEGs for α 1CCT (left), α 1ACT (middle), and α 1HCT (right).

- (B) Venn diagrams illustrating the percentage of ATAC-DEGs within RNA-seq-DEGs for α 1CCT (left), α 1ACT (middle), and α 1HCT (right).
- (C) Distinct enriched GO terms for RNA-seq DEGs directly regulated by α 1CCT, inferred by ATAC-seq, in hNPCs stably expressing α 1CCT, with or without 20 mM KCl treatment.
- (D) Top enriched GO terms for RNA-seq DEGs directly regulated by $\alpha 1$ ACT, inferred by ATAC-seq, in hNPCs stably expressing $\alpha 1$ ACT, with or without 20 mM KCl treatment.
- (E) Distinct enriched GO terms for RNA-seq DEGs directly regulated by $\alpha 1HCT$, inferred by ATAC-seq, in hNPCs stably expressing $\alpha 1HCT$, with or without 20 mM KCl treatment.
- (F, G, and H) Quantification by qRT-PCR of the DEGs' mRNA level in hNPCs stably expressing α 1CCT, α 1ACT, and α 1HCT.

Table S1. Voltage-gated calcium channel nomenclature, predicted C-terminal protein size, and stop codon locations

Protein Name	Alpha Subunit	Gene Name (human)	C-terminal Protein (Predicted Size)	Amino Acid	
Ca _V 1.1	α1S	CACNAIS	α1SCT (37 kDa)	Q141* (C508T); Q464* (C1477T)	NM_000069.3
Ca _V 1.2	α1C	CACNAIC	α1CCT (70 kDa)	G230* (G1264T); I1011* (ATC3607- 3609TAG)	NM_199460.3
Ca _V 1.3	αlD	CACNA1D	α1DCT (60 kDa)	C333* (T1555A)	NM_001128839.3
Ca _V 1.4	α1F	CACNAIF	α1FCT (50 and 60 kDa)	Q149* (C416T)	NM_005183.4
Cav2.1	α1Α	CACNA1A	α1ACT (75 kDa)	P1846* (CCC5791- 5793TAG)	NM_023035.3
Cav2.2	α1Β	CACNA1B	α1BCT (60 kDa)	E93* (G429T)	NM_000718.4
Ca _V 2.3	α1Ε	CACNA1E	α1ECT (55 kDa)	Q271* (C1039T)	NM_000721.4
Cav3.1	α1G	CACNA1G	α1GCT (55 kDa)	Q701* (C2846T)	NM_198382.3
Ca _V 3.2	α1Н	CACNAIH	α1HCT (70 kDa)	R1231* (C3939T, C3941A); S1234* (A3948T, C3950A)	NM_021098.2
Ca _V 3.3	α1Ι	CACNA1I	α1ICT (75 and 85 kDa)	Q170* (C508T); Q440* (C1318T)	NM_001003406.2

Table S2. Average percentage of subcellular localization

-		Nuclear	ſ	Cytoplasm		
Protein			N (# of fields of			N (# of fields of
expression	Mean	SEM	view)	Mean	SEM	view)
α1S	10.33	3.67	5	89.67	3.67	5
α1SSTOP	11.39	4.85	5	88.61	4.85	5
α1C	13.66	4.13	4	86.34	4.13	4
α1CSTOP	69.75	16.35	3	30.25	16.35	3
α1D	33.06	7.47	9	66.94	7.47	9
α1DSTOP	92.58	4.15	11	7.42	4.15	11
α1F	0.00	0.00	5	100.00	0.00	5
α1FSTOP	37.21	10.18	9	62.79	10.18	9
α1Α	63.43	6.30	4	36.57	6.30	4
α1ASTOP	100.00	0.00	6	0.00	0.00	6
α1Β	4.88	2.27	6	95.12	2.27	6
α1BSTOP	43.14	6.86	3	56.86	6.86	3
α1Ε	14.44	5.44	5	85.56	5.44	5
α1ESTOP	62.80	7.80	2	37.21	7.80	2
αlG	0.00	0.00	7	100.00	0.00	7
α1GSTOP	2.50	2.50	8	97.14	2.86	7
α1Η	3.43	2.15	5	96.57	2.15	5
α1HSTOP	37.29	7.07	8	62.71	7.07	8
α1Ι	7.47	2.66	6	92.53	2.66	6
αlISTOP	22.92	6.52	5	77.08	6.52	5

Table S3. List of antagonists

Treatment	Concentration	Target	Type
AP5	$100 \mu M$	NMDA Channel	Antagonist
Nifedipine (Nif)	10 μΜ	L-Type VGCC	Antagonist
W-7 Hydrochloride	$100 \mu M$	Calmodulin	Antagonist
w-Agatoxin	500nM	$Ca_v2.1$	Antagonist
TTA-A2	$100 \mu M$	T-Type VGCC	Antagonist
2-APB	50 μΜ	IP3 Receptors	Antagonist
AP5	100 μΜ	NMDA Receptors	Antagonist

Table S4. $\alpha 1CCT$ and $\alpha 1ACT$ nuclear signal changes with different treatments

Treatment	Dose	Target	EV	α1CCT	α1CCT Percent Change	α1ΑСΤ	α1ACT Percent Change
Control			-3.1±0.6%	-0.02±0.04%		-0.01±0.03%	
Glutamate (Glu.)	100 μΜ	1	-2.6±0.04%	+18.34±1.5% p<0.0001*		-10.73±1.6% p<0.0001*	
AP5	100 μΜ	NMDA Channel	+1.0±0.05%	+11.39±0.014%	-6.95±0.014% p<0.0001	-4.67±0.038%	+6.06±0.038% p<0.0001
Nifedipine (Nif.)	10 μΜ	L-Type VGCC	+1.7±0.04%	+3.1±0.014%	-15.24±0.014% p<0.0001	$-10.03 \pm 0.020\%$	+0.7± 0.020% p=0.7211
W-7 Hydrochloride	100 μΜ	Calmodulin	+0.0+0.04%	+7.25±0.5%	-11.09±0.5% p<0.0001	-5.76±0.9%	+4.97±0.9% p=0.0321
ω-Agatoxin	500 nM	Ca _v 2.1	+3.4±0.2%	+11.2±0.021%	-7.14±0.021% p=0.0012	-12.67±0.021%	-1.94±0.021% p=0.3551
TTA-A2	100 μΜ	T-Type VGCC	+2.2±0.6%	+12.81±0.020%	-5.53±0.020% p=0.0071	-12.14±0.020%	-1.41±0.020% p=0.4910
2-APB and Ryanodine	50 μM 100 μM	IP3 Receptors Ryanodine Receptors	-2.0±0.2%	+16.53±2.8%	-1.81±2.8% p=0.5720	-13.49±0.018%	-2.76±0.018% p=0.1293

^{*} Compared to control

Highlighted columns reflect the data reported in manuscript