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I. THEORETICAL BACKGROUND20

A. Supervised learning21

We start by introducing the basic framework of supervised learning [1]. Let X be the set of input data and Y = {1, 2, · · · , k}22

be the set of labels. We assume that every input data x ∈ X has a deterministic label y(x) ∈ Y . Let D be an unknown23

distribution over X . The goal of supervised learning is to find an algorithm A(·) (probably randomized in quantum machine24

learning) such that, input a sample x ∼ D, output the label y(x) with high probability. To achieve this goal, we parametrize the25

learning model by parameters θ and optimize the average loss26

R(θ) = Ex∼DL(x, y(x);θ). (S1)

Here L(x, y;θ) is some loss function, usually a metric of the difference between the output distribution of A(x;θ) and the27

correct label y. R(θ) is called the risk or the prediction error of the model A(· ;θ). However, the distribution D is unknown, so28

we cannot directly calculate R(θ). Instead, we sample a training dataset S = {(xi, yi = f(xi))}mi=1 from D, and optimize the29

following empirical risk or training error:30

R̂S(θ) =
1

m

m∑
i=1

L(xi, yi;θ). (S2)

According to the simple decomposition R(θ) = R̂S(θ) + (R(θ)− R̂S(θ)), the success of supervised learning depends on two31

important factors: trainability and generalization. In short, trainability asks whether we can efficiently find θ with low empirical32

risk, while generalization asks whether the generalization gap genS(θ) = R(θ) − R̂S(θ) is upper bounded, i.e., whether the33

good performance on the training set S can be generalized to unseen data.34
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B. Variational quantum learning models35

For conventional gradient-based quantum learning approaches [2], a learning algorithm A(x;θ) executes a variational quan-36

tum circuit U(θ) to a data-encoded state |ϕ(x)⟩ before performing certain measurements to make the prediction. Assuming the37

measurement observable to beOM , the output from the variational circuit is the expectation value
〈
ϕ(x)|U(θ)†OMU(θ)|ϕ(x)

〉
.38

The loss function is often defined as a function of this value, where commonly used forms include mean square error and cross-39

entropy. For a training task, the average loss value over a given set of training data is defined as the empirical risk, where schemes40

based on gradient descents are widely exploited to minimize it and find the optimal parameters θ∗. In the quantum machine41

learning realm, there are various methods proposed to calculate the gradients with respect to circuit parameters, including finite42

differences, the parameter-shift rules, and quantum natural gradients [3–5].43

Quantum neural networks have demonstrated promising generalization capabilities in various learning settings [6, 7]. Intu-44

itively, when the number of training data points exceeds the degrees of freedom in the parameter space, the generalization gap45

of the optimized parameters is typically bounded by a small constant. However, the practical trainability of quantum neural46

networks remains a significant challenge. A key bottleneck lies in the computational cost of estimating gradients with respect47

to the circuit parameters. For instance, computing the gradient of a single parameter accurately often requires executing the48

variational circuit thousands of times, even when employing comparably efficient parameter-shift rules. This process becomes49

increasingly time-consuming and impractical as the number of parameters grows.50

Furthermore, the loss landscape of quantum neural networks can be highly non-convex and challenging to navigate. As shown51

in ref. [8], the loss function of quantum neural networks exhibits exponentially many local minima, which can trap optimization52

algorithms and hinder convergence. In parallel, the phenomenon of barren plateaus, first identified in ref. [9], poses a critical53

issue: the gradients of the loss function tend to vanish exponentially with the number of qubits, especially in deep quantum54

circuits. In such cases, the loss landscape becomes effectively flat, making it extremely difficult to identify a direction for55

optimization. The presence of barren plateaus is closely tied to the randomness and entanglement structure of the quantum56

circuit, as well as the choice of cost function and initial parameterization, which severely threads the scalability and practical57

utility of quantum neural networks for large-scale problems [9–14].58

II. THE AUTOMATED LEARNING STRATEGY59

In this section, we provide more technical details about the quantum automated learning strategy.60

A. Choose an appropriate number of qubits61

To carry out the QAL protocol, the first step is to decide an appropriate number of qubits n. Since an n-qubit state lives in62

a O(2n)-dimensional Hilbert space and thus bears O(2n) degrees of freedom, one natural choice is n = O(log |x|), where |x|63

is the dimension of data sample x. However, we remark that the choice of n is much more flexible. For example, if we are64

classifying Hamiltonian data, it is more natural to set n to be the system size of the Hamiltonian. If the data are images of size65

L × L, setting n = L may align with the two-dimensional structure better. On the other hand, sometimes it is possible to set n66

to be even much smaller than log(|x|), since realistic data samples are usually believed to lie in a low-dimension manifold.67

B. Encode data into unitaries68

Once we pin down the number of qubits n, the next step is to encode data into n-qubit unitaries. Here we present the detailed69

data encoding schemes for quantum automated learning, which incorporates three distinct categories of data: classical data,70

Hamiltonian data, and quantum state data. An overview of the encoding methods is provided in Fig. S1, which summarizes the71

key approaches before delving into the detailed descriptions of each scheme.72

Classical data, including images, text, or audio, can be transformed into a vector of numerical values, denoted as x. The73

data vector x is encoded into parameterized quantum circuit. Specifically, each element of x is mapped into rotation angles of74

single-qubit gates. A single-qubit gate is parametrized as G(α, β, γ) = Ry(α)Rz(β)Ry(γ), where Ry(α) and Rz(β) are the75

rotations around the Y and Z axes of the Bloch sphere by angle α and β, respectively. Therefore, for a n-qubit quantum circuit,76

a layer of single-qubit gates can encode up to 3n entries of the vector x. If we denote the dimension of x as l, then it is necessary77

to employ ⌈ l3n⌉ layers of single-qubit gates. More concretely, considering a 3n-dimensional vector y, we define the encoding78

of a single-qubit layer as: G(y) = ⊗ni=1Gi(y2n+i, yn+i, yi), where Gi acts on the i-th qubit, as illustrated in Fig. S2a. Then79

the k-th layer single-qubit encoding of the data vector x is defined as G
(
x3n(k−1)+1:3nk

)
, where xi:j denotes the abbreviation80

of (xi, xi+1, . . . , xj). In cases where the number of elements in x does not exactly divide by 3n, padding with zeros is used to81

ensure uniformity.82
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Classical data Hamiltonian data Quantum state data

Original data 𝒙 𝐻𝒙 𝒙

Encoding unitary
e−𝑖𝐻𝒙𝑡 e−𝑖𝐻|𝒙⟩

𝐻|𝒙⟩ = ( 𝒙 ⊗ 𝐈n 𝐻(⟨𝒙| ⊗ 𝐈n)

𝑈(𝒙)

Parameterized quantum circuit Real-time evolution

FIG. S1: Overview of three different data encoding methods. We encode classical data x into parameterized quantum circuit
U(x); encode Hamiltonian data Hx into its real-time evolution e−iHxt; and encode quantum state |x⟩ first into an n-qubit
Hamiltonian: H|x⟩ = (⟨x| ⊗ In)H(|x⟩ ⊗ In), and then encode it to a unitary e−iH|x⟩ .

Between two layers of single-qubit gates, we insert a layer of two-qubit gates to entangle the qubits, leading to the spread of in-83

formation. This layer of two-qubit gates is composed of a CNOT-gate blockA and a CZ-gate blockB. Each block consists of two84

layers of two-qubit gates: in the first layer, the odd-numbered qubits act as the control qubits, while in the second layer, the even-85

numbered qubits serve as the control qubits. In both layers, each control qubit targets the subsequent qubit in the sequence. Math-86

ematically, we define: A =
(
⊗⌊n−1

2 ⌋
i=1 CNOT2i,2i+1

)(
⊗⌊n

2 ⌋
i=1 CNOT2i−1,2i

)
and B =

(
⊗⌊n−1

2 ⌋
i=1 CZ2i,2i+1

)(
⊗⌊n

2 ⌋
i=1 CZ2i−1,2i

)
, as87

shown in Fig. S2a. To ensure that all elements of the data vector can influence the measured qubits used for prediction, we add88

additional ⌊n2 ⌋ − 1 layers of two-qubit gates.89

The final unitary encoding U(x) for classical data is then given by a sequence of single- and two-qubit gates:90

(BA)⌊
n
2 ⌋−1G(x3n(d−1)+1:3nd) · · ·BAG(x3n+1:6n)BAG(x1:3n), (S3)

where d = ⌈ l3n⌉ and x is padded with zeros if 3nd > l. as illustrated in Fig. S2b.91

For Hamiltonian data, we encode the Hamiltonian Hx through its real-time evolution e−iHxt. This encoding inherently92

captures the time evolution of quantum states governed by the Schrödinger equation. Both e−iHxt and its reverse evolution93

eiHxt can be implemented through quantum Hamiltonian simulation techniques [15–18]. One may exploit other encoding94

schemes for Hx. In practice, we find that our real-time evolution encoding works well, as shown in our numerical simulations95

(Fig. ??)96

For quantum state classification, each datum is a quantum state |x⟩ of s qubits. In order to carry out the QAL protocol97

for classifying |x⟩, we need to encode |x⟩ into a unitary U|x⟩. We fix an (s + n)-qubit Hamiltonian H . We first encode the98

quantum state |x⟩ into an n-qubit Hamiltonian: H|x⟩ = (⟨x| ⊗ In)H(|x⟩⊗ In), and then encode it to a unitary U|x⟩ = e−iH|x⟩ .99

This unitary can be efficiently implemented using copies of |x⟩ and real-time evolution e−iHt, inspired by the Lloyd-Mohseni-100

Rebentrost protocol [19] that implements e−iρt from copies of ρ. More concretely, for any state ρ straightforward calculations101

yield102

tr≤l(e
−iH∆t(|x⟩⟨x| ⊗ ρ)eiH∆t) = ρ+ tr≤l(−iH∆t(|x⟩⟨x| ⊗ ρ) + (|x⟩⟨x| ⊗ ρ)iH∆t)) +O((∆t)2)

= ρ− i∆t[H|x⟩, ρ] +O((∆t)2)

= e−iH|x⟩∆tρeiH|x⟩∆t +O((∆t)2). (S4)

Therefore, if we apply e−iH∆t to |x⟩⟨x| ⊗ ρ, we effectively apply e−iH|x⟩∆t to ρ, up to a second-order error O((∆t)2).103

Repeating this procedure 1/∆t times, we effectively apply e−iH|x⟩ to ρ up to error O(∆t). By choosing ∆t sufficiently small,104

we can approximate e−iH|x⟩ up to any precision. In our numerical simulations, we choose H as a random 4-local Hamiltonian.105

Each term of H is a 4-body Pauli interaction on 4 random positions with a random interaction strength between -1 and 1 (Fig.106

??).107



4

𝑈 𝒙 =

=

a

b

𝐺(𝒚) 𝐵𝐴… …

𝑙

3𝑛
layers

𝐺 𝐵𝐴… …

𝐺 𝐵𝐴… …

𝐺 𝐵𝐴… …

𝐺(𝒙1:3𝑛) 𝐵𝐴… …

𝐵𝐴… …

𝐵𝐴… …

𝐵𝐴… …

𝐵𝐴… …

𝑛

2
− 1 layers

𝑅𝑦 𝑦2𝑛+1

𝑅𝑦 𝑦2𝑛+2

𝑅𝑦 𝑦3𝑛−1

𝑅𝑦 𝑦2𝑛+3

𝑅𝑦 𝑦3𝑛−2

𝑅𝑦 𝑦3𝑛

𝑅𝑧 𝑦𝑛+1

𝑅𝑧 𝑦𝑛+2

𝑅𝑧 𝑦2𝑛−1

𝑅𝑧 𝑦𝑛+3

𝑅𝑧 𝑦2𝑛−2

𝑅𝑧 𝑦2𝑛

𝑅𝑦 𝑦1

𝑅𝑦 𝑦2

𝑅𝑦 𝑦𝑛−1

𝑅𝑦 𝑦3

𝑅𝑦 𝑦𝑛−2

𝑅𝑦 𝑦𝑛
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FIG. S2: The classical data encoding scheme. a, Illustrates an encoding layer for a 3n-dimensional vector y (G (y)). The
layer consists of three layers of single-qubit gates (Ry, Rz, Ry), denoted by the purple block; two layers of CNOT two-qubit
gates, denoted by the green block; and two layers of CZ two-qubit gates, denoted by the yellow block. b, Illustrates the
complete encoding for an l-dimensional vector x. The encoding scheme involves ⌈ l3n⌉ layers of single-qubit and two-qubit
gates (BAG

(
x3n(k−1)+1:3nk

)
), followed by ⌊n2 ⌋ − 1 layers of entangling gates (BA).

C. Training process and efficient compiling of Uy108

In this subsection, we show that the required unitary Uy to implement the target-oriented perturbation can be compiled in109

an efficient way, with the count of CNOT gates scales logarithmically with the number of classes k. Recalling that Uy =110

My ⊗ Z +
√
I −M2

y ⊗ X acts on ⌈log k⌉ + 1 qubits, and My = |y⟩⟨y| + (1 − η)(I − |y⟩⟨y|), we arrive at the following111

decomposition:112

Uy = |y⟩⟨y| ⊗ Z + (I − |y⟩⟨y|)⊗ ((1− η)Z +
√
2η − η2X) (S5)

= [I ⊗ ((1− η)Z +
√

2η − η2X)][|y⟩⟨y| ⊗ ((1− η)Z +
√

2η − η2X)Z + (I − |y⟩⟨y|)⊗ I].

The first part of the above equation I⊗((1−η)Z+
√
2η − η2X) is a single-qubit gate and can be compiled into a constant number113

of gates. The second part is a ⌈log k⌉-controlled SU(2) gate, as |y⟩⟨y| involves ⌈log k⌉ qubits and (1−η)Z+
√
2η − η2X)Z is114

a SU(2) gate. Utilizing the techniques in Ref. [20], such a multi-controlled SU(2) gate can be compiled into O(log k) CNOT115

gates. This leads to the conclusion that the whole Uy can be compiled in an efficient way with about log k two-qubit gates.116
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D. Prediction and evaluataion117

The predicted label ofx is the outcome of measurements in the computational basis performed onU(x) |ψ⟩. So the probability118

of correct prediction (i.e., the accuracy) is
〈
ψ|U(x)†Πf(x)U(x)|ψ

〉
= 1 − ⟨ψ|Hx|ψ⟩. This accuracy can be amplified by119

repetition. Indeed, once the data in each step has been sampled, the training process is a fixed quantum circuit (with post-120

selection). So we can run the circuit multiple times to obtain K copies of the final states |ψ⟩. To predict the label of a new121

unseen data sample x, we measure U(x) |ψ⟩ in the computational basis for each copy and do a majority vote. For simplicity, we122

consider the binary classification problem and assume K is odd, then the probability of correct label (called K-accuracy) is123

pK(x, |ψ⟩) =
(K−1)/2∑
r=0

(
K

r

)
⟨ψ|Hx|ψ⟩r (1− ⟨ψ|Hx|ψ⟩)K−r.

WhenK = 1, this reduces to the single-copy accuracy 1−⟨ψ|Hx|ψ⟩. WhenK =∞, theK-accuracy equals to the step function124

1[⟨ψ|Hx|ψ⟩ < 1/2]. Throughout this paper, we call K the number of trials.125

E. Gradient perspective126

As mentioned in the main text, the dissipation process of quantum automated learning actually implements the gradient127

descent algorithm in an automated manner. In the training step (iii), the quantum system is evolved through U(x), My and128

U(x)†. We define My = Πy(x) + (1− η)(I−Πy(x)) and Hx = I− U(x)†Πy(x)U(x), where Πy(x) denotes the measurement129

projection corresponding to the state encoding the label y. Then we get the updated (unnormalized) state U(x)†MyU(x)|ψ⟩ =130

(I− ηHx)|ψ⟩. As mentioned above, the non-unitary perturbation My in training step (iii) of the QAL protocol is implemented131

by block encoding into a unitary with an ancillary qubit combined with post-selection. As a result, this step effectively updates132

the state with unitary transformation:133

|ψ⟩ ← (I − ηHx) |ψ⟩
∥(I − ηHx) |ψ⟩∥

, (S6)

where ∥(I − ηHx) |ψ⟩∥ is a normalization factor whose square gives the success probability of post-selection.134

The probability of correct prediction of a datum x reads
〈
ψ|U(x)†Πy(x)U(x)|ψ

〉
= 1 − ⟨ψ|Hx|ψ⟩. As mentioned in the135

main text, we define the loss function as the average failure probability: R̂S(ψ) = Ex∼S ⟨ψ|Hx|ψ⟩, where Ex∼S denotes the136

expectation and x ∼ S means x is uniformly sampled from the training set S. From the perspective of conventional machine137

learning, we may also regard |ψ⟩ as a variational state parametrized by a complex vector ψ. Given that the expectation value138

⟨ψ|Hx|ψ⟩ is real, we transform the complex vector ψ = (ψ1, . . . , ψ2n) into a fully real representation: (a1, b1, . . . , a2n , bn),139

where ai and bi denote the real and imaginary components of ψi respectively. Owing to the Hermitian property of Hx, we140

derive the partial derivatives: ∂⟨ψ|Hx|ψ⟩
∂ai

= 2Re(
∑
j(Hx)i,jψj) and ∂⟨ψ|Hx|ψ⟩

∂bi
= 2Im(

∑
j(Hx)i,jψj). This allows us to define141

∂⟨ψ|Hx|ψ⟩
∂ψi

= 2
∑
j(Hx)i,jψj . Consequently, the gradient of ⟨ψ|Hx|ψ⟩with respect to ψ can be succinctly expressed as 2Hx |ψ⟩.142

Therefore, the update rule in Eq. (S6) essentially implements the stochastic projected gradient descent algorithm to minimize the143

loss function R̂S(ψ) with a batch size one. Here we use the term “projected” to emphasize the normalization after each update.144

From the stochastic gradient descent perspective, one may conclude that an initial state |ψ⟩ can exponentially converge to a local145

minimum through updating rule (S6) on expectation [21]. However, a rigorous proof of convergence to the global minimum146

is unattainable in general. In fact, this is an inherent drawback for conventional gradient-based quantum learning approaches.147

Whereas, owing to the quadratic form of the loss function and the clear physical interpretation, we can rigorously prove that |ψ⟩148

converges exponentially to the global minimum for the QAL protocol, as discussed in the main text and detailed in the following149

sections.150

III. PHYSICAL INTERPRETATION AND ANALYTICAL RESULTS151

Throughout this section, we use ∥A∥1, ∥A∥∞ to denote the trace norm (the summation of singular values) and spectral norm152

(the largest singular value), respectively. For two HermitianA,B, denoteA ⪯ B ifB−A is positive semi-definite. By definition,153

for any x, 0 ⪯ Hx ⪯ I , and thus 0 ⪯ HS ⪯ I . We will use the following fact.154

Lemma S1. Let A,B,C be three Hermitian matrices such that ∥A∥1 ≤ 1, 0 ⪯ B,C ⪯ I . Then155

∥BAB∥1 ≤ 1, ∥BAC + CAB∥1 ≤ 2. (S7)
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Proof. We first prove the lemma when A is a normalized pure state |a⟩⟨a|. Write |b⟩ = B |a⟩ , |c⟩ = C |a⟩. Since 0 ⪯ B,C ⪯ I ,156

the norms of |b⟩ , |c⟩ are at most 1. Then ∥BAB∥1 = ∥|b⟩⟨b|∥1 ≤ 1, ∥BAC + CAB∥1 = ∥|b⟩ ⟨c|+ |c⟩ ⟨b|∥1 ≤ 2. For general157

A, write the spectrum decomposition A =
∑
i λi |λi⟩⟨λi|. By triangle inequality, ∥BAB∥1 ≤

∑
i |λi|∥B |λi⟩⟨λi|B∥1 ≤158 ∑

i |λi| = ∥A∥1 ≤ 1 and ∥BAC + CAB∥1 ≤
∑
i |λi|∥B |λi⟩⟨λi|C + C |λi⟩⟨λi|B∥1 ≤

∑
i 2|λi| ≤ 2.159

A. Formulation of the training process160

In this subsection, we explain the training process from a physical perspective and derive an analytical characterization of the161

success probability of post-selection and the performance of the final model. Observe that the empirical risk is the energy of |ψ⟩162

under the Hamiltonian HS , so finding the global minimum is equivalent to finding the ground state of HS . We rewrite (S6) in163

the density matrix formalism:164

ρ
x←− (I − ηHx)ρ(I − ηHx). (S8)

Here we keep the post-state ρ unnormalized. Indeed, Tr(ρ) is the success probability of the post-selection. So the density matrix165

formalism helps us to keep track of the overall success probability. Another benefit of the density matrix formalism is that we166

can embed the randomness of the sample into the state. Since the datum x is uniformly sampled from S, the averaged post-state167

up to the second order term is168

ρ← Ex∼S(I − ηHx)ρ(I − ηHx)

≈ I − η(HSρ+ ρHS)

≈ e−ηHSρe−ηHS . (S9)

We make this approximation precise in the following lemma169

Lemma S2.

Ex∼S(I − ηHx)ρ(I − ηHx) = e−ηHSρe−ηHS + η2O, (S10)

where O is a Hermitian matrix with trace norm at most 4.170

Proof. Let R = (e−ηHS − (I − ηHS))/η
2. Since 0 ⪯ HS ⪯ I , all the eigenvalues of HS are in [0, 1]. By the Taylor expansion171

of the exponential function, for any x ∈ [0, 1], there exists x∗ ∈ [0, 1] such that (e−ηx − (1 − ηx))/η2 = (x∗)2/2 ∈ [0, 1/2].172

Therefore, R is a Hermitian matrix such that 0 ⪯ R ⪯ I/2. By Lemma S1, we have173 ∥∥Ex∼S(I − ηHx)ρ(I − ηHx)− e−ηHSρe−ηHS
∥∥
1

=
∥∥ρ− η(HSρ+ ρHS) + η2Ex∼SHxρHx − (η2R+ (I − ηHS))ρ(η

2R+ (I − ηHS))
∥∥
1

=η2
∥∥(Ex∼SHxρHx −HSρHS − η2RρR− (Rρ(I − ηHS) + (I − ηHS)ρR)

)∥∥
1

≤η2(1 + 1 + η2/4 + 1) < 4η2.

Up to the second order term, (S9) is the imaginary time evolution of ρ under HS . Suppose the initial state is σ, then the174

averaged state after T epochs is ρ = e−ηTHSσe−ηTHS . Let β = ηT be the summation of learning rates. We can approximate175

the success probability of possibility by tr
(
e−βHSσe−βHS

)
and the loss by tr

(
HS

e−βHSσe−βHS

tr(e−βHSσe−βHS )

)
. We summarize and176

prove the results in the following theorem.177

Theorem S1. Suppose we train the QAL model with initial state σ for T steps, with learning rate ηt at step t. Define178

β =

T∑
i=1

ηt, γ =

T∑
i=1

η2t , σ(β) = e−βHSσe−βHS . (S11)

Averaging over choice of training samples, the success probability of post-selection is179

tr(σ(β)) + c1γ, (S12)

and the average loss conditioned on the success of post-selection is180

tr(HSσ(β)) + c2γ

tr(σ(β)) + c1γ
. (S13)

Here c1, c2 are two real numbers such that |c1|, |c2| ≤ 4.181
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Proof. Let x1, · · · ,xT ∼ S be the training samples in the T steps. We abbreviate x1, · · · ,xt as x1:t. By (S8), the unnormalized182

state after step t is183

ρx1:t
t = (I − ηtHxt

) · · · (I − η1Hx1
)σ(I − η1Hx1

) · · · (I − ηtHxt
). (S14)

Given samples x1:T , tr(ρx1:T

T ) is the success probability of post-selection and tr

(
HS

ρ
x1:T
T

tr(ρx1:T
T )

)
is the loss conditioned on the184

success of post-selection. We now average over the choice of samples. Recursively apply Lemma S2 and Lemma S1, we have185

Ex1:T∼ST ρx1:T

T = σ(β) + γO, (S15)

for some Hermitian O with trace norm at most 4. The average success probability of post-selection is186

Ex1:T∼ST tr(ρx1:T

T ) = tr(σ(β)) + c1γ, (S16)

where c1 = tr(O) satisfies |c1| ≤ 4. Now we calculate the averaged loss conditioned on the success of post-selection. For187

clarity, denote q = tr(σ(β)) + c1γ, p = 1/|S|T be the probability of sampling x1, · · · ,xT . Then conditioned on the success188

of post-selection, the conditional probability of sampling x1:T is p tr(ρx1:T

T )/q. Therefore, the average loss conditioned on the189

success of post-selection is190 ∑
x1:T∼ST

p tr(ρx1:T

T )

q
tr

(
HS

ρx1:T

T

tr(ρx1:T

T )

)
=

1

q
Ex1:T∼ST tr(HSρ

x1:T

T ) =
tr(HSσ(β)) + c2γ

tr(σ(β)) + c1γ
, (S17)

where c2 = tr(HSO) satisfies |c2| ≤ 4.191

According to the theorem, up to the second order term c1γ, c2γ, the training process behaves the same as the imaginary192

time evolution of σ under HS . The effect of imaginary time evolution is clearer in the eigenbasis of HS . Write the spectrum193

decomposition of HS as HS =
∑
iEi |Ei⟩⟨Ei| and define σi = ⟨Ei|σ|Ei⟩ as the overlap of σ with the i-th eigenstate. Then194

σ(β) =
∑
i

σie
−2βEi |Ei⟩⟨Ei| ,

tr(HSσ(β))

tr(σ(β))
=

∑
iEiσie

−2βEi∑
i σie

−2βEi
. (S18)

The weight of |Ei⟩⟨Ei|, σie−2βEi , decays exponentially with β. The decay is slower for lower energy eigenstates. Assume σ195

has a non-zero overlap with the ground space. As β goes up, eventually the weight of the ground space dominates, so ρn(β)196

converges to a ground state of HS and the empirical risk converges to the global minimum. In the following, we will make this197

intuition rigorous in the presence of c1γ, c2γ.198

B. Convergence to global minimum199

Denote the ground energy of HS (i.e., the global minimum of the loss) as g, the projector to the ground space as Πg , and the200

gap between the ground energy and the first excited state as δ > 0.201

Theorem S2. Suppose σ has a nonzero overlap with the ground space of HS (that is, σg = tr(Πgσ) > 0). For any constant202

c ∈ (0, 1), we can choose an appropriate η and T such that if we train the QAL model for T steps with learning rate η in each203

step, the averaged loss conditioned on the success of post-selection is at most g + c.204

Proof. According to Theorem S1, we only need to upper bound (S13) for β = ηT and γ = η2T = βη. Since205

tr(HSσ(β)) + c2βη

tr(σ(β)) + c1βη
≤ σge

−2βgg + (1− σg)e−2β(g+δ) + 4βη

σge−2βg − 4βη

= g +
(1− σg)e−2β(g+δ) + (4 + 4g)βη

σge−2βg − 4βη

≤ g + e−2βδ + 8βηe2βg

σg − 4βηe2βg
. (S19)

Choose β such that e−2βδ < σgc/4, and then choose η such that βηe2βg < σgc/16 < σg/16. Then the right hand side of (S19)206

is at most207

g +
σgc/4 + σgc/2

σg − σg/4
= g + c. (S20)
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A randomly initialized state σ has a nonzero overlap with the ground space with probability 1. According to the theorem,208

the QAL model will converge to the global minimum of the loss function. However, this convergence is built on the success of209

post-selection, whose probability exponentially decays with the number of steps. Therefore, a more realistic question is whether210

we can build a reasonable trade-off between the success probability and the performance of the final model.211

C. Convergence with constant probability212

In this subsection, we will establish a practical trade-off between the accuracy of the final model and the success probability213

of post-selection when the initial state has a large overlap with the low-energy eigenspace of HS .214

Definition S1. Let H be a Hamiltonian. The E low energy subspace of H is the subspace spanned by the eigenstates of H with215

energy at most E. Denote the projector to the E low energy subspace as ΠHE . The overlap of a state σ with the E low energy216

subspace is defined as tr
(
ΠHEσ

)
.217

Throughout this section, we focus on the Hamiltonian HS and omit the superscript H .218

Theorem S3. Let c1, c3 ∈ (0, 1), c2 ∈ (0, 1/10) be three constants, g be the ground energy ofHS , and ϵ > 0 such that g/ϵ ≤ c1.219

Assume the overlap between the initial state σ and the (g + ϵ) low energy eigenspace of HS , namely tr(σΠg+ϵ), is at least c2.220

Then we can choose an appropriate η and T such that if we train the QAL model with the initial state σ for T steps with learning221

rate η in each step, the success probability of post-selection is at least c4 and the averaged loss conditioned on the success of222

post-selection is at most g + ϵ+ c3. Here c4 is a constant that only depends on c1, c2, c3.223

Proof. By Theorem S1, we only need to lower bound the the success probability in (S12) and the conditional loss in (S13).224

We will follow the notation in Theorem S1, so that β = ηT , γ = η2T , and σ(β) = e−βHσe−βH . Here we write H = HS225

for simplicity. We will prove the theorem for β = 3 ln(1 + c2)/(c3ϵ), c4 = e−6(1+c1) ln(1+c2)/c3c2/2 and γ = c3c4/40.226

Accordingly, η = γ/β is of order ϵ and T = β2/γ is of order 1/ϵ2. By (S12), the success probability is at least227

tr(σ(β))− 4γ ≥ tr(Πg+ϵσ(β))− 4γ

= tr
(
e−βHΠg+ϵe

−βHσ
)
− 4γ

≥ e−2β(g+ϵ) tr(Πg+ϵσ)− 4γ

≥ e−2βϵ(1+c1)c2 − 4γ

= 2c4 − 4γ > c4. (S21)

By (S13), the averaged loss conditioned on the success of post-selection is at most228

tr(Hσ(β)) + 4γ

tr(σ(β))− 4γ
= g +

tr((H − gI)σ(β))
tr(σ(β))− 4γ

+
(4 + 4g)γ

tr(σ(β))− 4γ

≤ g + tr((H − gI)σ(β))
tr(σ(β))(1− c3/20)

+
8γ

c4

≤ g + c3
5

+ (1 +
c3
5
)
tr((H − gI)σ(β))

tr(σ(β))
, (S22)

where we use 4γ = c3c4/10 ≤ c3 tr(σ(β))/20 in the second line and (1 + c3/5)(1 − c3/20) ≥ 1 in the third line. So it229

suffices to upper bound tr((H − gI)σ(β))/ tr(σ(β)). Write the spectrum decomposition of H as H =
∑
iEi |Ei⟩⟨Ei| and let230

xi = 2β(Ei − g), σi = ⟨Ei|σ|Ei⟩. We simplify the last term of (S22) to231

tr((H − gI)σ(β))
tr(σ(β))

=

∑
i(Ei − g)e−2βEiσi∑

i e
−2βEiσi

=

∑
i σie

−xixi∑
i σie

−xi
· 1

2β
. (S23)

Split the Hilbert space into low energy and high energy eigenspaces, L = {i : Ei ≤ g + ϵ} and H = {i : Ei > g + ϵ}. Let232

pL = tr(σΠg+ϵ) =
∑
i∈L σi ≥ c2 and pH = 1 − pL be the overlaps of σ with the two subspaces. Since f(y) = −y ln(y) is233

concave, by Jensen’s inequality,234 ∑
i∈L

σi
pL
f(e−xi) ≤ f

(∑
i∈L

σi
pL
e−xi

)
. (S24)
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Let l be the number such that e−l =
∑
i∈L σie

−xi/pL. The inequality becomes
∑
i∈L σie

−xixi ≤ pLe
−ll. Similarly, let235

h = − ln
(∑

i∈H σie
−xi/

∑
i∈H σi

)
, then

∑
i∈H σie

−xixi ≤ pHe−hh. Therefore,236 ∑
i σie

−xixi∑
i σie

−xi
≤ pLe

−ll + pHe
−hh

pLe−l + pHe−h
. (S25)

By definition, xi ∈ [0, 2βϵ] for i ∈ L and xi > 2βϵ for i ∈ H . Since e−l is a mixed of e−xi(i ∈ L), we have 0 ≤ l ≤ 2βϵ and237

similarly h ≥ 2βϵ. Denote y = h− l. Insert (S23) and (S25) to (S22).238

tr(Hσ(β)) + 4γ

tr(σ(β))− 4γ
≤ g + c3

5
+ (1 +

c3
5
)
pLe

−ll + pHe
−hh

pLe−l + pHe−h
· 1

2β

= g +
c3
5

+ (1 +
c3
5
)(l +

pHe
−yy

pL + pHe−y
) · 1

2β

≤ g + c3
5

+ (1 +
c3
5
)(l +

e−yy

c2 + e−y
) · 1

2β
. (S26)

By differentiating g(y) = e−yy/(c2+e
−y) = y/(c2e

y+1), we find that g(y) ≤ g(y∗) for the y∗ > 0 such that c2ey
∗
(y∗−1) = 1.239

For this y∗ we have g(y∗) = y∗−1. Assume y∗ > ln(1/c2) > 2, then 1 = c2e
y∗(y∗−1) > c2(1/c2)(2−1) = 1, a contradiction.240

So g(y) ≤ g(y∗) = y∗ − 1 ≤ ln(1/c2). By (S26), the averaged loss conditioned on the success of post-selection is at most241

g +
c3
5

+ (1 +
c3
5
)(2βϵ+ ln(1/c2)) ·

1

2β
= g +

c3
5

+ (1 +
c3
5
)(ϵ+

c3ϵ

6
) < g + ϵ+ c3. (S27)

The theorem ensures the convergence of the QAL training process with a constant success probability, assuming a good initial242

state. Concretely, as long as the initial state has a large (at least c2) overlap with the low energy eigenspace (with energy at most243

g + ϵ), the QAL training process will converge to the low energy eigenspace (up to an arbitrarily small residue error c3) with a244

constant success probability (c4 that only depends on c1, c2, c3).245

D. Heavy-tailed Hamiltonian246

Theorem S3 highlights the importance of the initial state σ. However, without prior knowledge of HS , we cannot do better247

than a random guess, or equivalently, starting from the maximally-mixed state σ = I/2n. Therefore, we actually hope that HS248

has a constant proportion of low energy eigenstates that do not scale up with n, the dimension of x, and the sizem of the training249

dataset. We formalize this intuition in the following definition.250

Definition S2 (Heavy-tailed Hamiltonian). We say a Hamiltonian H is (E, c)-heavy-tailed if the proportion of eigenstates with251

energy at most E is at least c.252

Theorem S4. Let c1, c3 ∈ (0, 1), c2 ∈ (0, 1/10) be three constants. Suppose HS is (g + ϵ, c2)-heavy-tailed, where g is the253

ground energy of HS and ϵ > 0 such that g/ϵ ≤ c1. Then we can choose an appropriate η and T such that if we train the254

QAL model with a maximally-mixed initial state in computational basis for T steps with learning rate η in each step, the success255

probability of post-selection is at least c4 and the averaged loss conditioned on the success of post-selection is at most g+ϵ+c3.256

Here c4 is a constant that only depends on c1, c2, c3.257

Proof. By definition of heavy-tailed Hamiltonian, the overlap between the initial state σ = I/2n and the (g+ ϵ) low eigenspace258

of HS is at least c2. The theorem follows directly from Theorem S3.259

Therefore, the QAL training process is guaranteed to converge to the low energy eigenspace of a heavy-tailed HS . We now260

argue that when HS comes from a reasonable dataset, it is likely to be heavy-tailed due to the similarity of data. Consider the261

extremely simple example of classifying dogs and cats, where all dogs look similar and all cats look similar. The HamiltonianHS262

is approximately a mixture of two projectors of dimensions 2n−1, Hdogs and Hcats. Regard Hdogs and Hcats as random projectors,263

then HS has a constant proportion of near-zero eigenvalues. This assumption is supported by the numerical simulation.264

Remark that while Theorem S4 applies to the maximally-mixed initial state, in reality we will use a random initial state in265

the computational basis. Once we sample an initial state better than the maximally-mixed state, we can stick to it and apply266

Theorem S3.267
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E. Generalization268

The previous results establish the explainable trainability of QAL. While in training classical neural networks, each epoch is269

a full pass of the training dataset, in QAL, each step only involves a single datum. This indicates that the QAL model could be270

optimized using a few data points. In this subsection we rigorously demonstrate the generalization ability of QAL, showing that271

once the model achieves a good performance on a small dataset, the good performance will generalize to unseen data.272

Recall that the training loss and the true loss of |ψ⟩ are R̂S(ψ) = Ex∼S ⟨ψ|Hx|ψ⟩ andR(ψ) = Ex∼D ⟨ψ|Hx|ψ⟩, respectively.273

Theorem S5. With probability at least 1− δ over the choice of S, the generalization gap is upper bounded by274

max
|ψ⟩

(
R(ψ)− R̂S(ψ)

)
≤

√
4 ln(2n+1/δ)

m
. (S28)

Proof. By definition, the left-hand side is upper bounded by the spectral norm of Ex∼uSHx − Ex∼DHx, which can be bounded275

by matrix Bernstein inequality (see, e.g., [22, Theorem 6.1.1]):276

Pr
S
[∥Ex∼uSHx − Ex∼DHx∥2 ≥ t] ≤ 2n+1 exp

(
−mt2/4

)
.

The theorem follows by setting t =
√

4 ln(2n+1/δ)/m.277

According to the theorem, as long as the size m of the training dataset is larger than Ω(n) (i.e., a logarithm of the degree278

of freedom), a parameter state |θ⟩ with low training loss has a low true loss with high probability. This is better than quantum279

neural networks where the training dataset size has to be larger than the degree of freedom [6, 7]. From the proof of the theorem,280

it is clear that the good generalization stems from the simple quadratic form of the loss function.281
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