

Supplementary Information

Solving Nonlinear and Complex Optimal Control Problems via Multi-task Artificial Neural Networks

Ali Emami Kerdabadi¹ Alaeddin Malek^{1*}

¹Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, 14115-134, Iran
Email: mala@modares.ac.ir

Preliminaries

Definition 1. A convex polyhedron $P \in \mathbb{R}^n$ is defined by a finite set of linear inequalities

$$P = \{x \in \mathbb{R}^n | Ax \leq b\}, \quad (1)$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 2. Let $S \subset \mathbb{R}^n$ be a compact set and $x \in \mathbb{R}^n$. The tangent cone of S at x denoted by $\mathcal{T}_S(x)$ and given as follow

$$\mathcal{T}_S(x) = \{y \in \mathbb{R}^n | \liminf_{h \rightarrow 0} \frac{dist(x + hy, S)}{h} = 0\}$$

where $dist(x, S) = \inf_{s \in S} \|x - s\|$

Definition 3. Suppose $\dot{x} = f(x, t)$ is a dynamical system. A set $S \subset \mathbb{R}^n$ is a positive invariant set if $x(0) \in S$ implies that $x(t) \in S$, for all $t \geq 0$.

Theorem 1. assume that $S \in \mathbb{R}^n$ be a closed and convex set. Consider the system $\dot{x} = f(x, t)$, where f is a continuous mapping, has a globally unique solution for every initial point $x(0) \in S$. Then S is an invariant set for this system if and only if

$$f(x, t) \in \mathcal{T}_S(x), \quad \forall x \in \partial S$$

where $\mathcal{T}_S(x)$ is the tangent cone of S at x .

*Corresponding author, Email Adress: mala@modares.ac.ir

Lemma 1. Let a polyhedron P that given in (1), and $\mathcal{I}_x \neq \emptyset$ for all $x \in P$. Then P is an invariant set for the continuous system $\dot{x} = f(x, t)$ if and only if for every $x \in \partial P$ we have

$$A_i^T f(x, t) \leq 0, \quad \forall i \in \mathcal{I}_x$$

where \mathcal{I}_x denote the set of indices of the constraints in (1) which are active at x .

Corollary 1. $\mathbb{R}_{+,0}^{10}$ is an invariant set for the dynamical system given by $\dot{x} = f(x, t)$ if and only if for any point $x \in \partial S$, we have

$$f_i(x, t) \geq 0, \quad \forall i \in \mathcal{I}_x$$

Proof. The proof is a direct consequence of Theorem 1 with $A = -I_n$ and $b = 0$. \square

Supplementary Note 1: Optimal control analysis of an SIR epidemic model

Recall that the basic SIR model is given by the following system of ordinary differential equations:

$$\begin{aligned} \frac{dS}{dt} &= b - \beta S(t)I(t) - dS(t) - u_1(t)S(t), \\ \frac{dI}{dt} &= \beta S(t)I(t) - u_2(t)I(t) - dI(t) - \alpha I(t), \\ \frac{dR}{dt} &= u_1(t)S(t) + u_2(t)I(t) - dR(t). \end{aligned} \tag{2}$$

In this model, $S(t)$ denotes the number of susceptible individuals at time t , $I(t)$ denotes the number of infectious individuals, and $R(t)$ denotes the number of recovered (or removed) individuals. The parameter b represents the recruitment rate into the population, β denotes the disease transmission rate, and d is the natural death rate. Furthermore, u_1 denotes the proportion of susceptible individuals that is vaccinated per unit time, u_2 denotes the proportion of infectious individuals that is treated per unit time, and α represents the disease-induced death rate.

Theorem 2. Let $\mathbb{R}_{+,0}^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_i \geq 0, i = 1, 2, 3\}$ represent non-negative quadrant of \mathbb{R}^3 . then $\mathbb{R}_{+,0}^3$ is an invariant set with respect to the dynamical system (2).

Proof. Let $E_i = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_i = 0, x_j \geq 0, j = 1, 2, 3, j \neq i\}, i = 1, 2, 3$, then the boundary of $\mathbb{R}_{+,0}^3$ can be written as

$$\partial \mathbb{R}_{+,0}^3 = \bigcup_{i=1}^3 E_i$$

Suppose $x = (S, I, R) \in \partial\mathbb{R}_{+,0}^3$, then for dynamical system (2) we have

$$\begin{aligned} \text{if } x \in E_1, \quad & \frac{dS}{dt} = b \geq 0 \\ \text{if } x \in E_2, \quad & \frac{dI}{dt} = 0 \geq 0 \\ \text{if } x \in E_3, \quad & \frac{dR}{dt} = u_1(t)S(t) + u_2(t)I(t) \geq 0, \end{aligned}$$

By using Corollary 1, the result follows immediately. \square

Theorem 3. *The solutions of dynamical system (2) with the initial conditions satisfying the following inequalities*

$$S(0) \geq 0, \quad I(0) \geq 0, \quad R(0) \geq 0,$$

are bounded.

Proof. The total population $N(t) = S(t) + I(t) + R(t)$, it implies that

$$\frac{dN}{dt} = b - N(t)d - \alpha I(t) \leq b - N(t)d$$

Then $\limsup_{t \rightarrow \infty} \leq \frac{b}{d}$. Therefore all solutions are bounded \square

The SIR optimal control problem is governed by

$$\begin{aligned} \min_u \quad & I(T) + \frac{1}{2} \int_0^T C_1 u_1(t)^2 + C_2 u_2(t)^2 \, dt \\ \text{Subject to} \quad & \begin{cases} \dot{S}(t) = b - \beta S(t)I(t) - dS(t) - u_1(t)S(t), \\ \dot{I}(t) = \beta S(t)I(t) - u_2(t)I(t) - dI(t) - \alpha I(t), \\ \dot{R}(t) = u_1(t)S(t) + u_2(t)I(t) - dR(t). \end{cases} \end{aligned} \quad (3)$$

where C_1 and C_2 are the weights for the control effort. T is the final time of the intervention period. The idea is to define the Hamiltonian H associated with the problem:

$$\begin{aligned} H = & C_1 u_1(t)^2 + C_2 u_2(t)^2 + \lambda_S(t) \left[b - \beta S(t)I(t) - dS(t) - u_1(t)S(t) \right] \\ & + \lambda_I(t) \left[\beta S(t)I(t) - u_2(t)I(t) - dI(t) - \alpha I(t) \right] + \lambda_R(t) \left[u_1(t)S(t) + u_2(t)I(t) - dR(t) \right], \end{aligned}$$

where $\lambda_S(t)$, $\lambda_I(t)$ and $\lambda_R(t)$ are the adjoint variables. Addition the adjoint variables satisfy

$$\begin{aligned} \dot{\lambda}_S(t) &= \lambda_S(t)\beta I(t) + \lambda_S(t)d + \lambda_S(t)u_1 - \lambda_I(t)\beta I(t) \\ \dot{\lambda}_I(t) &= \lambda_S(t)\beta S(t) - \lambda_I(t)\beta S(t) + \lambda_I(t)u_2 + \lambda_I(t)d + \lambda_I(t)\alpha \\ \dot{\lambda}_R(t) &= d\lambda_R(t) \end{aligned}$$

Supplementary Note 2: Optimal Control of the Kuramoto Model

The characterization of the optimal control follows from Pontryagin's Maximum Principle

$$\begin{aligned} H(t, x, \lambda, u) = & \frac{1}{3^2} \left(\left(\sum_{j=1}^3 \sin(\theta_j) \right)^2 + \left(\sum_{j=1}^3 \cos(\theta_j) \right)^2 \right) \\ & - \sum_{i \neq j} B_{ij} u_{ij} + \sum_{i=1}^3 \lambda_i \left(\omega_i + \frac{1}{3} \sum_{j \neq i} u_{ij} \sin(\theta_j - \theta_i) \right) \end{aligned}$$

The adjoint variables for $i = 1, 2 \& 3$ satisfy

$$\dot{\lambda}_i(t) = \frac{1}{3} \sum_{j \neq i} (\lambda_i u_{ij} - \lambda_j u_{ji}) \cos(\theta_j - \theta_i) - \frac{2}{3^2} \sum_{j \neq i} \sin(\theta_j - \theta_i)$$

where $\lambda_i(T) = 0$ for $i = 1, 2 \& 3$.

Supplementary Note 3: proof

Lemma 2. Let $f : S \subset \mathbb{R}^n \rightarrow \mathbb{R}_+$ is a convex and differentiable function and S is closed. Consider the unconstrained scalar-valued minimization problem

$$v^* = \operatorname{argmin}_{v \in \mathbb{R}^n} \max(k_1 \|v\|, k_2 F(x + v))$$

then, there are $k_1, k_2 > 0$ such that

$$\forall m > 0, \quad \|f(x + v^*) - f(x)\| \leq m$$

Proof. Consider the unconstrained scalar-valued minimization problem

$$v(x) = \operatorname{argmin}_{v \in \mathbb{R}^n} \max(k_1 \|v\|, k_2 F(x + v))$$

there is $v \neq 0$ such that $f(x + v) < f(x)$. In addition for $\exists k_1, k_2 > 0$ such that $v^* = \operatorname{argmin}_{v \in \mathbb{R}^n} \max(k_1 \|v\|, k_2 F(x + v))$ and

$$k_1 \|v^*\| = k_2 f(x + v^*) = \max(k_1 \|v^*\|, k_2 F(x + v^*))$$

f is Lipschitz continuous, then

$$\|f(x + v^*) - f(x)\| < L \|v^*\| < L \frac{k_2}{k_1} f(x + v^*)$$

S is closed then

$$\exists M \quad s.t. \quad f(x + v^*) \leq M$$

then we have

$$\|f(x + v^*) - f(x)\| < L \|v^*\| \leq L \frac{k_2}{k_1} f(x + v^*) \leq \frac{k_2}{k_1} M$$

its sufficient that $k_1 > \frac{M}{m} k_2$

□

Corollary 2. Let $f = \|\frac{\partial H}{\partial u}\|$. Note that Lemma (2), $\frac{\partial H}{\partial u}$ is valid for neighborhood $B_m(u)$ and by considering lipschitz continuity of neural networks, the iterative updates of the neural networks based on algorithm 1 converge to the optimal solution.

References

1. Nagumo, M. (1942). Über die lage der integralkurven gewöhnlicher differentialgleichungen. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24, 551-559.
2. Horváth, Z., Song, Y., & Terlaky, T. (2017). A novel unified approach to invariance conditions for a linear dynamical system. Applied Mathematics and Computation, 298, 351-367.