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Preliminaries

Definition 1. A convex polyhedron P € R™ is defined by a finite set of linear
inequalities
P = {x € R"|Az < b}, (1)

where A € R™*" and b € R".

Definition 2. Let S C R™ be a compact set and x € R™. The tangent cone of
S at x denoted by Ts(x) and given as follow

Tolz) = {y € R"liminf ZLET10:5) _ 5y
h—0 h

where dist(z,S) = inf ||z — s||
seS

Definition 3. Suppose © = f(z,t) is a dynamical system. A set S C R" is a
positive invariant set if ©(0) € S implies that xz(t) € S, for all t > 0.

Theorem 1. assume that S € R™ be a closed and convex set. Consider the
system & = f(x,t), where [ is a continuous mapping, has a globally unique
solution for every initial point x(0) € S. Then S is an invariant set for this
system if and only if

flz,t) € Ts(z), VzedS

where Tg(x) is the tangent cone of S at x.
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Lemma 1. Let a polyhedron P that given in (H), and I, # O for all x € P.
Then P is an invariant set for the continuous system & = f(x,t) if and only if
for every x € OP we have

AT f(z,t) <0, Viel,

where I, denote the set of indices of the constraints in (B) which are active at
x.

Corollary 1. R0 +.0 i an invariant set for the dynamical system given by & =
f(z,t) if and only if for any point x € 0S, we have

fi(ZE,t) >0, Viel,
Proof. The proof is a direct consequence of Theorem m with A = —I,, and

b=0. O

Supplementary Note 1: Optimal control analysis of an SIR
epidemic model

Recall that the basic SIR model is given by the following system of ordinary
differential equations:

%f = b— BSH)I(t) — dS(t) — uy (£)S(2),
A = BSOI() — us0)I(1) — dI(1) ~ aI(0) 2)
B s (05(0) + s (0)1(1) — dR().

In this model, S(¢) denotes the number of susceptible individuals at time ¢, I(%)
denotes the number of infectious individuals, and R(t) denotes the number of
recovered (or removed) individuals. The parameter b represents the recruitment
rate into the population, 8 denotes the disease transmission rate, and d is the
natural death rate. Furthermore, u; denotes the proportion of susceptible indi-
viduals that is vaccinated per unit time, us denotes the proportion of infectious
individuals that is treated per unit time, and « represents the disease-induced
death rate.

Theorem 2. Let RY § = {(21,%2,23) € R*x; > 0,i = 1,2,3} represent non-
negative quadrant of R3. then Ri,o is an invariant set with respect to the
dynamical system (3).

Proof. Let E; = {(z1,72,23) € R3|z; = 0,2; > 0,5 =1,2,3, j #i},i =1,2,3,
then the boundary of Ri,o can be written as

N-UE



Suppose = (5,1, R) € 9R} ;, then for dynamical system (E) we have

ds
if E — =5b>0
Ixre by, dt Z
dI
if E —=0>0
I xe Lo, dt Z
. dR
if z € Ej, T ui(t)S(t) +ua(t)I(t) > 0,
By using Corollary Ev the result follows immediately. O

Theorem 3. The solutions of dynamical system (@) with the initial conditions
satisfying the following inequalities

5(0) =0, 1(0) = 0, R(0) >0,
are bounded.
Proof. The total population N(t) = S(t) + I(t) + R(t), it implies that

% —b— N(t)d— al(t) < b— N(t)d

Then limsup,_, ., < %. Therefore all solutions are bounded O

The SIR optimal control problem is governed by

1 T
min I(T) + 5 / Chuq (If)Z + CQUQ(t)Q dt
v 0

S(t)= b—BS()I(t) —dS(t) —ua(t)S(t), (3)
Subject to I(t) BSE)I(t) —ug(t)I(t) —dI(t) — al(t),
R(t) = uy(t)S(t) + ua(t)I(t) — dR(t).

where C1 and C5 are the weights for the control effort. T is the final time
of the intervention period. The idea is to define the Hamiltonian H associated
with the problem:

H = Crun (1)* + Coua(t)? + As(t) [b = BS()I(E) — dS(1) — un (1)S(1)]

+ () [55@)1@) —us(OI(t) — dI(t) — a[(t)] + Ar(t) [ul(t)S(t) s (8)I(t) — dR(t)] ,

where Ag(t), A\;(t) and Ag(t) are the adjoint variables. Addition the adjoint
variables satisfy

As(t) = As()BI(t) + As(t)d + As(t)ur — Ar()BI(t)

Ar(t) = As(1)BS(t) — Ar(t)BS(t) + A1 (t)ug + A1 (t)d + A ()

Ar(t) = dAr(t)



Supplementary Note 2: Optimal Control of the Kuramoto
Model

The characterization of the optimal control follows from Pontryagin’s Maximum
Principle

H(t,z, A\, u) ( Zsm )2+ (23: cos(ﬂj))2>
_ZB’JU’J+Z)‘ (wl Zuwsm (0; —9))

i#] J#Z
The adjoint variables for ¢ = 1,2 & 3 satisfy
. 1
Ai(t) = 3 ;(Aiu” Ajuj;)cos(0; ;sm 0; —6;)
J7 JF

where A\;(T) =0 fori=1,2 & 3.

Supplementary Note 3: proof

Lemma 2. Let f: S CR™ — R, is a convex and differentiable function and S
is closed. Consider the unconstrained scalar-valued minimization problem

v* = argmin,cgnmaz (ki ||v||, ke F (z + v))
then, there are ki,ko > 0 such that
Vm >0,  |[f(z+07) = fl@)] <m
Proof. Consider the unconstrained scalar-valued minimization problem
v(z) = argmingyernmaz(ky||v]|, ke F (z + v))

there is v # 0 such that f(z +v) < f(z). In addition for 3 k1, k2 > 0 such that
v* = argminyecgnmaz(k1||v||, ke F(z + v)) and

kalo*]l = ko f (x + 0%) = maz(k[[o* ||, ko F (2 + 7))

f is Lipschitz continuous, then

[f(z+v") = f(z)]| < L ||<L f($+v)
S is closed then
IM st flx+v") <M

then we have

k k
17 +v%) = F@)ll < D" < L2 fla+07) < 2 M

its sufficient that k1 > %kg ]



Corollary 2. Let f = ||2Z||. Note that Lemma (@), 90 s valid for neighborhood
B, (u) and by considering lipschitz continuity of neural networks, the iterative
updates of the neural networks based on algorithm 1 converge to the optimal
solution.
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