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Preliminaries
Definition 1. A convex polyhedron P ∈ Rn is defined by a finite set of linear
inequalities

P = {x ∈ Rn|Ax ≤ b}, (1)

where A ∈ Rm×n and b ∈ Rn.

Definition 2. Let S ⊂ Rn be a compact set and x ∈ Rn. The tangent cone of
S at x denoted by TS(x) and given as follow

TS(x) = {y ∈ Rn|lim inf
h→0

dist(x+ hy, S)

h
= 0}

where dist(x, S) = inf
s∈S

∥x− s∥

Definition 3. Suppose ẋ = f(x, t) is a dynamical system. A set S ⊂ Rn is a
positive invariant set if x(0) ∈ S implies that x(t) ∈ S, for all t ≥ 0.

Theorem 1. assume that S ∈ Rn be a closed and convex set. Consider the
system ẋ = f(x, t), where f is a continuous mapping, has a globally unique
solution for every initial point x(0) ∈ S. Then S is an invariant set for this
system if and only if

f(x, t) ∈ TS(x), ∀x ∈ ∂S

where TS(x) is the tangent cone of S at x.
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Lemma 1. Let a polyhedron P that given in (1), and Ix ̸= ∅ for all x ∈ P .
Then P is an invariant set for the continuous system ẋ = f(x, t) if and only if
for every x ∈ ∂P we have

AT
i f(x, t) ≤ 0, ∀i ∈ Ix

where Ix denote the set of indices of the constraints in (1) which are active at
x.

Corollary 1. R10
+,0 is an invariant set for the dynamical system given by ẋ =

f(x, t) if and only if for any point x ∈ ∂S, we have

fi(x, t) ≥ 0, ∀i ∈ Ix

Proof. The proof is a direct consequence of Theorem 1 with A = −In and
b = 0.

Supplementary Note 1: Optimal control analysis of an SIR
epidemic model
Recall that the basic SIR model is given by the following system of ordinary
differential equations:

dS

dt
= b− βS(t)I(t)− dS(t)− u1(t)S(t),

dI

dt
= βS(t)I(t)− u2(t)I(t)− dI(t)− αI(t),

dR

dt
= u1(t)S(t) + u2(t)I(t)− dR(t).

(2)

In this model, S(t) denotes the number of susceptible individuals at time t, I(t)
denotes the number of infectious individuals, and R(t) denotes the number of
recovered (or removed) individuals. The parameter b represents the recruitment
rate into the population, β denotes the disease transmission rate, and d is the
natural death rate. Furthermore, u1 denotes the proportion of susceptible indi-
viduals that is vaccinated per unit time, u2 denotes the proportion of infectious
individuals that is treated per unit time, and α represents the disease-induced
death rate.

Theorem 2. Let R3
+,0 = {(x1, x2, x3) ∈ R3|xi ≥ 0, i = 1, 2, 3} represent non-

negative quadrant of R3. then R3
+,0 is an invariant set with respect to the

dynamical system (2).

Proof. Let Ei = {(x1, x2, x3) ∈ R3|xi = 0, xj ≥ 0, j = 1, 2, 3, j ̸= i}, i = 1, 2, 3,
then the boundary of R3

+,0 can be written as

∂R3
+,0 =

3∪
i=1

Ei
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Suppose x = (S, I,R) ∈ ∂R3
+,0, then for dynamical system (2) we have

if x ∈ E1,
dS

dt
= b ≥ 0

if x ∈ E2,
dI

dt
= 0 ≥ 0

if x ∈ E3,
dR

dt
= u1(t)S(t) + u2(t)I(t) ≥ 0,

By using Corollary 1, the result follows immediately.

Theorem 3. The solutions of dynamical system (2) with the initial conditions
satisfying the following inequalities

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0,

are bounded.

Proof. The total population N(t) = S(t) + I(t) +R(t), it implies that

dN

dt
= b−N(t)d− αI(t) ≤ b−N(t)d

Then lim supt→∞ ≤ b
d . Therefore all solutions are bounded

The SIR optimal control problem is governed by

min
u

I(T ) +
1

2

∫ T

0

C1u1(t)
2 + C2u2(t)

2 dt

Subject to


Ṡ(t) = b− βS(t)I(t)− dS(t)− u1(t)S(t),

İ(t) = βS(t)I(t)− u2(t)I(t)− dI(t)− αI(t),

Ṙ(t) = u1(t)S(t) + u2(t)I(t)− dR(t).

(3)

where C1 and C2 are the weights for the control effort. T is the final time
of the intervention period. The idea is to define the Hamiltonian H associated
with the problem:

H = C1u1(t)
2 + C2u2(t)

2 + λS(t)
[
b− βS(t)I(t)− dS(t)− u1(t)S(t)

]
+ λI(t)

[
βS(t)I(t)− u2(t)I(t)− dI(t)− αI(t)

]
+ λR(t)

[
u1(t)S(t) + u2(t)I(t)− dR(t)

]
,

where λS(t), λI(t) and λR(t) are the adjoint variables. Addition the adjoint
variables satisfy

λ̇S(t) = λS(t)βI(t) + λS(t)d+ λS(t)u1 − λI(t)βI(t)

λ̇I(t) = λS(t)βS(t)− λI(t)βS(t) + λI(t)u2 + λI(t)d+ λI(t)α

λ̇R(t) = dλR(t)
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Supplementary Note 2: Optimal Control of the Kuramoto
Model
The characterization of the optimal control follows from Pontryagin’s Maximum
Principle

H(t, x, λ, u) =
1

32

(
(

3∑
j=1

sin(θj))
2 + (

3∑
j=1

cos(θj))
2
)

−
∑
i ̸=j

Bijuij +

3∑
i=1

λi

(
ωi +

1

3

∑
j ̸=i

uijsin(θj − θi)
)

The adjoint variables for i = 1, 2 & 3 satisfy

λ̇i(t) =
1

3

∑
j ̸=i

(λiuij − λjuji)cos(θj − θi)−
2

32

∑
j ̸=i

sin(θj − θi)

where λi(T ) = 0 for i = 1, 2 & 3.

Supplementary Note 3: proof
Lemma 2. Let f : S ⊂ Rn → R+ is a convex and differentiable function and S
is closed. Consider the unconstrained scalar-valued minimization problem

v∗ = argminv∈Rnmax(k1∥v∥, k2F (x+ v))

then, there are k1, k2 > 0 such that

∀m > 0, ∥f(x+ v∗)− f(x)∥ ≤ m

Proof. Consider the unconstrained scalar-valued minimization problem

v(x) = argminv∈Rnmax(k1∥v∥, k2F (x+ v))

there is v ̸= 0 such that f(x+ v) < f(x). In addition for ∃ k1, k2 > 0 such that
v∗ = argminv∈Rnmax(k1∥v∥, k2F (x+ v)) and

k1∥v∗∥ = k2f(x+ v∗) = max(k1∥v∗∥, k2F (x+ v∗))

f is Lipschitz continuous, then

∥f(x+ v∗)− f(x)∥ < L∥v∗∥ < L
k2
k1

f(x+ v∗)

S is closed then
∃ M s.t. f(x+ v∗) ≤ M

then we have

∥f(x+ v∗)− f(x)∥ < L∥v∗∥ ≤ L
k2
k1

f(x+ v∗) ≤ k2
k1

M

its sufficient that k1 > M
m k2
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Corollary 2. Let f = ∥∂H
∂u ∥. Note that Lemma (2), ∂H

∂u is valid for neighborhood
Bm(u) and by considering lipschitz continuity of neural networks, the iterative
updates of the neural networks based on algorithm 1 converge to the optimal
solution.
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