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No Jackpot Jackpot Low Medium High
JPT =0 JPT =1 ATC =[0,1] ATC = [2,3] ATC = [4,5]
Subject 1 38606 (82.09%) 8424 (17.91%) 20674 (43.96%) 15222 (32.37%) 11134 (23.67%)
Subject 2 48910 (83.02%) 10001 (16.98%) 26889 (45.64%) 19057 (32.35%) 12965 (22.01%)
No Jackpot Jackpot Low Medium High
JPT =0 JPT =1 ATC =[0,1] ATC = [2,3] ATC = [4,5]
Subject 1 Easy 19504 (41.57%) 4170 (9.05%) 10289 (22.08%) 7388 (16.66%) 5547 (11.88%)
Hard 19552 (40.51%) 4254 (8.87%) 10385 (21.88%) 7834 (15.71%) 5587 (11.79%)
Subject 2 Easy 24628 (41.22%) 4977 (8.53%) 13588 (22.58%) 9500 (16.22%) 6517 (10.95%)
Hard 24282 (41.81%) 5024 (8.45%) 13301 (23.07%) 9557 (16.13%) 6448 (11.06%)

Supplementary Table ST1: Trials available for jackpot and accumulated token counts ranges.
Numbers of trials (fractions of the total) available for different token counts indexed by JPT and ATC
ranges. The variable JPT indicates the presence (JPT = 1) or absence (JPT = 0) of jackpot reward on
previous trial. The variable ATC is the accumulated tokens count as of the start of the current trial.
The number of trials and fractions of the total are also shown for Easy vs Hard trials. The median
value of Ay is median(Agy) =1 and is used to split data in ‘Hard’ and ‘Easy’ trials in behavioral
analyses. These ATC settings are used in behavioral analyses. In neural analyses, we use ‘Low’
(ATC = [0,1]) and ‘High’ (ATC = [2,5]) as this allows us to improve the trial availability per condition.

Apy <05 05<Ap, <15 15<Ag <25 25<Ag <35 Agy > 3.5

Subject1 13672 (29.07%) 19412 (41.28%) 10282 (21.86%) 3235 (6.88%) 429 (0.91%)

Subject 2 17152 (29.12%) 23945 (40.65%) 13298 (22.57%) 3996 (6.78%) 520 (0.88%)
Hard: (Agy < 1) Easy: (Agy = 1)

Subject 1 23806 (50.62%) 23224 (49.38%)

Subject 2 29306 (49.75%) 29605 (50.25%)

Supplementary Table ST2: Trials available for different difficulty levels.

Numbers of trials (fractions of the total) available for different difficulty levels indexed by Ag, ranges.
Easier trials have larger Ag,. The median value of Az, is median(Agy) = 1 and is used to split data in
‘Hard’ and ‘Easy’ trials in behavioral analyses. Note that in neural analyses we use Ag, based on SV.
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Supplementary Figure S1. Risk seeking attitude vs accumulated reward and difficulty.
A) Fraction of trials (mean + s.e.m.) with choice for the offer with higher risk. The data are split in ‘No
Jackpot’ (JPT = 0), ‘Jackpot’ (JPT = 1), and for accumulated tokens count (ATC = 0 — 5). Data are split
for subject 1 (red) and subject 2 (blue), and for Easy (Agy = 1, empty markers) and Hard (Ag, < 1,
filled markers). B) Markowitz risk return model for the offer utility based on the mean value (EV) and risk
(R) of the offers. The model parameter (8) describes risk attitude (0 < 0 risk seeking, 8 > 0 risk avoiding)
for jackpot cases and for values of accumulated token counts. Data is split in difficulty and across subjects
as in A. C) Markowitz risk return model, parameter ; relative to EV difference weights for jackpot cases
and for values of accumulated token counts. Data is split as in A. D) Markowitz risk return model, parameter

B, relative to risk R difference weights for jackpot cases and for values of accumulated token counts. Data

is split as in A.
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mg:logit(chl) = By + Byvf + 7 — B35 — Bavy;

my:logit(chl) = By + BLEV, — BLEVy;

my:logit(chl) = Bo + BLEVy — BEV, + B3Ry — BaRy;

my:logit(chl) = Bo + Byvi + Bovi — Bsvs — Bavy + BsEVy — BEV, + B7Ry — BgR,.

Supplementary Figure S2: Choice decoding accuracy of different alternative models.
Each dot reports the choice prediction accuracy for different models, sessions, and for k = 4 cross-
validation folds in subject 1 (left) and subject 2 (right). Accuracy (mean + sem): m,: 60.74 + 0.23%
(59.9 £ 0.36% for subject 1, 61.29 + 0.3% for subject 2), m;: 75.50 + 0.28% (77.58 + 0.5% subject 1,
74.12 + 0.31% subject 2), m,: 82.87 + 0.25% (83.87 + 0.46% subject 1, 82.21 + 0.28% subject 2) and
my: 82.66 + 0.25% (83.51 £+ 0.46% subject 1, 82.09 + 0.29% subject 2). This assessment suggests
m, as the best model.
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Supp. Figure S3. Distributions of SVs for Easy task configurations. A. SV; (left), SV, (right)
distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of SV;, SV,. C-D. Same as
A-B but for z-scored data.
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Supp. Figure S4. Distributions of SVs for Hard task configurations. A. SV; (left), SV, (right)
distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of SV;, SV,. C-D. Same as
A-B but for z-scored data.
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Supp. Figure S5. Distributions of SVs for Low accumulated reward task configurations. A. SV,
(left), SV, (right) distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of SV;,
SV,. C-D. Same as A-B but for z-scored data.
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Supp. Figure S6. Distributions of SVs for High accumulated reward task configurations. A. SV,
(left), SV, (right) distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of SV;,
SV,. C-D. Same as A-B but for z-scored data.



Supplementary Methods
Linear regression of two variables
Consider (xq,x;) € R%:y = By + B1x1 + foxz, Where By, B1, B2 € R are unknown.
From empirical observations, we have n samples x; ;,x,;,y;, i = 1,...,n, and we may estimate
Bo, Bl' Bz, SUCh that yi = EO + lel,i + BzXZJi,i - 1, e, L
By using Ordinary Least Squares (OLS), we derive the following (unbiased, consistent) estimators:
Bo =y- 319?1 - ﬁszI
5 _ (i = W)x1) (B (302 — %2)x20) — (Bl — M), (Tl (20 — X%2)%1,)
(g (e = %1 )x0,0) (T (e = %2)22) — (B1eg (20 = %1)22,) (Bl (3020 — %2)x15)

5o (Z?=1(}’i - }_’)xz,i)(Z?=1(x1,i - f1)x1,i) - (Z?=1(3’i - }7)751,1')(2?:1(9‘1,1' - fl)xz,i)
(Ey(ren = %) 20, (T g (30 — %2)220) — (B (00, — %) 22,0 (T 1 (320 — %2 )201)

where y = %Z?zlyi is the sample mean of y;,i = 1, ..., n,

_ 1 _ 1 .
and x; = ;Z{;lxl_i, X, = ;Z?ﬂxz,i are the sample means of xy ;,x,;,i = 1, .., n.

The quality of the fit and the significance assessment are measured via the total sum of squares (SST),
sum of squares due to regression (SSR), sum of squares due to error (SSE):

SST = Y™ (y; — ), SSR = X, (9; — 3)* ,SSE = X, (v; — §.)°, SST = SSR + SSE.

The significance assessment is made by testing the hypothesis that the slope terms B jJ =12 are
significantly different from zero. This is achieved by comparing the empirical F;* value:

o (SSER —SSEF)/(n—2) — (n—3))
7 (SSEF)/(n —3) ’

j=12,

to a F-distribution with (n — 2) — (n — 3) = 1 degree of freedom at the numerator, and (n — 3)
degrees of freedom at the denominator. In this formulation, SSE¥ is the SSE of the full model, that is

SSEF =3 1 |yi — (Bo + Buxy,; + Bzlel-)|2, and SSEf is the SSE of the reduced model for each

. A N 2 L
variable xy,x,: SSEf = Y1, |y; — (Bo + Zk=1,2:k2j B xx,i)|” for B, j = 1,2.

Linear regression of two z-scored variables

. . . X1i—X Xpi—Xy .
Let us consider the z-scored version of x;, x,. Define: z; ; = % and z,; = % i=1,..,n,

X1 X2

_ 1 _ 1
where x; = ;Z?ﬂ xp; and X, = ;Z?ﬂxu are the sample means of x, x5,

~ 1
and Ox, = Iy

_ ~ 1
" Z?:l(xl,i — %)% and Ox, =71

- Y1 (xy; — X,)? are the sample variances of xy, x,.



From the above, z,, 2z, = 0, 6,, = 6,, = 1, following the definition of z-scored variables.

The previous linear regression can be applied to z-scored variables with minor changes to the initial
definition: 9; = B4 + Blz1; + Baza; = Bl + By + By xza‘

Hr X1,i—X1

0'

Recalling the initial model 9; = B, + ﬁlxli + [?sz,i, we can find a direct correspondence between

,x1 rx1

—/3 , and slope terms f; = —1, and /?2=aﬁ—2.

X2

the intercept S, = B —
Note that from OLS, 8, = ¥ — ﬁ121 — ﬁzzz = ¥, thus it does not depend on ﬁl,ﬁé.

When applying significance assessment to the initial and to the z-scored variables, we find that
F*(z4,2,) = F*(xy,x5,), since the two terms SSEF and SSEjR,forj = 1,2, coincide.

n
SSEF(zy,2,) = Zb’i - (3(’) + BA{ZI,i + 3ézz,i)|2

2

A X1i = X1 5, Xpi— X
= Yi— (BO+BIA +ﬂz 2+ = + B )
Ox, X3 X1 Ox,

2

Yi— (ﬂo"‘ﬁlA +32A>

x1 X2

1]
'M: F'M: F'M: i
= = =

1l
oy

lvi = (Bo + Brxy; + 3zx2,i)|2 = SSEF (x4, x,),

4

In this case, for the SSEF, we compare the full model with the reduced models §; = 4 + 52, and

= B¢ + B3x,;, where the variables z;, x, are omitted. This time we have 5§ = S, + ﬂ’ Xz

X2

n
SSEF(,22) = ) vi = (Bo + Bsz2,)|”
n 2

— X
Z)’r (.80+32A +/))2 S >

x

ljll ) n
5 51 xZ,i 3 3 2 R
= - (ﬁo + B 6—) = > i = (Bo + Boxa)[ = SSEF (1, x2),
i=1 X2 i=1

Similarly, for SSEX we compare the full model with reduced models omitting the variables z,, x,:

n n
5555(21'22) = Zb’i - (ﬁ(’) + /?{Zl,i)|2 == Zb/i - (ﬁo + B1x1,i)|2 = SSEf(xpxz)-
i=1 i=1

The reduced model SSE for z-scored variables coincides with the SSE for the initial data.



Furthermore, one may note that F* mainly depends on SSE, and that the total sum of squares SST =

SSR + SSE =Y~ ,(y; — 37)2 does not depend on the regressed variables (xq,x,) or (zy,z,), thus
F*(Z]_,Zz) = F*(xl,xz), Imp|IeS that SSR(Zl,Zz) = SSR(xl, xZ).

n n
A — Al Al Al —\2
SSR(zy,2;) = Z(J/i - }’)2 = Z(ﬁo + p121,; + Bz — 3’)
i=1 i=1

n _ _ 2
5 5rX1i — X1 4, X0 T X2 _
=Z<ﬁ6+b’{ L gy —y)

- X X
i=1 1 2

_ _\2
5:X1i — X1 5,X2i — X2

—_ ! ) I ’

- <1 A~ +ﬁ2 PN )

X1 ze

n n

N - A A 2

SSR(x1,x,) = Z(}’i -y)? = Z(ﬂo + Bix1,i + Baxzi — }’)

i=1 i=1

n

. A . A N2

= Z(.lel,i + Boxzi — P1% — ﬁzxz) )

i=1

SSR(zy,2,) = SSR(x1, x3).

This latter result implies that also the coefficient of determination R? = SSR/SST coincides in the
two models, i.e., R?(zy,2,) = R%(xq,x5).



