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20 I. THEORETICAL BACKGROUND

21 A. Supervised learning

22 We start by introducing the basic framework of supervised learning [1]. Let X be the set of input data and Y = {1,2,--- ,k}

23 be the set of labels. We assume that every input data € X has a deterministic label y(x) € ). Let D be an unknown
24 distribution over X'. The goal of supervised learning is to find an algorithm A(-) (probably randomized in quantum machine
25 learning) such that, input a sample « ~ D, output the label y(x) with high probability. To achieve this goal, we parametrize the
26 learning model by parameters 6 and optimize the average loss

R(0) = EoopL(z, y(x); 0). (SD

27 Here L(x,y;0) is some loss function, usually a metric of the difference between the output distribution of A(x; 0) and the

28 correct label y. R(0) is called the risk or the prediction error of the model A(- ; 8). However, the distribution D is unknown, so

2s we cannot directly calculate R(8). Instead, we sample a training dataset S = {(x;,y; = f(x;))}™, from D, and optimize the

30 following empirical risk or training error:

fs0)= 131 ;0 s2
S( )_mz (wlayla ) ( )

i=1

a1 According to the simple decomposition R(8) = Rs(8) + (R(8) — Rs(8)), the success of supervised learning depends on two
32 important factors: trainability and generalization. In short, trainability asks whether we can efficiently find 8 with low empirical
s risk, while generalization asks whether the generalization gap geng(8) = R(8) — Rg(0) is upper bounded, i.e., whether the
a good performance on the training set S can be generalized to unseen data.
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B. Variational quantum learning models

For conventional gradient-based quantum learning approaches [2], a learning algorithm .A(x; @) executes a variational quan-
tum circuit U () to a data-encoded state |¢(x)) before performing certain measurements to make the prediction. Assuming the
measurement observable to be O, the output from the variational circuit is the expectation value (¢(z)|U (0)T O U (8)|¢()).
The loss function is often defined as a function of this value, where commonly used forms include mean square error and cross-
entropy. For a training task, the average loss value over a given set of training data is defined as the empirical risk, where schemes
based on gradient descents are widely exploited to minimize it and find the optimal parameters 8*. In the quantum machine
learning realm, there are various methods proposed to calculate the gradients with respect to circuit parameters, including finite
differences, the parameter-shift rules, and quantum natural gradients [3-5].

Quantum neural networks have demonstrated promising generalization capabilities in various learning settings [6, 7]. Intu-
itively, when the number of training data points exceeds the degrees of freedom in the parameter space, the generalization gap
of the optimized parameters is typically bounded by a small constant. However, the practical trainability of quantum neural
networks remains a significant challenge. A key bottleneck lies in the computational cost of estimating gradients with respect
to the circuit parameters. For instance, computing the gradient of a single parameter accurately often requires executing the
variational circuit thousands of times, even when employing comparably efficient parameter-shift rules. This process becomes
increasingly time-consuming and impractical as the number of parameters grows.

Furthermore, the loss landscape of quantum neural networks can be highly non-convex and challenging to navigate. As shown
in ref. [8], the loss function of quantum neural networks exhibits exponentially many local minima, which can trap optimization
algorithms and hinder convergence. In parallel, the phenomenon of barren plateaus, first identified in ref. [9], poses a critical
issue: the gradients of the loss function tend to vanish exponentially with the number of qubits, especially in deep quantum
circuits. In such cases, the loss landscape becomes effectively flat, making it extremely difficult to identify a direction for
optimization. The presence of barren plateaus is closely tied to the randomness and entanglement structure of the quantum
circuit, as well as the choice of cost function and initial parameterization, which severely threads the scalability and practical
utility of quantum neural networks for large-scale problems [9-14].

II. THE AUTOMATED LEARNING STRATEGY

In this section, we provide more technical details about the quantum automated learning strategy.

A. Choose an appropriate number of qubits

To carry out the QAL protocol, the first step is to decide an appropriate number of qubits n. Since an n-qubit state lives in
a O(2™)-dimensional Hilbert space and thus bears O(2") degrees of freedom, one natural choice is n = O(log |z|), where ||
is the dimension of data sample . However, we remark that the choice of n is much more flexible. For example, if we are
classifying Hamiltonian data, it is more natural to set n to be the system size of the Hamiltonian. If the data are images of size
L x L, setting n = L may align with the two-dimensional structure better. On the other hand, sometimes it is possible to set n
to be even much smaller than log(|x|), since realistic data samples are usually believed to lie in a low-dimension manifold.

B. Encode data into unitaries

Once we pin down the number of qubits n, the next step is to encode data into n-qubit unitaries. Here we present the detailed
data encoding schemes for quantum automated learning, which incorporates three distinct categories of data: classical data,
Hamiltonian data, and quantum state data. An overview of the encoding methods is provided in Fig. S1, which summarizes the
key approaches before delving into the detailed descriptions of each scheme.

Classical data, including images, text, or audio, can be transformed into a vector of numerical values, denoted as . The
data vector x is encoded into parameterized quantum circuit. Specifically, each element of « is mapped into rotation angles of
single-qubit gates. A single-qubit gate is parametrized as G(a, 3,7) = Ry(a)R.(5)R,(7), where R,(c) and R.(/3) are the
rotations around the Y and Z axes of the Bloch sphere by angle « and 3, respectively. Therefore, for a n-qubit quantum circuit,
a layer of single-qubit gates can encode up to 3n entries of the vector x. If we denote the dimension of x as [, then it is necessary
to employ [Bin] layers of single-qubit gates. More concretely, considering a 3n-dimensional vector y, we define the encoding
of a single-qubit layer as: G(y) = ®_ 1 Gi(Y2n+is Yn+i, Yi)» Where G; acts on the i-th qubit, as illustrated in Fig. S2a. Then
the k-th layer single-qubit encoding of the data vector x is defined as G (:cgm( k_1)+1;3nk), where x;.; denotes the abbreviation
of (zi, Zit1,...,x;). In cases where the number of elements in & does not exactly divide by 3n, padding with zeros is used to
ensure uniformity.
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Classical data Hamiltonian data Quantum state data
Original data X H, |x)
Parameterized quantum circuit Real-time evolution Hiyy = (x|  IH((x]| @ 1)

Encoding unitary i
U(x) e—let

FIG. S1: Overview of three different data encoding methods. We encode classical data « into parameterized quantum circuit
U(z); encode Hamiltonian data H, into its real-time evolution e ~*#=*; and encode quantum state |z) first into an n-qubit

Hamiltonian: H |, = ((z| ® I,)H (|x) ® I,,), and then encode it to a unitary e~*"1=),

Between two layers of single-qubit gates, we insert a layer of two-qubit gates to entangle the qubits, leading to the spread of in-
formation. This layer of two-qubit gates is composed of a CNOT-gate block A and a CZ-gate block B. Each block consists of two
layers of two-qubit gates: in the first layer, the odd-numbered qubits act as the control qubits, while in the second layer, the even-
numbered qubits serve as the control qubits. In both layers, each control qubit targets the subsequent qubit in the sequence. Math-

n—1 n n—1 n
ematically, we define: A = <®}3JCNOT2L2¢+1) (@ElJ CNOTQi,LQZ) and B = (®Z-L=f JCZ2172i+1> (®}=21JCZ22-,1721->, as
shown in Fig. S2a. To ensure that all elements of the data vector can influence the measured qubits used for prediction, we add
additional | & ] — 1 layers of two-qubit gates.
The final unitary encoding U () for classical data is then given by a sequence of single- and two-qubit gates:

(BA)L%J71G(m3n(d—l)+l:3nd) -+ BAG(%3n41:6n) BAG(21.30), (S3)

where d = [ﬁ} and «x is padded with zeros if 3nd > (. as illustrated in Fig. S2b.

For Hamiltonian data, we encode the Hamiltonian H, through its real-time evolution e . This encoding inherently
captures the time evolution of quantum states governed by the Schrodinger equation. Both e~*=! and its reverse evolution
e'= can be implemented through quantum Hamiltonian simulation techniques [15-18]. One may exploit other encoding
schemes for H,. In practice, we find that our real-time evolution encoding works well, as shown in our numerical simulations
(Fig. ??)

For quantum state classification, each datum is a quantum state |x) of s qubits. In order to carry out the QAL protocol
for classifying |z), we need to encode |x) into a unitary U),). We fix an (s + n)-qubit Hamiltonian H. We first encode the
quantum state |x) into an n-qubit Hamiltonian: H ,y = ((x| ® I,)H (|&) ® I,,), and then encode it to a unitary U}, = e~ *Hl=).
This unitary can be efficiently implemented using copies of |z) and real-time evolution e ~*#*, inspired by the Lloyd-Mohseni-
Rebentrost protocol [19] that implements e ~*”* from copies of p. More concretely, for any state p straightforward calculations
yield

—iHgt

tra (e 18 (@) (] © p)e 1) = p+ tra (< H A @) (@] @ p) + (@) (@] @ ) HAD) +O((A1)?)
= p— iAt[H g, p| + O((A1)?)
= i1 M et S O((AD)2), o

Therefore, if we apply e 4% to |z)(x| ® p, we effectively apply e =A% to p, up to a second-order error O((At)2).

Repeating this procedure 1/At times, we effectively apply e~ *Hi=) to p up to error O(At). By choosing At sufficiently small,
we can approximate e ~*l=) up to any precision. In our numerical simulations, we choose H as a random 4-local Hamiltonian.

Each term of H is a 4-body Pauli interaction on 4 random positions with a random interaction strength between -1 and 1 (Fig.
7).
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FIG. S2: The classical data encoding scheme. a, [llustrates an encoding layer for a 3n-dimensional vector y (G (y)). The
layer consists of three layers of single-qubit gates (12, R, R,), denoted by the purple block; two layers of CNOT two-qubit
gates, denoted by the green block; and two layers of CZ two-qubit gates, denoted by the yellow block. b, Illustrates the
complete encoding for an [-dimensional vector . The encoding scheme involves [%] layers of single-qubit and two-qubit

gates (BAG ($3n(k_1)+1:3nk)), followed by | 5 | — 1 layers of entangling gates (B A).

C. Training process and efficient compiling of U,

In this subsection, we show that the required unitary U, to implement the target-oriented perturbation can be compiled in
an efficient way, with the count of CNOT gates scales logarithmically with the number of classes k. Recalling that U, =

My ® Z + (/I —M2® X acts on [logk]| + 1 qubits, and M, = |y)(y| + (1 — n)(I — |y)(y|), we arrive at the following
decomposition:

Uy =)yl @ Z + (I = |[y)(yl) ® (1 —n)Z + /27 — n?X) (S5)
= -=nZ+v2n—0*X)lly)yl @ (1 —n)Z+V2n—n*X)Z + (I - |y)(y]) @ I].

The first part of the above equation I®((1—n)Z++/2n — n?X) is a single-qubit gate and can be compiled into a constant number
of gates. The second part is a [log k|-controlled SU (2) gate, as |y)(y| involves [log k| qubits and (1 —n)Z ++/2n — n?X)Z is
a SU(2) gate. Utilizing the techniques in Ref. [20], such a multi-controlled SU(2) gate can be compiled into O(log k) CNOT
gates. This leads to the conclusion that the whole U, can be compiled in an efficient way with about log k two-qubit gates.
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D. Prediction and evaluataion

The predicted label of @ is the outcome of measurements in the computational basis performed on U (x) |¢)). So the probability
of correct prediction (i.e., the accuracy) is (|U(x) (4 U(x)|)) = 1 — (1|Hg|tp). This accuracy can be amplified by
repetition. Indeed, once the data in each step has been sampled, the training process is a fixed quantum circuit (with post-
selection). So we can run the circuit multiple times to obtain K copies of the final states |¢)). To predict the label of a new
unseen data sample x, we measure U () |+) in the computational basis for each copy and do a majority vote. For simplicity, we
consider the binary classification problem and assume K is odd, then the probability of correct label (called K-accuracy) is

(K—1)/2
el = 3 () wlalor 1 - il

When K = 1, this reduces to the single-copy accuracy 1 — (1| Hg|1)). When K = oo, the K -accuracy equals to the step function
1[{(x)|Hg|®) < 1/2]. Throughout this paper, we call K the number of trials.

E. Gradient perspective

As mentioned in the main text, the dissipation process of quantum automated learning actually implements the gradient
descent algorithm in an automated manner. In the training step (iii), the quantum system is evolved through U(z), M, and
U(x)'. We define My, = I1, () + (1 — 1)(I — I(y)) and Hy = I — U() 11, () U (), where I1,,(,,) denotes the measurement
projection corresponding to the state encoding the label y. Then we get the updated (unnormalized) state U (x)" M, U (z)|¢)) =
(I —nHg)|Y). As mentioned above, the non-unitary perturbation M, in training step (iii) of the QAL protocol is implemented
by block encoding into a unitary with an ancillary qubit combined with post-selection. As a result, this step effectively updates
the state with unitary transformation:

(I — nHm) W}>
(I —nHe) [¥)]I’

where ||(I — nHyg) |1)]| is a normalization factor whose square gives the success probability of post-selection.
The probability of correct prediction of a datum @ reads (1|U () 1L, U(x)[¢)) = 1 — (¢|Hg|th). As mentioned in the

main text, we define the loss function as the average failure probability: Rs (1)) = Egs (1)|Hg|t)), where E4g denotes the
expectation and « ~ S means «x is uniformly sampled from the training set S. From the perspective of conventional machine
learning, we may also regard |¢) as a variational state parametrized by a complex vector 1. Given that the expectation value
(Y|Hy 1) is real, we transform the complex vector b = (¢1,...,12n) into a fully real representation: (a1,b1, ..., agn,bn),
where a; and b; denote the real and imaginary components of ; respectively. Owing to the Hermitian property of H,, we

derive the partial derivatives: %ﬂflw) = 2Re(};(Hy)i,5¢5) and %Ib{fw = 2Im(3_;(Hz)i,j%;). This allows us to define

%ﬁflw =23 ;(Hz)ij1b;. Consequently, the gradient of (| Hz|¢) with respect to ¢ can be succinctly expressed as 2Hy, [¢)).
Therefore, the update rule in Eq. (S6) essentially implements the stochastic projected gradient descent algorithm to minimize the
loss function RS(U)) with a batch size one. Here we use the term “projected” to emphasize the normalization after each update.
From the stochastic gradient descent perspective, one may conclude that an initial state |¢)) can exponentially converge to a local
minimum through updating rule (S6) on expectation [21]. However, a rigorous proof of convergence to the global minimum
is unattainable in general. In fact, this is an inherent drawback for conventional gradient-based quantum learning approaches.
Whereas, owing to the quadratic form of the loss function and the clear physical interpretation, we can rigorously prove that )
converges exponentially to the global minimum for the QAL protocol, as discussed in the main text and detailed in the following
sections.

|¥) (S6)

III. PHYSICAL INTERPRETATION AND ANALYTICAL RESULTS

Throughout this section, we use ||A||;, [|A]|,, to denote the trace norm (the summation of singular values) and spectral norm
(the largest singular value), respectively. For two Hermitian A, B, denote A < B if B— A is positive semi-definite. By definition,
forany «, 0 < H, <X I, and thus 0 X Hg = I. We will use the following fact.

Lemma S1. Let A, B, C be three Hermitian matrices such that ||All; <1,0 = B,C = I. Then

|IBAB||, <1,||BAC + CAB||, < 2. (S7)



156 Proof. We first prove the lemma when A is a normalized pure state |a){a|. Write [b) = B |a) , |c) = C|a). Since 0 = B,C < I,
157 the norms of |b) , |c¢) are at most 1. Then || BAB||; = |||b)(b]||; < 1, || BAC + CAB||, = |||b) (c| + |¢) (b]||; < 2. For general
158 A, write the spectrum decomposition A = ). A; [A\;)(\;|. By triangle inequality, |BAB||; < >, |\il[| B |Xi) (M| Bll; <
e % il = 1Al < Land [|BAC + CABJ, <5, INIBIAN) (Al €+ C ) (0 B, < 3,210 < 2. 0

160 A. Formulation of the training process

11 In this subsection, we explain the training process from a physical perspective and derive an analytical characterization of the
162 success probability of post-selection and the performance of the final model. Observe that the empirical risk is the energy of |¢)
13 under the Hamiltonian Hg, so finding the global minimum is equivalent to finding the ground state of Hg. We rewrite (S6) in
164 the density matrix formalism:

o

p < (I —nHg)p(I —nHy). (S8)

16

@

Here we keep the post-state p unnormalized. Indeed, Tr(p) is the success probability of the post-selection. So the density matrix
formalism helps us to keep track of the overall success probability. Another benefit of the density matrix formalism is that we
17 can embed the randomness of the sample into the state. Since the datum « is uniformly sampled from S, the averaged post-state
168 Up to the second order term is

16

>

2

p EmwS(I - nHw)p(I - nHw)
~ 1 —n(Hsp+ pHs)
~ e s pe=nts (S9)
1eo We make this approximation precise in the following lemma

Lemma S2.
Egns(I — nHy)p(I — nHy) = e s pe=mHs 4 n20, (S10)
170 where O is a Hermitian matrix with trace norm at most 4.

111 Proof. Let R = (e""Hs — (I —nHg))/n?. Since 0 < Hg = I, all the eigenvalues of Hyg are in [0, 1]. By the Taylor expansion
172 of the exponential function, for any = € [0, 1], there exists z* € [0, 1] such that (e="* — (1 — nz))/n? = (z*)?/2 € [0,1/2].
173 Therefore, R is a Hermitian matrix such that 0 < R < /2. By Lemma S1, we have

[Exns (I —nHa)p(I = nHg) — e~ pe™H5 |
=||p = n(Hsp + pHs) + n*Egns HopHy — (1°R + (I — nHs))p(n°R + (I — nHs))||,
=1*|| (Egns HepHe — HspHs — n° RpR — (Rp(I — nHs) + (I — nHs)pR))||,
<*(1+1+n*/4+1) < 4% O

172 Up to the second order term, (S9) is the imaginary time evolution of p under Hg. Suppose the initial state is o, then the
175 averaged state after 7" epochs is p = e """ Hsge=1THs et 3 = nT be the summation of learning rates. We can approximate

176 the success probability of possibility by tr(e*ﬁHS Ue*ﬁHS) and the loss by tr (HSt e PP50e"PTs

r(eﬁHSJeﬁHs)) We summarize and

177 prove the results in the following theorem.

178 Theorem S1. Suppose we train the QAL model with initial state o for T steps, with learning rate n, at step t. Define

T T
B=m v=Y_nf o(B)=e  Hege s, (S11)
i=1 i=1

179 Averaging over choice of training samples, the success probability of post-selection is

tr(o(B)) + 17, (S12)
180 and the average loss conditioned on the success of post-selection is

tr(Hgo(B)) + cay
tr(a(B)) + 1y

161 Here c1, co are two real numbers such that |c1 |, |ca| < 4.

(S13)
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Proof. Letxy,--- ,xp ~ S be the training samples in the 7" steps. We abbreviate x1, - - - , x; as x1.;. By (S8), the unnormalized
state after step ¢ is

pflzt _ (I*Utht) (I*anml)O—(Ifanml)"' (I*Uthf) (S14)

1.7
Given samples 1.7, tr(p7") is the success probability of post-selection and tr (H s W) is the loss conditioned on the
T

success of post-selection. We now average over the choice of samples. Recursively apply Lemma S2 and Lemma S1, we have
Bz rnstp7 " = 0(B) +70, (S15)
for some Hermitian O with trace norm at most 4. The average success probability of post-selection is
Eay st tr(pph") = tr(a(B)) + a1y, (S16)

where ¢; = tr(O) satisfies |¢;| < 4. Now we calculate the averaged loss conditioned on the success of post-selection. For
clarity, denote ¢ = tr(c(3)) + c17. p = 1/|S|" be the probability of sampling @1, - - , 7. Then conditioned on the success
of post-selection, the conditional probability of sampling 1.7 is p tr(p7”)/q. Therefore, the average loss conditioned on the
success of post-selection is

ptr(p7h") ( P ) 1 - tr(Hso(B)) + c2y
E tr| H =-E,. .._ortr(H LT = , S17)
x1.7~ST q Str(p;:“l:T) q LTSt ( SpT ) tr(a(ﬂ)) + c17y (
where ¢y = tr(HgO) satisfies |co| < 4. O

According to the theorem, up to the second order term c;7, co7y, the training process behaves the same as the imaginary
time evolution of o under Hg. The effect of imaginary time evolution is clearer in the eigenbasis of Hg. Write the spectrum
decomposition of Hg as Hg = ), E; | E;)(E;| and define 0; = (E;|0|E;) as the overlap of o with the i-th eigenstate. Then

o(B) = ZU»@‘ME’? tr(Hgo(B)) Y, Eioie 2P

tr(o(8)) Y., 0ie"2PE

The weight of |E;)(E;|, o;e =28, decays exponentially with 3. The decay is slower for lower energy eigenstates. Assume o
has a non-zero overlap with the ground space. As 8 goes up, eventually the weight of the ground space dominates, so p,(3)
converges to a ground state of Hg and the empirical risk converges to the global minimum. In the following, we will make this
intuition rigorous in the presence of ¢, co7y.

E;)(Ei,

(S18)

B. Convergence to global minimum

Denote the ground energy of Hg (i.e., the global minimum of the loss) as g, the projector to the ground space as I, and the
gap between the ground energy and the first excited state as § > 0.

Theorem S2. Suppose o has a nonzero overlap with the ground space of Hg (that is, 0y = tr(Il;o) > 0). For any constant
¢ € (0,1), we can choose an appropriate 1) and T such that if we train the QAL model for T steps with learning rate 1) in each
step, the averaged loss conditioned on the success of post-selection is at most g + c.

Proof. According to Theorem S1, we only need to upper bound (S13) for 3 = nT and v = n?>T = 1. Since

tr(Hso(B)) + caffy _ age 299 + (1 — 0g)e 2709+ 4 4pn
wlo(B)) + afn T 1B
(1= 0g)e 9% + (4 + 49) 61
oge=2P9 — 4Bn
e 2% 1 83ne?h9
o4 — 4ne?Pa

<g+ (519)
Choose f3 such that e=2%9 < o,¢/4, and then choose 7 such that ne??9 < o,c/16 < o,/16. Then the right hand side of (S19)
is at most
4 2
LA o2 (S20)
o4 —04/4 0



28 A randomly initialized state o has a nonzero overlap with the ground space with probability 1. According to the theorem,
200 the QAL model will converge to the global minimum of the loss function. However, this convergence is built on the success of
o post-selection, whose probability exponentially decays with the number of steps. Therefore, a more realistic question is whether
1 we can build a reasonable trade-off between the success probability and the performance of the final model.

2

2

212 C. Convergence with constant probability

213 In this subsection, we will establish a practical trade-off between the accuracy of the final model and the success probability
214 of post-selection when the initial state has a large overlap with the low-energy eigenspace of Hg.

2

s Definition S1. Let H be a Hamiltonian. The E low energy subspace of H is the subspace spanned by the eigenstates of H with
s energy at most E. Denote the projector to the E low energy subspace as I12. The overlap of a state o with the E low energy
7 subspace is defined as tr (Hgo).

2

2

218 Throughout this section, we focus on the Hamiltonian Hg and omit the superscript H.

219 Theorem S3. Let ¢y, c3 € (0,1),co € (0,1/10) be three constants, g be the ground energy of Hg, and € > 0 such that g/e < ¢y.
220 Assume the overlap between the initial state o and the (g + €) low energy eigenspace of Hg, namely tr(cllg ), is at least cs.
221 Then we can choose an appropriate ) and 'T' such that if we train the QAL model with the initial state o for T steps with learning
222 rate 1) in each step, the success probability of post-selection is at least cy and the averaged loss conditioned on the success of
223 post-selection is at most g + € + cs. Here c4 is a constant that only depends on cq, ca, C3.

224 Proof. By Theorem S1, we only need to lower bound the the success probability in (S12) and the conditional loss in (S13).
225 We will follow the notation in Theorem S1, so that 5 = 0T, v = 772T, and o(B) = e PHgze=PH  Here we write H = Hg
26 for simplicity. We will prove the theorem for 3 = 3In(1 + c2)/(c3€), ¢4 = e 0U+e)nte2)/esc, /9 and v = c3c4/40.
227 Accordingly, = «/f3 is of order € and T' = /3% /~ is of order 1/¢2. By (S12), the success probability is at least

tr(o(B)) — 4y > tr(llg1eo(B)) — 4y
= tr(e_'eHHngEe_’@HU) — 4y
> e 28079 tr(T1,, o) — 4y
> 6—256(1+01)02 — 4y

= 2¢cq4 — 4y > 4. (S21)

228 By (S13), the averaged loss conditioned on the success of post-selection is at most

te(Ho () + 4y _  tl(H —gl)o (5)) (4 +49)y
tr(o(B)) — 4y tr(o(8)) — tr(o(5)) — 4y
- 1ol i
(U(ﬁ))(l - 63/20)

%, tr((H )U( )
5 ( ( )
220 where we use 47 = c3¢4/10 < cgtr(o(f))/20 in the second line and (1 + ¢3/5)(1 — ¢3/20) > 1 in the third line. So it

220 suffices to upper bound tr((H — gI)o(83))/ tr(o(3)). Write the spectrum decomposition of H as H = Z i | Fi) (E;| and let
a2, = 2B(E; — g), 00 = (E;|o|E;). We simplify the last term of (S22) to

tr((H —gl)o(B)) _ 3,(Ei —gle *Fio;

+

<g—|—

<9+ 1+ ¢ (S22)

tr(a(8)) Yo, e 2BEig;
Z oie Yixg, 1
ST ($23)

232 Split the Hilbert space into low energy and high energy eigenspaces, L = {i : E; < g+e}and H = {i : E; > g + €}. Let
2 pr, = tr(ollyc) = D, 0i > c2 and py = 1 — pr, be the overlaps of o with the two subspaces. Since f(y) = —yIn(y) is
234 concave, by Jensen’s inequality,

Za”f < f(Y Themm. (S24)

ieL P ier PL



235 Let | be the number such that et = Y icr oie” " /pr. The inequality becomes ), ; oe™%ix; < pre!l. Similarly, let
wo h=—In(Y,cppoie™" /Y ey 0i)s then Y,y 0ie™%iw; < pye"h. Therefore,

2ioie e pre 'l +pge"h
Y, oie~® — prel+pgeh

(S25)

27 By definition, z; € [0,23¢] fori € L and z; > 28¢ fori € H. Since e~! is a mixed of e ~%(i € L), we have 0 < [ < 283¢ and
238 similarly i > 2fe. Denote y = h — [. Insert (S23) and (S25) to (S22).
tr(Ho(B)) + 4 c c e l+pyeh 1

(Ho(B)) 7§g+j+<1+j)pL - pH .
tr(o(8)) — 4y 5 5% pre~!+pue 2p
pae” Yy 1

C3 C3
=g9g+—-—+01+2)(l+ ——) —
g5+ pL +PH€_y) 2

C3 c3 e Yy 1
< —+(1+=)(l+—) .
_g+5+(+5)(+62+67y 25

(S26)

20 By differentiating g(y) = e Yy /(cot+e ) = y/(cae¥+1), we find that g(y) < g(y*) for the y* > 0such that coe?” (y*—1) = 1.
210 For this y* we have g(y*) = y*—1. Assume y* > In(1/c2) > 2,then 1 = coe¥ (y*—1) > c2(1/c2)(2—1) = 1, a contradiction.
21 So g(y) < g(y*) =y* — 1 <In(1/ca). By (S26), the averaged loss conditioned on the success of post-selection is at most

1
I+ + 0+ 2Be+n(1/c2) == =g+ 2+ 0+ ) e+ 2 < gt e+ (S27)
5 5 25 5 5 6 5

22 The theorem ensures the convergence of the QAL training process with a constant success probability, assuming a good initial
state. Concretely, as long as the initial state has a large (at least co) overlap with the low energy eigenspace (with energy at most
244 g + €), the QAL training process will converge to the low energy eigenspace (up to an arbitrarily small residue error c3) with a
constant success probability (c4 that only depends on ¢y, ca, c3).

24,

&

24

o

246 D. Heavy-tailed Hamiltonian

Theorem S3 highlights the importance of the initial state 0. However, without prior knowledge of Hg, we cannot do better
than a random guess, or equivalently, starting from the maximally-mixed state ¢ = I/2". Therefore, we actually hope that Hg
has a constant proportion of low energy eigenstates that do not scale up with n, the dimension of x, and the size m of the training
dataset. We formalize this intuition in the following definition.

24

ke

24

©

24

©

25

S

Definition S2 (Heavy-tailed Hamiltonian). We say a Hamiltonian H is (E, c)-heavy-tailed if the proportion of eigenstates with
energy at most E is at least c.

25

25!

(S

23 Theorem S4. Let c1,c3 € (0,1),¢co € (0,1/10) be three constants. Suppose Hg is (g + €, ca)-heavy-tailed, where g is the
254 ground energy of Hs and € > 0 such that g/e < c¢1. Then we can choose an appropriate n and T such that if we train the
255 QAL model with a maximally-mixed initial state in computational basis for T steps with learning rate 1) in each step, the success
256 probability of post-selection is at least c, and the averaged loss conditioned on the success of post-selection is at most g+ €+ cs.
257 Here cy is a constant that only depends on ¢y, ¢, cs3.

28 Proof. By definition of heavy-tailed Hamiltonian, the overlap between the initial state 0 = I /2" and the (g + €) low eigenspace
250 of Hyg is at least co. The theorem follows directly from Theorem S3. O

260  Therefore, the QAL training process is guaranteed to converge to the low energy eigenspace of a heavy-tailed Hg. We now
argue that when Hg comes from a reasonable dataset, it is likely to be heavy-tailed due to the similarity of data. Consider the
262 extremely simple example of classifying dogs and cats, where all dogs look similar and all cats look similar. The Hamiltonian Hg
263 is approximately a mixture of two projectors of dimensions 2!, Hgogs and Hys. Regard Hyogs and Hqs as tandom projectors,
26« then Hg has a constant proportion of near-zero eigenvalues. This assumption is supported by the numerical simulation.

265 Remark that while Theorem S4 applies to the maximally-mixed initial state, in reality we will use a random initial state in
266 the computational basis. Once we sample an initial state better than the maximally-mixed state, we can stick to it and apply
267 Theorem S3.

26
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268 E. Generalization

269 The previous results establish the explainable trainability of QAL. While in training classical neural networks, each epoch is
270 a full pass of the training dataset, in QAL, each step only involves a single datum. This indicates that the QAL model could be
271 optimized using a few data points. In this subsection we rigorously demonstrate the generalization ability of QAL, showing that
272 once the model achieves a good performance on a small dataset, the good performance will generalize to unseen data.

23 Recall that the training loss and the true loss of [¢)) are Rg () = Epg (| Hp|¥)) and R(¥)) = Egp (| Hy 1)), respectively.

2

N

« Theorem S5. With probability at least 1 — § over the choice of S, the generalization gap is upper bounded by

max (R(¥) — Rs(v)) < w (S28)

215 Proof. By definition, the left-hand side is upper bounded by the spectral norm of E,.. s H, — E,pH,, which can be bounded
276 by matrix Bernstein inequality (see, e.g., [22, Theorem 6.1.1]):

I;r[HE,;NuSH,; —EppHyl|ly >t < ontl exp(—mt2/4).

277 The theorem follows by setting ¢t = /4 1n(27+1/§)/m. O

zzs  According to the theorem, as long as the size m of the training dataset is larger than Q(n) (i.e., a logarithm of the degree
279 of freedom), a parameter state |@) with low training loss has a low true loss with high probability. This is better than quantum
230 neural networks where the training dataset size has to be larger than the degree of freedom [6, 7]. From the proof of the theorem,
281 it is clear that the good generalization stems from the simple quadratic form of the loss function.
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