An accelerated human in-vitro aging model mimics in-vivo aging and facilitates dynamic testing of anti-aging compounds
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Figure  S1. Aging clocks in-vitro and in-vivo. (a) Overview of starting fibroblasts. (b-d) DNAm age calculated using Hannum clock and PhenoAge calculator, as well as transcriptomic age using the RNA Age Calculator – Fibroblast on donors between 0 and 92 years of age (n=22). (e) Clock accuracy defined as the difference between estimated age and chronological age for DNAm and RNA clocks. (f) Blood&Skin DNAm Age and (g) RNA Age Calculator – no tissue for each donor individually of in-vitro aging. Simple Linear Regression was performed to assess slope. 
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Figure S2. Transcriptomic changes during in-vitro aging. (a,b) Comparison of influence of time on significant and common up- and down-regulated aging genes in in-vitro aging (green, dots, 6 months) and in-vivo aging (grey, regression, 73 years). Simple linear regression was performed to assess slope. (c) Overlap of significantly correlated genes to in-vitro aging (green) and in-vivo aging (blue). (d) Average correlation values of gene expression and their promoter methylation contributing to selected overlapping pathways. 
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 Figure S3. Single cell RNA sequencing of in-vitro aging. (a,b) Cell number and reads per cell for each donor (n=2) at Month 0 and Month 5. (c) Proportion of cells contributing to each cluster, showing a clear annotation of each donor at each time-point. Each donor shows a minimal and comparable number of cells in G2M phase. (d-g) Score based on genes contributing to RNA Age Calculator – no tissue for each donor. Quartiles were calculated and cells in the lower 50 % were considered young (purple), and cells contributing to the upper 50 % were considered old (green). Pie charts show a quantification of the number of cells contributing to each quartile. (h,i) Heterogeneity of RNA Age Calc and LTA score. Unpaired t-test. (j) Changes in Standard Deviation at Month 0 (dark-green/brown, left) and Month 5 (light green/brown, right). Month 0 was normalized to 0.
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Figure S4. Anti-aging drug Rapamycin showing limited effects on human cell aging (a) DNAm Blood&Skin clock in Control (grey), Metformin-treated (red) and Rapamycin-treated (yellow) cultures. Simple linear regression, comparing slopes. (b) Slopes and Years aged in-vitro calculated by subtracting the age of Month 0 from Month 6 in Control (grey) and Rapamycin-treated cultures (yellow). (c) RNA Age Calc on Control (grey), Metformin- (red) and Rapamycin- (yellow) treated cultures. Simple linear regression was performed to determine difference of slopes. Violin plots of slopes and Years aged in-vitro, one-way ANOVA. (d) Differential expression analysis comparing Rapamycin and untreated control cultures at Month 6. P-adjusted < 0.05. (e) KEGG pathway analysis of DEGs comparing Rapamycin and untreated cultures, overlapping with aging pathways from (Fig. 2). Dark-yellow = overlapping aging pathways, light-yellow = Rapamycin-specific pathways. (f) Correlation of gene expression changes to the aging process in-vitro in untreated and Rapamycin-treated cultures showing anti-aging effects.
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igure S2. Epigenetic clock and transcriptome clock aging rates are consistently accelerated in vitro
) DNAm age estimated by Hannum Clock and PhenoAge, showing less accurate age estimation compared to Blood&S$kin in in-vitro cultured

fibroblasts.

) RNA Age Calculators specifically for fibroblasts showed more standard deviation and lower slope compared to the all tissue clock.

) Clock accuracies comparison of DNAm and RNA clock in in-vivo aging.
) Blood&Skin DNAm age calculated for each donor (#1-#4).
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