
Supplementary Information for Self-Supervised Curriculum-based
Class Incremental Learning
Kartik Thakral1, Surbhi Mittal1, Utkarsh Uppal2, Bharat Giddwani2, Mayank Vatsa1, and
Richa Singh1,*

1IIT Jodhpur, India
2NVIDIA, India

Algorithms

This section outlines the formal algorithms corresponding to the proposed S2C2IL method. Algorithm 1 details the Stochastic
Label Augmentation (SLA) process, which serves as the pretext training for each incremental task t. Additionally, we present
the downstream training process that integrates Orthogonal Weight Modification (OWM) with feature smoothing, formally
described in Algorithm 2. Finally, the complete S2C2IL methodology is summarized and formalized in Algorithm 3.

Algorithm 1: Pretext training using SLA for task t

Input: Images X t , Downstream model conv-layer parameters θ
t−1
d from previous task t −1

Initialize: θ 0
d is zero-initialized.

Parameters: Number of epochs E, Number of stochastic tasks M, Number of classes per stochastic task N, Pretext
model conv-layer parameters θ t

p, Pretext model FC parameters ψ t
p, hyperparameters a and b

Function train_pretext_model(X t , θ
t−1
d)

Initialize model f (θ t
p,υ

t
p,ψ

t
p)

Rt = generate_stochastic_labels(X t ,m,n)
for e=1 to E do

R̂t = f (X t ;θ t
p,υ

t
p,ψ

t
p)

Calculate loss terms:
L1 = ∑

M
i=1(∑

N
j=1−Rt log(R̂t))

L2 = (a/2)
∥∥θ t

p −θ
t−1
d

∥∥2
2 +(b/2)

∥∥θ t
p
∥∥2

2
L = L1 +L2
Backpropagate loss L and update θ t

p and ψ t
p

end
return θ t

p
end
Function generate_stochastic_labels(X t , M, N)

for i=1 to M do
Sample each label from a uniform distribution:
Rt

i = yi ∼ 1
|N|

end
return Rt

end

Experimental Setup
The proposed algorithm is evaluated on four benchmark datasets: split-CIFAR10, split-CIFAR100, split-SVHN, and split-
TinyImageNet, and two high-resolution datasets: split-STL10 and ImageNet-100. We report the average test accuracy, which
is defined as the average of test accuracies achieved across all tasks. All experiments are performed using five fixed random
seeds. The proposed algorithm is evaluated under two settings- (i) OWM + CL, and (ii) S2C2IL. In the first setting, only the

1

Algorithm 2: Downstream training for task t
Input: Images X t , Labels Y t , Pretext model conv-layer parameters θ t

p for current task t
Initialize: θ t

d is initialized with θ t
p.

Parameters: Number of epochs E, Downstream model FC parameters φ t
d , Gaussian filter G with standard deviation σ ,

constant c
Function train_downstream_model(X t , Y t , θ t

d)
Initialize model f (θ t

d ,φ
t
d)

Set σe = 1
for e=1 to E do

ân = f (X t ;θ t
d ,φ

t
d)

σe = σe.c
zn+1 = pool(G(σe)∗ ân)
Ŷ t = argmax(zn+1)
Calculate loss terms:
L = ∑

M
i=1(∑

N
j=1−Y t log(Ŷ t))

Backpropagate loss L and update θ t
d and φ t

d using OWM algorithm.
end
return θ t

d , φ t
d

end

Algorithm 3: S2C2IL algorithm
Input: Total tasks T , Images X , Labels Y
Parameters: Pretext model conv-layer parameters θp, Pretext model FC parameters ψp, Downstream model conv-layer
parameters θd , Downstream model FC parameters φd

for t = 1 to T do
θ t

p = train_pretext_model(Xt ,θ
t−1
d) //Algorithm 1

θ t
d , φ t

d = train_downstream_model(Xt ,Yt ,θ
t
p) //Algorithm 2

end
Evaluate model f (θ T

d ,φ
T
d) trained for T tasks.

curriculum-based downstream model is trained without any self-supervision. In the S2C2IL setting, we follow the methodology
as explained in Section 3 of the main paper, and perform pre-training using the proposed SLA technique.
Datasets and Protocol: Since the focus of this work is class-incremental setting, we train and test the proposed algorithm
according to the protocols defined in the works of1 and2. For experiments, we have used six datasets:
(i) Split-CIFAR103 contains 60,000 32×32 color images of 10 different classes with 50,000 images in the training set and
10,000 images in the testing set. The training and evaluation is performed for 2 classes per task.
(ii) Split-CIFAR1003 contains 60,000 32×32 color images of 10 different classes with 50,000 images in the training set and
10,000 images in the testing set. The training and evaluation are done for 10, 20, and 50 classes per task.
(iii) Split-SVHN4 contains 60,000 32× 32 color images of 10 different classes with 50,000 images in the training set and
10,000 images in the testing set. The training and evaluation are performed for 2 classes per task.
(iv) Split-TinyImageNet5 contains 120,000 color images of size 64×64 from 200 different classes with 100,000 images in the
training set, 10,000 in the validation set and 10,000 images in the testing set. The training and evaluation of the model are done
for 5, 10, and 20 classes per task.

Comparitive Algorithms:
The results of the proposed framework are compared with various benchmark algorithms in the domain of regularization-based
CIL with the exception of iCaRL. The following algorithms are used for comparison: (1) EWC6, (2) iCaRL7 with 2000
exemplars; (3) PGMA2; (4) DGM8, (5) OWM1, (6) MUC9, (7) IL2A10, (8) PASS11, (9) SSRE12, and FeTrIL13. The EWC14,
iCaRL1, DGM15, OWM16, MUC17, IL2A18, PASS19, SSRE20, and FeTrIL21 baselines are run using open-source codes with
the same network architecture as the one used in S2C2IL. The details of this network are described in Section . Further, S2C2IL
is compared with various memory-based approaches on the Split-TinyImageNet dataset. It should be noted that the proposed
S2C2IL algorithm uses no exemplars from classes of previous tasks.

2/5

Algorithm 1 Algorithm 2 Algorithm 3
TC O(nt +m) O(Nu +N2

w) O(Nu +N2
w)

SC O(mc) O(N2
w) O(N2

w)

Table 1. Time Complexity (TC) and Space Complexity (SC) for each algorithm of the proposed S2C2IL algorithm.

Technique Time Taken (in seconds)
Rotation Pretext 9 s
Colorization 8 s
SLA 2 s

Table 2. Time taken (in seconds) for an epoch by different pretext tasks on split-CIFAR100 dataset for 5 incremental tasks.

Implementation Details:
For all the experiments, we use a 3-layer CNN network with three fully-connected layers. The same network architecture is
used by1. For each incremental task, we start the model training on the pretext task. Here, we use the 3-layer CNN architecture
for feature extraction and utilize these features in a multitask fashion. For our experiments, we train the model for three tasks
with two classes each, i.e., the extracted features are utilized by three separate heads of fully-connected layers with two layers
each. For the downstream task, the same weights from the pretext task are transferred. However, here the features are utilized
by a single fully-connected layer to learn the current incremental task. The mentioned architectures used in the pretext and
downstream can be better visualized in Figure 1 (a) and (b). We train all the models with stochastic gradient descent (SGD). For
the pretext task, the multitask network is trained on stochastically generated labels for three tasks with two classes each. We
set the learning rate to 0.001 to train it for 50 epochs. The hyperparameters a and b are fixed to 10 and 18 for split-CIFAR10
and split-CIFAR100 datasets and 5 and 12 for split-SVHN datasets, respectively. As described in Section 3 of the main paper,
the model is trained for a curriculum where the training starts with σ set to 0.9 with a decay rate of 0.95 for every 10 epochs
for split-CIFAR100 and split-SVHN datasets. For the split-CIFAR10 dataset, σ is set to 1 with a decay rate of 0.9 for every
ten epochs. All experiments are performed for five random seeds and the performance is reported as the mean and standard
deviation over all the seeds. The algorithm is implemented in Pytorch, and all the experiments are performed on a DGX station
with 256 GB RAM and four 32 GB Nvidia V100 GPUs.

Additional Experiments

Time and Space Complexity of the SLA and S2C2IL: The space and time complexity of each algorithm utilized in the
proposed S2C2IL algorithm is reported in Table 1. Here, nt depicts the number of images in incremental step t, m is the count
of multi-tasks utilized in pretext, c stands for the number of classes in pretext, Nu stands for the total number of neurons and Nw
are the number of input weights/neuron in the backbone network.

We also compute the time taken by the proposed SLA algorithm and compare it with existing SSL techniques. Table 2
showcases that the proposed SLA algorithm takes significantly less time when compared with existing pretraining algorithms
on split-CIFAR100 dataset for 5 incremental tasks. We also compute the training time of the existing algorithms (available in
Table 1 from the main paper for an epoch on split-CIFAR100 dataset for 5 incremental tasks). We observe that the existing
algorithms, such as MUC22 and SSRE12 require about 8 seconds, and IL2A10 and FeTrIL13 require over 200 seconds to train
for a single epoch. The proposed S2C2IL algorithm takes 6 seconds for each epoch, making it computationally efficient when
compared to most of the existing baseline algorithms.

Dataset Tasks S2C2IL (w/o PWS) S2C2IL
split-SVHN 5 75.88 ± 0.45 77.53 ± 0.53
split-CIFAR10 5 60.75 ± 0.53 61.64 ± 0.57

2 43.38 ± 0.20 43.98 ± 0.65
split-CIFAR100 5 35.52 ± 0.48 35.59 ± 0.49

10 31.85 ± 0.45 31.93 ± 0.54

Table 3. Performance comparison of the proposed algorithm without and with Penultimate Weight Sharing (PWS). The
proposed Stochastic Label Augmentation (SLA) task is used for unsupervised pre-training.

3/5

Impact of Penultimate Weight Sharing (PWS):
Typically, pretext task weights are used for downstream task training, with feature quality improving in deeper layers. However,
deeper layers are often biased towards the pretext task23. To mitigate this bias, we propose Penultimate Weight Sharing (PWS),
which transfers weights from all layers except the last for downstream fine-tuning. PWS shares layer weights (θ t

p), excluding
the final layer (υ t

p), allowing the network to learn generalized features for task t. By avoiding pretext-specific weights, PWS
promotes better feature transfer. To evaluate the effect of PWS, we remove the υ t

p convolution block, aligning the pretext
model’s architecture with the downstream model. We pre-train the model, transfer the weights, and assess performance on
various datasets. Table 3 demonstrates the significant improvements achieved by transferring weights up to the penultimate layer.

References
1. Zeng, G., Chen, Y., Cui, B. & Yu, S. Continual learning of context-dependent processing in neural networks. Nat. Mach.

Intell. 1, 364–372 (2019).

2. Hu, W. et al. Overcoming catastrophic forgetting for continual learning via model adaptation. In International conference
on learning representations (2018).

3. Krizhevsky, A. Learning multiple layers of features from tiny images. 32–33 (2009).

4. Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011 (2011).

5. Le, Y. & Yang, X. Tiny imagenet visual recognition challenge. CS 231N 7, 3 (2015).

6. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. national academy sciences 114,
3521–3526 (2017).

7. Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. icarl: Incremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2001–2010 (2017).

8. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P. & Nabi, M. Learning to remember: A synaptic plasticity driven
framework for continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
11321–11329 (2019).

9. Liu, Y. et al. More classifiers, less forgetting: A generic multi-classifier paradigm for incremental learning. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, 699–716
(Springer, 2020).

10. Zhu, F., Cheng, Z., Zhang, X.-Y. & Liu, C.-l. Class-incremental learning via dual augmentation. Adv. Neural Inf. Process.
Syst. 34, 14306–14318 (2021).

11. Zhu, F., Zhang, X.-Y., Wang, C., Yin, F. & Liu, C.-L. Prototype augmentation and self-supervision for incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5871–5880 (2021).

12. Zhu, K., Zhai, W., Cao, Y., Luo, J. & Zha, Z.-J. Self-sustaining representation expansion for non-exemplar class-incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9296–9305 (2022).

13. Petit, G., Popescu, A., Schindler, H., Picard, D. & Delezoide, B. Fetril: Feature translation for exemplar-free class-
incremental learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3911–3920
(2023).

14. Masana, M. et al. Class-incremental learning: Survey and performance evaluation on image classification. IEEE
Transactions on Pattern Analysis Mach. Intell. 45, 5513–5533, DOI: 10.1109/TPAMI.2022.3213473 (2023).

15. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P. & Nabi, M. Learning to remember: A synaptic plasticity driven
framework for continual learning. https://github.com/SAP-archive/machine-learning-dgm?tab=readme-ov-file (2019).
Accessed: January 10, 2025.

16. Zeng, G., Chen, Y., Cui, B. & Yu, S. Continual learning of context-dependent processing in neural networks. https:
//github.com/beijixiong3510/OWM (2019). Accessed: January 10, 2025.

17. Liu, Y. et al. More classifiers, less forgetting: A generic multi-classifier paradigm for incremental learning. https:
//github.com/liuyudut/MUC (2020). Accessed: January 10, 2025.

18. Zhu, F., Cheng, Z., Zhang, X.-Y. & Liu, C.-l. Class-incremental learning via dual augmentation. https://github.com/
Impression2805/IL2A (2021). Accessed: January 10, 2025.

4/5

10.1109/TPAMI.2022.3213473
https://github.com/SAP-archive/machine-learning-dgm?tab=readme-ov-file
https://github.com/beijixiong3510/OWM
https://github.com/beijixiong3510/OWM
https://github.com/liuyudut/MUC
https://github.com/liuyudut/MUC
https://github.com/Impression2805/IL2A
https://github.com/Impression2805/IL2A

19. Zhu, F., Zhang, X.-Y., Wang, C., Yin, F. & Liu, C.-L. Prototype augmentation and self-supervision for incremental learning.
https://github.com/Impression2805/CVPR21_PASS (2021). Accessed: January 10, 2025.

20. Zhu, K., Zhai, W., Cao, Y., Luo, J. & Zha, Z.-J. Self-sustaining representation expansion for non-exemplar class-incremental
learning. https://github.com/zhukaii/SSRE/ (2022). Accessed: January 10, 2025.

21. Zhou, D.-W. & Wang, F.-Y. Pycil: A python toolbox for class-incremental learning. https://github.com/G-U-N/PyCIL
(2024). Accessed: January 10, 2025.

22. Liu, X. et al. Generative feature replay for class-incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 226–227 (2020).

23. Misra, I. & Maaten, L. v. d. Self-supervised learning of pretext-invariant representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 6707–6717 (2020).

5/5

https://github.com/Impression2805/CVPR21_PASS
https://github.com/zhukaii/SSRE/
https://github.com/G-U-N/PyCIL

	References

