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 No Jackpot 

𝐽𝑃𝑇 = 0 

Jackpot 

𝐽𝑃𝑇 = 1 

Low 

𝐴𝑇𝐶 = [0, 1] 
Medium 

𝐴𝑇𝐶 = [2, 3] 
High 

𝐴𝑇𝐶 = [4, 5] 
Subject 1 38606 (82.09%) 8424 (17.91%) 20674 (43.96%) 15222 (32.37%) 11134 (23.67%) 

Subject 2 48910 (83.02%) 10001 (16.98%) 26889 (45.64%) 19057 (32.35%) 12965 (22.01%)  

  

No Jackpot 

𝐽𝑃𝑇 = 0 

 

Jackpot 

𝐽𝑃𝑇 = 1 

 

Low 

𝐴𝑇𝐶 = [0, 1] 

 

Medium 

𝐴𝑇𝐶 = [2, 3] 

 

High 

𝐴𝑇𝐶 = [4, 5] 
Subject 1 Easy 

Hard 

19504 (41.57%) 

19552 (40.51%) 

4170 (9.05%) 

4254 (8.87%) 

10289 (22.08%) 

10385 (21.88%) 

7388 (16.66%) 

7834 (15.71%) 

5547 (11.88%) 

5587 (11.79%) 

Subject 2 Easy 

Hard 

24628 (41.22%) 

24282 (41.81%) 

4977 (8.53%) 

5024 (8.45%) 

13588 (22.58%) 

13301 (23.07%) 

9500 (16.22%) 

9557 (16.13%) 

6517 (10.95%) 

6448 (11.06%)  

 

 

Supplementary Table ST1: Trials available for jackpot and accumulated token counts ranges. 

Numbers of trials (fractions of the total) available for different token counts indexed by 𝐽𝑃𝑇 and 𝐴𝑇𝐶 

ranges. The variable 𝐽𝑃𝑇 indicates the presence (𝐽𝑃𝑇 = 1) or absence (𝐽𝑃𝑇 = 0) of jackpot reward on 

previous trial. The variable 𝐴𝑇𝐶 is the accumulated tokens count as of the start of the current trial. 

The number of trials and fractions of the total are also shown for Easy vs Hard trials.  The median 

value of Δ𝐸𝑉 is 𝑚𝑒𝑑𝑖𝑎𝑛(Δ𝐸𝑉) = 1 and is used to split data in ‘Hard’ and ‘Easy’ trials in behavioral 

analyses. These 𝐴𝑇𝐶 settings are used in behavioral analyses. In neural analyses, we use ‘Low’ 

(𝐴𝑇𝐶 = [0, 1]) and ‘High’ (𝐴𝑇𝐶 = [2, 5]) as this allows us to improve the trial availability per condition. 

 

 

 

 Δ𝐸𝑉 ≤ 0.5 0.5 < Δ𝐸𝑉 ≤ 1.5 1.5 < Δ𝐸𝑉 ≤ 2.5 2.5 < Δ𝐸𝑉 ≤ 3.5 Δ𝐸𝑉 > 3.5 

Subject 1 13672 (29.07%) 19412 (41.28%) 10282 (21.86%) 3235 (6.88%) 429 (0.91%) 

Subject 2 17152 (29.12%) 

 

23945 (40.65%) 13298 (22.57%) 3996 (6.78%) 520 (0.88%)  

 Hard: (Δ𝐸𝑉 < 1) Easy: (Δ𝐸𝑉 ≥ 1) 

Subject 1 23806 (50.62%) 23224 (49.38%) 

Subject 2 29306 (49.75%) 29605 (50.25%) 

 

 

Supplementary Table ST2: Trials available for different difficulty levels. 

Numbers of trials (fractions of the total) available for different difficulty levels indexed by Δ𝐸𝑉 ranges. 

Easier trials have larger Δ𝐸𝑉. The median value of Δ𝐸𝑉 is 𝑚𝑒𝑑𝑖𝑎𝑛(Δ𝐸𝑉) = 1 and is used to split data in 

‘Hard’ and ‘Easy’ trials in behavioral analyses. Note that in neural analyses we use Δ𝑆𝑉 based on 𝑆𝑉.  
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Supplementary Figure S1. Risk seeking attitude vs accumulated reward and difficulty.  

A) Fraction of trials (mean ± s.e.m.) with choice for the offer with higher risk. The data are split in ‘No 

Jackpot’ (𝐽𝑃𝑇 = 0), ‘Jackpot’ (𝐽𝑃𝑇 = 1), and for accumulated tokens count (𝐴𝑇𝐶 = 0 − 5). Data are split 

for subject 1 (red) and subject 2 (blue), and for Easy (Δ𝐸𝑉 ≥ 1, empty markers) and Hard (Δ𝐸𝑉 < 1, 

filled markers). B) Markowitz risk return model for the offer utility based on the mean value (𝐸𝑉) and risk 

(𝑅) of the offers. The model parameter (𝜃) describes risk attitude (𝜃 < 0 risk seeking, 𝜃 > 0 risk avoiding) 

for jackpot cases and for values of accumulated token counts. Data is split in difficulty and across subjects 

as in A. C) Markowitz risk return model, parameter β1 relative to 𝐸𝑉 difference weights for jackpot cases 

and for values of accumulated token counts. Data is split as in A. D) Markowitz risk return model, parameter 

β2 relative to risk 𝑅 difference weights for jackpot cases and for values of accumulated token counts. Data 

is split as in A. 

 

 



 

 

 

𝑚0: logit(𝑐ℎ1) = β0 + β1𝑣1
𝑡 + β2𝑣1

𝑏 − β3𝑣2
𝑡 − β4𝑣2

𝑏;  

𝑚1: logit(𝑐ℎ1) = β0 + β1𝐸𝑉1 − β2𝐸𝑉2;  

𝑚2: logit(𝑐ℎ1) = β0 + β1𝐸𝑉1 − β2𝐸𝑉2 + β3𝑅1 − β4𝑅2;  

𝑚3: logit(𝑐ℎ1) =  β0 + β1𝑣1
𝑡 + β2𝑣1

𝑏 − β3𝑣2
𝑡 − β4𝑣2

𝑏 + β5𝐸𝑉1 − β6𝐸𝑉2 + β7𝑅1 − β8𝑅2. 

 

Supplementary Figure S2: Choice decoding accuracy of different alternative models.  

Each dot reports the choice prediction accuracy for different models, sessions, and for k = 4 cross-

validation folds in subject 1 (left) and subject 2 (right). Accuracy (mean ± sem): 𝑚0: 60.74 ± 0.23% 

(59.9 ± 0.36% for subject 1, 61.29 ± 0.3% for subject 2), 𝑚1: 75.50 ± 0.28% (77.58 ± 0.5% subject 1, 

74.12 ± 0.31% subject 2), 𝑚2:  82.87 ± 0.25% (83.87 ± 0.46% subject 1, 82.21 ± 0.28% subject 2) and 

𝑚3:  82.66 ± 0.25% (83.51 ± 0.46% subject 1, 82.09 ± 0.29% subject 2). This assessment suggests 

𝑚2 as the best model. 
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Supp. Figure S3. Distributions of 𝑺𝑽s for Easy task configurations. A. S𝑉1 (left), S𝑉2 (right) 

distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of S𝑉1, S𝑉2. C-D. Same as 

A-B but for z-scored data. 
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Supp. Figure S4. Distributions of 𝑺𝑽s for Hard task configurations. A. S𝑉1 (left), S𝑉2 (right) 

distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of S𝑉1, S𝑉2. C-D. Same as 

A-B but for z-scored data. 

 

 



 

A       B 

 

 C       D 

 

 

Supp. Figure S5. Distributions of 𝑺𝑽s for Low accumulated reward task configurations. A. S𝑉1 

(left), S𝑉2 (right) distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of S𝑉1, 

S𝑉2. C-D. Same as A-B but for z-scored data. 
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Supp. Figure S6. Distributions of 𝑺𝑽s for High accumulated reward task configurations. A. S𝑉1 

(left), S𝑉2 (right) distributions for subject 1 (top) and subject 2 (bottom). B. Joint distribution of S𝑉1, 

S𝑉2. C-D. Same as A-B but for z-scored data. 

  



 

Supplementary Methods 

Linear regression of two variables 

Consider (𝑥1, 𝑥2) ∈ ℝ2: 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2, where 𝛽0, 𝛽1, 𝛽2 ∈  ℝ are unknown. 

From empirical observations, we have n samples 𝑥1,𝑖, 𝑥2,𝑖, 𝑦𝑖 ,  𝑖 = 1, … , 𝑛, and we may estimate 

𝛽̂0, 𝛽̂1, 𝛽̂2, such that 𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖, 𝑖 = 1, … , 𝑛. 

By using Ordinary Least Squares (OLS), we derive the following (unbiased, consistent) estimators: 

𝛽̂0 =  𝑦̅ − 𝛽̂1𝑥̅1 − 𝛽̂2𝑥̅2, 

𝛽̂1 =  
(∑ (𝑦𝑖 − 𝑦̅)𝑥1,𝑖

𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥2,𝑖

𝑛
𝑖=1 ) − (∑ (𝑦𝑖 − 𝑦̅)𝑥2,𝑖

𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥1,𝑖

𝑛
𝑖=1 )

(∑ (𝑥1,𝑖 − 𝑥̅1)𝑥1,𝑖
𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥2,𝑖

𝑛
𝑖=1 ) − (∑ (𝑥1,𝑖 − 𝑥̅1)𝑥2,𝑖

𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥1,𝑖

𝑛
𝑖=1 )

, 

𝛽̂2 =  
(∑ (𝑦𝑖 − 𝑦̅)𝑥2,𝑖

𝑛
𝑖=1 )(∑ (𝑥1,𝑖 − 𝑥̅1)𝑥1,𝑖

𝑛
𝑖=1 ) − (∑ (𝑦𝑖 − 𝑦̅)𝑥1,𝑖

𝑛
𝑖=1 )(∑ (𝑥1,𝑖 − 𝑥̅1)𝑥2,𝑖

𝑛
𝑖=1 )

(∑ (𝑥1,𝑖 − 𝑥̅1)𝑥1,𝑖
𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥2,𝑖

𝑛
𝑖=1 ) − (∑ (𝑥1,𝑖 − 𝑥̅1)𝑥2,𝑖

𝑛
𝑖=1 )(∑ (𝑥2,𝑖 − 𝑥̅2)𝑥1,𝑖

𝑛
𝑖=1 )

, 

where 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the sample mean of 𝑦𝑖 , 𝑖 = 1, … , 𝑛,  

and 𝑥̅1 =  
1

𝑛
∑ 𝑥1,𝑖

𝑛
𝑖=1 , 𝑥̅2 =  

1

𝑛
∑ 𝑥2,𝑖

𝑛
𝑖=1  are the sample means of 𝑥1,𝑖, 𝑥2,𝑖, 𝑖 = 1, … , 𝑛. 

The quality of the fit and the significance assessment are measured via the total sum of squares (𝑆𝑆𝑇), 

sum of squares due to regression (𝑆𝑆𝑅), sum of squares due to error (𝑆𝑆𝐸):  

𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2
, 𝑆𝑆𝑅 = ∑ (𝑦̂𝑖 − 𝑦̅)𝑛

𝑖=1
2

, 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦̂𝑖)𝑛
𝑖=1

2
, 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸.  

The significance assessment is made by testing the hypothesis that the slope terms β̂𝑗, 𝑗 = 1,2 are 

significantly different from zero. This is achieved by comparing the empirical 𝐹𝑗
∗ value: 

𝐹𝑗
∗ =

(𝑆𝑆𝐸𝑗
𝑅 − 𝑆𝑆𝐸𝐹)/((𝑛 − 2) − (𝑛 − 3))

(𝑆𝑆𝐸𝐹)/(𝑛 − 3)
, 𝑗 = 1,2, 

to a 𝐹-distribution with (𝑛 − 2) − (𝑛 − 3) = 1 degree of freedom at the numerator, and (𝑛 − 3) 

degrees of freedom at the denominator. In this formulation, SS𝐸𝐹 is the 𝑆𝑆𝐸 of the full model, that is 

𝑆𝑆𝐸𝐹 = ∑ |𝑦𝑖 − (𝛽̂0 + 𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖)|
2

,𝑛
𝑖=1  and 𝑆𝑆𝐸𝑗

𝑅 is the 𝑆𝑆𝐸 of the reduced model for each 

variable 𝑥1, 𝑥2: 𝑆𝑆𝐸𝑗
𝑅 = ∑ |𝑦𝑖 − (𝛽̂0 + ∑ 𝛽̂𝑘𝑘=1,2:𝑘≠𝑗 𝑥𝑘,𝑖)|

2𝑛
𝑖=1  for 𝛽̂𝑗, 𝑗 = 1,2. 

 

Linear regression of two z-scored variables 

Let us consider the z-scored version of 𝑥1, 𝑥2. Define: 𝑧1,𝑖 =
𝑥1,𝑖−𝑥̅1

σ̂𝑥1

  and  𝑧2,𝑖 =
𝑥2,𝑖−𝑥̅2

σ̂𝑥2

, 𝑖 = 1, … , 𝑛, 

where 𝑥̅1 =  
1

𝑛
∑ 𝑥1,𝑖

𝑛
𝑖=1  and 𝑥̅2 =  

1

𝑛
∑ 𝑥2,𝑖

𝑛
𝑖=1  are the sample means of 𝑥1, 𝑥2,  

and 𝜎̂𝑥1
=

1

𝑛−1
∑ (𝑥1,𝑖 − 𝑥̅1)2𝑛

𝑖=1  and 𝜎̂𝑥2
=

1

𝑛−1
∑ (𝑥2,𝑖 − 𝑥̅2)2𝑛

𝑖=1  are the sample variances of 𝑥1, 𝑥2. 



 

From the above, 𝑧1̅, 𝑧2̅ = 0, 𝜎̂𝑧1
= 𝜎̂𝑧2

= 1 , following the definition of z-scored variables. 

The previous linear regression can be applied to z-scored variables, with minor changes to the initial 

definition: 𝑦̂𝑖 = 𝛽̂0
′ + 𝛽̂1

′𝑧1,𝑖 + 𝛽̂2
′ 𝑧2,𝑖 = 𝛽̂0

′ + 𝛽̂1
′ 𝑥1,𝑖−𝑥̅1

𝜎̂𝑥1

+ 𝛽̂2
′ 𝑥2,𝑖−𝑥̅2

𝜎̂𝑥2

.  

Recalling the initial model 𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖, we can find a direct correspondence between 

the intercept 𝛽̂0 = 𝛽̂0
′ − 𝛽̂1

′ 𝑥̅1

𝜎̂𝑥1

− 𝛽̂2
′ 𝑥̅1

𝜎̂𝑥1

, and slope terms 𝛽̂1 =
𝛽̂1

′

𝜎̂𝑥1

, and 𝛽̂2 =
𝛽̂2

′

𝜎̂𝑥2

.  

Note that from OLS, 𝛽̂0
′ =  𝑦̅ − 𝛽̂1

′𝑧1̅ − 𝛽̂2
′ 𝑧2̅ =  𝑦̅, thus it does not depend on 𝛽̂1

′ , 𝛽̂2
′ . 

 

When applying significance assessment to the initial and to the z-scored variables, we find that 

𝐹∗(𝑧1, 𝑧2) = 𝐹∗(𝑥1, 𝑥2), since the two terms SS𝐸𝐹 and SS𝐸𝑗
𝑅, for 𝑗 = 1,2, coincide. 

𝑆𝑆𝐸𝐹(𝑧1, 𝑧2) = ∑|𝑦𝑖 − (𝛽̂0
′ + 𝛽̂1

′𝑧1,𝑖 + 𝛽̂2
′ 𝑧2,𝑖)|

2
𝑛

𝑖=1

 

= ∑ |𝑦𝑖 − (𝛽̂0 + 𝛽̂1
′

𝑥̅1

𝜎̂𝑥1

+ 𝛽̂2
′

𝑥̅2

𝜎̂𝑥2

+ 𝛽̂1
′

𝑥1,𝑖 − 𝑥̅1

𝜎̂𝑥1

+ 𝛽̂2
′

𝑥2,𝑖 − 𝑥̅2

𝜎̂𝑥2

)|

2𝑛

𝑖=1

 

= ∑ |𝑦𝑖 − (𝛽̂0 + 𝛽̂1
′

𝑥1,𝑖

𝜎̂𝑥1

+ 𝛽̂2
′

𝑥2,𝑖

𝜎̂𝑥2

)|

2𝑛

𝑖=1

 

= ∑|𝑦𝑖 − (𝛽̂0 + 𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖)|
2

𝑛

𝑖=1

= 𝑆𝑆𝐸𝐹(𝑥1, 𝑥2), 

In this case, for the 𝑆𝑆𝐸1
𝑅, we compare the full model with the reduced models 𝑦̂𝑖 = 𝛽̂0

′ + 𝛽̂2
′ 𝑧2,𝑖 and 

𝑦̂𝑖 = 𝛽̂0
′ + 𝛽̂2

′ 𝑥2,𝑖, where the variables 𝑧1, 𝑥1 are omitted. This time we have 𝛽̂0
′ = 𝛽̂0 + 𝛽̂2

′ 𝑥̅2

𝜎̂𝑥2

. 

𝑆𝑆𝐸1
𝑅(𝑧1, 𝑧2) = ∑|𝑦𝑖 − (𝛽̂0

′ + 𝛽̂2
′ 𝑧2,𝑖)|

2
𝑛

𝑖=1

 

= ∑ |𝑦𝑖 − (𝛽̂0 + 𝛽̂2
′

𝑥̅2

𝜎̂𝑥2

+ 𝛽̂2
′

𝑥2,𝑖 − 𝑥̅2

𝜎̂𝑥2

)|

2𝑛

𝑖=1

 

= ∑ |𝑦𝑖 − (𝛽̂0 + 𝛽̂2
′

𝑥2,𝑖

𝜎̂𝑥2

)|

2𝑛

𝑖=1

= ∑|𝑦𝑖 − (𝛽̂0 + 𝛽̂2𝑥2,𝑖)|
2

𝑛

𝑖=1

= 𝑆𝑆𝐸1
𝑅(𝑥1, 𝑥2), 

Similarly, for 𝑆𝑆𝐸2
𝑅 we compare the full model with reduced models omitting the variables 𝑧2, 𝑥2: 

𝑆𝑆𝐸2
𝑅(𝑧1, 𝑧2) = ∑|𝑦𝑖 − (𝛽̂0

′ + 𝛽̂1
′𝑧1,𝑖)|

2
𝑛

𝑖=1

= ⋯ = ∑|𝑦𝑖 − (𝛽̂0 + 𝛽̂1𝑥1,𝑖)|
2

𝑛

𝑖=1

= 𝑆𝑆𝐸2
𝑅(𝑥1, 𝑥2). 

The reduced model SSE for z-scored variables coincides with the SSE for the initial data. 



 

Furthermore, one may note that 𝐹∗ mainly depends on 𝑆𝑆𝐸, and that the total sum of squares 𝑆𝑆𝑇 =

𝑆𝑆𝑅 + 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2
 does not depend on the regressed variables (𝑥1, 𝑥2) or (𝑧1, 𝑧2), thus 

𝐹∗(𝑧1, 𝑧2) = 𝐹∗(𝑥1, 𝑥2), implies that 𝑆𝑆𝑅(𝑧1, 𝑧2) = 𝑆𝑆𝑅(𝑥1, 𝑥2). 

𝑆𝑆𝑅(𝑧1, 𝑧2) =  ∑(𝑦̂𝑖 − 𝑦̅)2

𝑛

𝑖=1

=  ∑(𝛽̂0
′ + 𝛽̂1

′𝑧1,𝑖 + 𝛽̂2
′ 𝑧2,𝑖 − 𝑦̅)

2
𝑛

𝑖=1

  

=  ∑ (𝛽̂0
′ + 𝛽̂1

′
𝑥1,𝑖 − 𝑥̅1

𝜎̂𝑥1

+ 𝛽̂2
′

𝑥2,𝑖 − 𝑥̅2

𝜎̂𝑥2

− 𝑦̅)

2𝑛

𝑖=1

=  ∑ (𝛽̂1
′

𝑥1,𝑖 − 𝑥̅1

𝜎̂𝑥1

+ 𝛽̂2
′

𝑥2,𝑖 − 𝑥̅2

𝜎̂𝑥2

)

2𝑛

𝑖=1

, 

𝑆𝑆𝑅(𝑥1, 𝑥2) = ∑(𝑦̂𝑖 − 𝑦̅)2

𝑛

𝑖=1

= ∑(𝛽̂0 + 𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖 − 𝑦̅)
2

𝑛

𝑖=1

= ∑(𝛽̂1𝑥1,𝑖 + 𝛽̂2𝑥2,𝑖 − 𝛽̂1𝑥̅1 − 𝛽̂2𝑥̅2)
2

,

𝑛

𝑖=1

 

𝑆𝑆𝑅(𝑧1, 𝑧2) = 𝑆𝑆𝑅(𝑥1, 𝑥2). 

This latter result implies that also the coefficient of determination 𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇 coincides in the 

two models, i.e., 𝑅2(𝑧1, 𝑧2) = 𝑅2(𝑥1, 𝑥2).  

 


