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I. THEORETICAL UNDERSTANDING
A. Introduction to the gapless symmetry-protected topological phases

To provide a more intuitive understanding of symmetry-protected topological properties in critical systems, we first introduce
the fundamental concepts of gapless symmetry-protected topological phases (gSPTs). In this work, we study a prototypical
model called the critical cluster Ising model in experiments as a concrete example.

Topological phases form a cornerstone of modern condensed matter physics, extending beyond the Landau-Ginzburg-Wilson
paradigm of symmetry-breaking. A notable example of topological states is symmetry-protected topological phases [ 1-3], which
are typically associated with a bulk energy gap. It has been widely believed that these topological properties are destroyed when
the bulk gap closes. However, recent achievements [4—8] have shown that many key features of topological physics, such as
topological edge modes, can surprisingly emerge in the less explored realm of gapless quantum many-body systems. These
systems include stable gapless phases or critical points, leading to the notion of gSPT phases. The topologically nontrivial
quantum critical point (or state) discussed in the main text represents a special type of gSPT.

To date, different families of gSPTs have been identified in the literature [9—12], and the classification of these phases based
on whether they contain gapped sector and whether they are intrinsic (a term that will be clarified below), thereby leading to the
categorization into four distinct types, as summarized in Table S1. The subsequent detailed explanations are mainly based on the
literature [9].

Contains gapped sector No gapped sector
Non-intrinsic gSPT purely gSPT
Intrinsic igSPT intrinsically purely gSPT

TABLE S1. Classification of the gSPTs by whether they are purely gapless (horizontal direction) or intrinsically gapless (vertical direction).
The table is taken from Ref. [9].

i) The gSPT phases: The first example of a gSPT phase, which is non-intrinsic (which means such topological phases has
gapped counterparts) and includes a gapped sector, was systematically investigated in Ref. [4]. Specifically, a general construction
of gSPT phases was introduced based on the decorated domain-wall (defect) picture of gapped SPT phases [13]. The central idea
is to decorate the G-symmetry defects of a G-symmetric gapless system or conformal field theory (CFT) with an H-symmetric
gapped SPT. This decorated defect construction creates a gapped sector that acts both on G and H symmetry, resulting in a
g¢SPT phase whose topological properties can also manifest in gapped counterparts. As a result, these features are not “intrinsic”
to the gapless system [4, 12]. In summary, the topological properties of these gSPT phases arise from the gapped SPT sector
and can be interpreted as a gapped SPT stack with a CFT. Recent studies [6] have shown that such gSPT states can emerge at
conformally invariant critical points separating spontaneously symmetry-breaking (SSB) phases and gapped SPT phases, also
known as symmetry-enriched CFT or topologically nontrivial quantum critical points [6].

i) The intrinsically gSPT phases: On a different front, there exists an intriguing class of gapless topological phases, referred
to as intrinsically gSPT (igSPT) phases [14], whose topological features are fundamentally prohibited in gapped counterparts.
Specifically, recent works [9, 12] propose a systematic construction of igSPT phases, which we briefly outlined below: The total
symmetry group is denoted by I, fitting into the group extension | - H — I' = G — 1. The construction begins with a
G-symmetric gapless system or CFT characterized by a self-anomaly wg. An H-symmetric gapped SPT phase is then stacked
on top of the G symmetry domain walls (defects). Due to the non-trivial group extension, the resulting gapped sector exhibits
an (emergent) anomaly —w¢ that cancels the anomaly in the gapless sector, rendering the combined system an igSPT phase
that is I'-anomaly-free. By construction, igSPT phases also include a gapped sector, leading to exponentially localized edge
modes near the boundaries. Importantly, the topological features of igSPT phases cannot be realized in any I'-symmetric gapped
SPT phase, thereby justifying the term “intrinsic”. Furthermore, Li et al. [9, 12] utilized the decorated defect construction and
the Kennedy-Tasaki (KT) transformation to construct analytically tractable 1+1D spin models of both gSPT and igSPT phases,
focusing on Z; X Z, symmetry and Z4 symmetry, respectively. Additionally, the recently developed topological holography
principle (known as symmetry topological field theory) was employed to provide a unified classification of gapped and gapless
SPT phases from a new perspective [10, 15]. Experimentally, these igSPT phases can emerge at the transition point between a
quantum spin Hall insulator and an s-wave superconducting phase, which has recently been proposed to be realizable in materials
such as WTe; [16].

iii) The purely and intrinsically purely gSPT phases: From the previous discussion, we have established that both gSPT and
igSPT phases typically include a gapped sector, which results in exponentially localized topological edge modes. However,
Verresen et al.[6, 17] studied the critical cluster Ising model with time-reversal symmetry and demonstrated that this model lacks
a gapped sector, as evidenced by the algebraically decaying energy splitting of edge modes that are forbidden in gapped systems.
This result suggests the existence of a gSPT phase without any gapped sector, referred to as a “purely gSPT phase” [9-12].
However, to the best of our knowledge, the ground state of the critical cluster Ising chain provides the only known example of
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a purely gSPT phase. Therefore, constructing additional lattice Hamiltonians that realize such novel phases is highly desirable.
Furthermore, it is natural to explore the possibility of an igSPT phase without any gapped sectors, which has been termed an
“intrinsically purely gapless SPT phase” [9]. Unfortunately, despite ongoing efforts [9], constructing such an intrinsically purely
gSPT phase remains an open challenge, leaving it as an important direction for future research.

It is important to emphasize that, although a topological semimetal can be broadly considered a gapless SPT phase, there
is a qualitative distinction between their topological properties: the former relies on space-translational symmetry, making it
susceptible to destabilization by disorder. In contrast, the topological edge modes at quantum criticality remain robust even in
the presence of symmetry-preserving disorder.

To provide a concrete and experimentally accessible example, we consider the following prototypical lattice Hamiltonian,
previously studied in Ref. [18, 19], as an example of a purely gSPT phase:

H=- Z JZ; 1 XiZiy — Z 8ZiZiv1 — Z hX;, (D

L

where X,Y,Z denote the Pauli matrices. The model enjoys the Z; spin-flip symmetry (generated by P = []; X;) and the
time-reversal symmetry Zg (acting as the complex conjugation). The parameters g, i, J represent ferromagnetic (FM) coupling,
transverse field, and cluster interactions, respectively, which drive the system toward FM, trivial paramagnetic (PM), and Z; X Zg
SPT [17, 20] phases, respectively. When i = 0, g = 1, the model reduces to the cluster Ising model discussed in the main text.
We notice that although the FM-PM (J = 0, g = h) and FM-SPT (h = 0,J = g) transitions are both described by the 1+1D
Ising CFT, the time-reversal symmetry acts differently on the disorder operator, leading to different symmetry-enriched CFTs [6].
We refer to the former as the topologically trivial and the latter as the topologically nontrivial Ising critical point (purely gSPT
phase). To briefly explain why this topological distinction arises, we note that both Ising critical points have a unique local
(nonlocal) scaling operator with scaling dimension A = 1/8, typically denoted by o (u). These serve as the order parameters of
the adjacent phases: o (i) ~ Z; is the Ising order parameter that characterizes the FM order phase, while the disorder operator
(i) is the Kramers-Wannier-dual string order parameter that characterizes the symmetry-preserving phase (trivial PM and cluster
SPT phases). In the trivial PM phase, (i) ~ [1}-_, X;, while in the cluster SPT phase, u(i) ~ (172, X;)YiZis1 [17]. The
distinction is reflected in the symmetry charge of the disorder operator under time-reversal symmetry: TuT = +u, which means
that the two critical points can not be smoothly connected and must be separated by another phase transition. In the non-trivial
case (TuT = —pu), a topologically protected edge mode persists even when the bulk gap closes [6]. Intuitively, the boundary
of such a critical system spontaneously breaks the Z, spin-flip symmetry, resulting in a two-fold degenerate edge mode that is
stable because the charged p operator cannot condense near the boundary. The finite-size splitting of this edge mode decays
algebraically as ~ 1/L'%, which is parametrically faster than the finite-size bulk gap ~ 1/L. This faster decay ensures the stability
of the topological edge mode, even in the presence of critical bulk fluctuations. In essence, the topologically distinct Ising critical
points realize different conformal boundary conditions and boundary g-functions at low energy, serving as a form of “generalized
ground-state degeneracy” even for gapless topological phases without edge modes [7]. The most important aspects of gSPT
phases are the topological invariants, distinguishing different gSPT phases, and the bulk-boundary correspondence, a universal
feature of gSPT phases. Fortunately, in a critical system described by CFT, these two aspects are reflected in the boundary
g-function and the bulk entanglement spectrum, respectively. These quantities are the main focus of our experiment and are
typically extrapolated using the critical ground state in theoretical treatment. However, in this work, we investigate whether the
more experimentally accessible low-lying critical states can effectively capture the fundamental quantities of gSPT phases.

B. The boundary g-function serves as a topological invariant for classifying topologically distinct quantum critical states

Traditionally, people are often interested in the low-energy universal behavior of critical many-body systems in the thermody-
namic limit, known as the universality class or more specifically, the bulk universality class. This is typically described by the
(bulk) CFT. A key quantity in determining such bulk critical universality is the central charge, which can be extracted from the
entanglement entropy of a subsystem of length / under periodic boundary conditions (PBCs) (e.g., for a one-dimension critical
spin chain of total size L):

L nl
SPBC(L, 1) = Sn | = sin | =
(L,1) 3 n nsm 7

) +cPBC, )

where cll) BC is a non-universal constant, and ¢ is the central charge of the underlying CFT. The central charge serves as a fingerprint

for classifying the bulk universality class of quantum phase transitions and has garnered extensive theoretical and experimental
attention [21, 22].

However, in the presence of a boundary, an intriguing degree of freedom emerges where the bulk of the system can remain at a
critical point, while the boundary may flow between different fixed points under boundary renormalization group transformations.
The universal behavior of a critical system with a boundary, referred to as boundary (or surface) criticality, exhibits richer physics
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compared to bulk universality and can be effectively characterized using boundary CFT [23]. According to the observation in
Ref. [24], for a system with its bulk at the critical point, one can define an Affleck-Ludwig boundary entropy. This boundary
entropy decreases under boundary renormalization group flow and equals to a number which is related to the universality
class of the corresponding conformal boundary condition at the boundary fixed point. These boundary critical phenomena
were first discussed in detail in the 1970s and have recently gained renewed attention due to their relevance in many areas of
modern physics [25, 26]. In particular, in the context of gSPT phases or topologically nontrivial quantum critical points, recent
advances [7] have unambiguously demonstrated that conformal boundary conditions (or equivalently, the boundary g-function)
can serve as a topological invariant for topologically nontrivial conformal critical points, at least in 1+1D, encoding nontrivial
topological properties that go beyond topological edge modes. The boundary entropy can be explicitly defined in terms of
entanglement entropy under certain boundary conditions, using a one-dimensional critical spin chain with boundary b as an
example:

2L

!
S(L, 1) = gln(—sin n
Vs

~PBC
1
7 )+ 5 +Ing+Gy(I/L), 3)

where g is the boundary g-function, which fully determines the boundary universality class and plays a role analogous to the central
charge for bulk universality. The term G, represents a scaling function, which is generally challenging to determine analytically.
Consequently, extracting the boundary g-function from the entanglement entropy is typically difficult, particularly in experimental
settings where scalable measurements are even more challenging to achieve. To avoid potential confusion, we emphasize the
distinction between two types of boundary conditions discussed throughout this paper: physical boundary conditions and
conformal boundary conditions. The physical boundary condition refers to specific operations imposed on the boundary of
the ultraviolet (or microscopic) lattice system, and we refer to it in the main text simply as "boundary condition". In contrast, the
conformal boundary condition corresponds to the boundary fixed point that emerges under the boundary renormalization group
flow in the infrared limit. Importantly, these two types of boundary conditions are generally not directly related.

C. Extract the boundary g-function from the wavefunction overlaps

To address the scaling challenges associated with entanglement entropy to extract the boundary g-function, recent theoretical
progress [27, 28] have introduced a wavefunction overlap method. This approach offers a direct means to determine the value
of the boundary g-function, eliminating the need to extract it indirectly through fitting the entanglement entropy. Thanks to the
operator-state correspondence in CFT, expressions in terms of primary operators can be translated into the form involving the
corresponding states. More specifically, as proofed in Ref. [28], the overlap between two low-lying eigenstates of the Hamiltonian
with different defect deformations can be related to universal defect data, such as the defect g-function, the scaling dimension of
the defect change operator A%?, and the four-point correlation function for defect change operators. Finally, by choosing suitable
eigenstates, the universal data can be extracted from the ratio of different wavefunction overlaps by canceling out the unwanted
parts. In particular, the g-function can be obtained by taking the ratio

2
Def _ ( <¢80|¢80> )

=t )
o (e5196%)
where |¢3b ) is the eigenstate of the Hamiltonian with defect deformations
H =H+207 |+ 2075\ 1> (5)

which corresponds to the primary operator ¢”. The superscript a denotes the defect type (a = 0 means the trivial defect) while
the subscript a labels the primary operator (o = 0 means the lowest primary operator corresponding to the ground state of the
defect Hamiltonian) and the perturbation O]‘.‘ 4 is the lattice realization of the defect type a at sites j and j + 1.

It is noted that the g-function, gD°f, in Eq. (4) is the defect g-function. Actually, the boundary is a special type of line defect

and the boundary g-function is the square root of its defect correspondence [29]. In the following, we use g, to denote the
boundary g-function for the boundary condition a and the square in Eq. (4) should be removed in its calculations.

At last, we note that the expression Eq. (4) can be generalized to low-lying excited states corresponding to defect primary
operators and the ratio of the wavefunction overlaps is

(@Plos)  Coap

= 8a >
(@505 " Caon

(6)
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FIG. S1. Explanation for the double degenerate of the entanglement spectrum calculated from the low-lying quantum critical state.
The red circle represents the UV cutoff induced by the entanglement cut and ¢, is the primary operator inserted at the infinity past/future
imaginary time, which corresponds to the eigenstate |¢ ) of the periodic Hamiltonian. Via the conformal mapping £(z), the primary operators
are mapped into local operators in the bulk, which does not influence the boundary in the imaginary-time evolution.

where ng% and C g:gg are defect operator product expansion (OPE) coefficients. It means that the ratio of overlaps between
different excited states is proportional to the boundary g-function, with the proportionality constant determined by the ratio of the
corresponding OPE coefficients. In principle, if the OPE coefficients of the underlying CFT are known, the boundary g-function
can be extracted using the wavefunction overlap method, even for excited states. In our experiments, which corresponds to the
Ising CFT, the Z,-odd sector o under the periodic boundary condition is projected out as part of an error mitigation strategy
because the correct ground state is in the Z;-even sector. Under this condition, the ratio between the relevant OPE coefficients
all equal to 1 [27], leading to a direct equivalence between the wavefunction overlap of low-lying excited states and the boundary
g-function. This simple argument provides an intuitive explanation for why an accurate boundary g-function can be obtained
from low-lying critical states. A more detailed and systematic investigation of this significant and intriguing question for general
cases is left for future work.

D. Universal entanglement spectrum at topologically nontrivial critical states

The concept of the entanglement spectrum is a powerful tool in the study of topological phases of matter and SPT physics. As
first noticed by Li and Haldane in their seminal work [30], the entanglement spectrum of a reduced density matrix is believed
to encode additional information on the existence of the degenerate edge modes at the boundary of a gapped topological phase,
which cannot be captured by the entanglement entropy. However, a remaining question is wether this observation still holds in
gapless topological phases. This question has been addressed in a recent work [8, 31], at least in the context of one-dimensional
gapless SPTs. Through extensive numerical calculations and conformal mappings, it has been found that the entanglement
spectrum not only captures the topological edge degeneracy but also the operator content of the boundary CFT. Therefore, to
experimentally observe the nontrivial edge degeneracy of the critical cluster-Ising chain, one can probe the entanglement spectrum
of a contiguous interval of the periodic critical chain; the two-fold degeneracy in the low-lying entanglement spectrum reflects
the nontrivial edge states. In this work, the bulk entanglement spectrum is obtained from the prepared state via the Entanglement
Hamiltonian Tomograph (EHT) method, which can be performed efficiently on digital quantum simulation platforms.

To provide an intuitive explanation for why the low-lying quantum critical state generated in experiments can effectively exhibit
topological degeneracy in the bulk entanglement spectrum, we begin with the state-operator correspondence in CFT. According to
this principle, a low-lying excited state can be interpreted as an operator inserted at infinity, as illustrated in Fig. S1. By applying
a series of conformal transformations, the reduced density matrix of the low-lying quantum critical state can be mapped onto a
cylinder. In this context, the excited states correspond to bulk local operators ¢, in imaginary time. However, the critical cluster
Ising model is known to host two decoupled fractionalized edge states in the Majorana representation [5]. Consequently, the
imaginary-time evolution of the bulk local operator does not influence the edge states, thereby preserving the double degeneracy
in the entanglement spectrum. The more detailed proof for general cases can be left as future work.

II. DETAILS OF THE DENSITY MATRIX RENORMALIZATION GROUP METHOD

To better understand the prepared state, we need to analyze its overlap with the low-lying excited states of the target many-body
Hamiltonian. For this purpose, we employ the Density Matrix Renormalization Group (DMRG) method [32] based on the Matrix
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Product State (MPS) [33] formalism to solve the first several low-lying eigenstates of the cluster-Ising model under different
boundary conditions.
By exploiting the MPS representation, a quantum state can be expressed in a compact form:

EDN
{oi}

oML

ar-1,1

c MO

ai-1,a; ° )

|O-l...0-L> s

where o; =T, | is alocal basis of the qubit on site i, and M 7 are matrices with appropriate dimensions so that their multiplication
leads to a scalar, namely, the wavefunction (o - - - o |/). The ground state of the Hamiltonian can be obtained by optimizing
the local matrices according to the variational principle. Once the expectation value of the Hamiltonian with respect to the MPS
has reached the convergence criterion, the optimization process would stop and the final MPS can be used to represent the true
ground state faithfully. The dimension of the bond index dim(a;) is a tunable parameter called bond dimension which controls
the representation ability of the MPS. In practical simulations, we have chosen a sufficiently large bond dimension up to 1024 to
ensure the accuracy of the optimized MPS.

To access the excited eigenstates, we adopt a standard strategy by introducing an energy penalty for all the already obtained
eigenstates. Assume that we have calculated the first m low-lying eigenstates {[/«)}}, of the Hamiltonian, to obtain the (m+1)th
eigenstate, we consider a modified Hamiltonian:

Hyper = H+ 2 ) 1)l ®)
k=1

where A is the penalty strength which should be large enough to shift the energies of the first m eigenstates higher than the energy
of the (m + 1)th eigenstate (1 = 50 in our work). Based on the modified Hamiltonian H,,., the (m + 1)th eigenstate of H can be
accessed by running a conventional DMRG calculation. In this way, the first several low-lying excited states of the Hamiltonian
can be systematically computed one by one.

In the present work, the DMRG and MPS simulations are performed via ITensor [34] and Quimb [35] packages.

III. EXPERIMENTAL DETAILS

A. Further Simulations

We devise an efficient state preparation algorithm for the cluster Ising model that prioritizes maximizing the overlap with the
ground state. We then introduce a symmetry projection method to extract the boundary g-function and utilize entanglement
Hamiltonian tomography to probe the two-fold degeneracy of the entanglement spectrum. In this paper, quantum circuit
simulations of small system sizes (L < 20) are performed via a state vector simulator from Pennylane [36] with Pytorch [37]
backend and simulations of large system sizes (L > 20) are performed via an MPS simulator from Tensorcircuit [38] with
Tensorflow [39] backend.

A optimization workflow for entanglement Hamiltonian tomography is illustrated in Fig S4.

r 02 i=z
j=
o-0~°
(o) ° 50
o O
o= =0
00 2
o] > On =q
M &
‘l{;\ O r [~ ear
=0 —0=-0——-—0 =0 o2 k Fitting Range
Direct Opt.
o
O o) o
0 ? © (,7 04 0 0 | ©  Extrapolate
8 16 20 8 16 20
L L

FIG. S2. Verification of the extrapolating functions. The dotted lines indicate parameters optimized directly without using energy-initialized
parameters. Markers indicate the fitted and extrapolated parameters.

We optimized the parameters by maximizing the fidelities with the target states using systems of up to 16 qubits, from which
we fitted the extrapolation functions. We further optimize the circuit parameters (¢;, c?BC) directly for L = 18 and L = 20 and
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block index(j)| 1 2 3 4 5
bi(e;) |-0.930]-0.710/-1.479]-0.813|-0.766
b,-(cl;BC) -1.365[-1.892[-1.780(-1.651]-1.894

TABLE S2. Optimized b; in the extrapolation function of all five blocks. The negative nature converges the single-qubit gate rotation
angles to the infinite-volume (L — oo) limit in a power-law speed.
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FIG. S4. EHT optimization workflow. We first measure bitstring probabilities of the prepared PBC state under different Pauli bases. Then
we fit 8 in the EHT ansatz to the measured data. With the optimized 3, we calculate the subsystem’s entanglement spectrum and observe a
two-fold topological degeneracy.

observe a good agreement with the extrapolated ones. The resulting parameters of the third circuit block for OBC and PBC are
displayed in Fig. 2b in the main text, and the parameters of the left circuit blocks are shown in Fig. S3. b ;s for both €; and c?BC
in the extrapolation function are negative as shown in Table S2.

B. Device Information

The experiment is performed on a superconducting quantum chip containing 125 qubits and 218 couplers, from which spin
chains with various sizes can be constructed, as illustrated in Fig. S5.

The qubits have a mean energy relaxation time 77 of 64.6 us and dephasing time (obtained by spin Echo) 75 of 19.1 us, which
are measured at the qubit idling frequencies. The single- and two-qubit gates are implemented following the procedure outlined
in [40], with gate lengths of 20 and 32 ns, respectively. The qubit measurements are optimized using the method described in
[41]. The distributions of gate and measurement error rates are presented in Fig. S6, with dashed lines indicating the median
values. Single- and two-qubit gate errors are estimated with simultaneous cross-entropy benchmarking technique.
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FIG. S5. Qubit layout details. We construct 1D qubit chains with 20, 40, 60, 80, and 100 qubits out of the 125-qubit superconducting
processor.

0.08 % 0.54 %0.85 %
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[63]
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Error (%)

FIG. S6. Cumulative distributions of gate Pauli errors and measurement error. The dashed lines indicate the median values. We consider
every CZ gate used in our experiments into the distribution, with some couplers used multiple times. The measurement error is calculated from
the average error of |0) and |1).

C. Error Mitigation

In this part, we outline the error mitigation strategies employed in our experiments. Specifically, we combine Zero Noise
Extrapolation (ZNE) with Pauli twirling (PT) and circuit simplification for energy measurements and use PT and circuit
simplification for boundary g-function measurements.
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1. Zero Noise Extrapolation

To mitigate the effects of noise in the quantum circuits, we apply Zero Noise Extrapolation (ZNE) in conjunction with random
Pauli twirls. We estimate the error-free outcome by running unitary-equivalent quantum circuits at different noise levels. Due
to the regular structure of our state preparation circuit, it is particularly well-suited for applying ZNE with unitary folding [42],
which increases the noise level of the circuit. We implement Pauli twirling (PT) at each noise level to transfer the coherent errors
into Pauli errors, which involves randomly applying a sequence of Pauli operations to the quantum system and averaging the
results over multiple randomized circuits. We observe that the averaged outcomes become stable when the number of random
Pauli-twirled circuits reaches 25. We then extrapolate the circuit’s outcome as the noise approaches zero with a linear model.
This enables us to estimate the ideal, noise-free results.

In Fig. S7, we present the results of the energy measurement experiment and the error-mitigated outcomes for the 100-qubit
PBC ground state. The experimental state preparation circuit consists of 4 CZ gate layers and 5 single-qubit gate layers. To
increase the noise levels, we randomly select and fold different numbers of CZ gate layers as well as the adjacent single-qubit
gate layers. For example, the noise scale factor would be three if we fold each CZ layer exactly once. The error bars are computed
using bootstrapping, where we resample shots uniformly with replacements from the pool of shots for all 25 Pauli-twirled circuits.
This procedure generates 100 mitigated energy expectation values, from which we calculate the mean and standard deviation.

We tried to use both linear and exponential extrapolation to extract the error-mitigated value. While the exponential extrapo-
lation could sometimes yield outcomes with less errors, we found a larger deviation compared with the results obtained based
on linear extrapolation. Besides, we also observed that the exponential model is less stable than the linear model. Therefore, we
adopted linear extrapolation in our experiment.

Linear fit
Noiseless simulation
Unmitigated

Mitigated

o> |

-110 -

Energy

-120 -

0 1 2 3
Noise scale

FIG. S7. Energy measurement with zero noise extrapolation. We display the measured energies of a 100-qubit PBC ground state with
different noise scale factors (F € {1,1.5,2,2.5,3}). For each noise scale, we add Pauli twirls in 25 randomly folded circuits. Error bars
indicate 68% confidence interval, obtained from bootstrapping 100 configurations.

2. Circuit Simplification

During the measurement of state energies and overlaps, the circuit can be further simplified according to the commutation
relations between CZ gates and single-qubit Pauli operators, as depicted in Fig. S8.

Specifically, rewriting the unitary of the state preparation circuit as U = UczU’, where Ucyz represents the unitary of the last
CZ layer, and U’ denotes the circuit unitary excluding the last CZ layer, we have |¥) = UczU’|0)®E. The expectation value of
an observable O can be written as

(¥|0|¥) = (0|°LU" Ucz0UczU’|0)2F = (0|*FU" 0’ U’|0)®F, 9)

where O’ = UczOUcz. Since the observable O in our experiment is a Pauli operator, O’ remains a Pauli operator, enabling the
removing of CZ layer by substituting O.



256

257

258

259

260

262

263

264

265

10

—a QT —Q
—a . — —Q . —Q
— T —q QS —Q
—a —q —Q  —Q

4
UOBC

,
Upgc | _UOBC . Upgc |

(<] B <] [x]

FIG. S8. Circuit simplification for energy and overlap measurement. a and b, In the energy measurement circuit, the final CZ gate layer is
eliminated by modifying the observables according to Eq. 9. ¢, In the overlap measurement circuit, the Pauli X gates, which are sandwiched
between two CZ gate layers in the middle of the circuit, can be simplified to a single layer of Pauli Y gates.

3. Intrinsic Noise Resistance

The boundary g-function measurement and EHT-based entanglement spectrum detection are naturally resistant to noise. For
the boundary g-function, both the numerator and denominator overlaps will decrease under decoherent noise, but their ratio
remains nearly constant. In Fig. S9, We simulate the effect of CZ depolarization error on the measurement of boundary g-function
for a system size L = 8, and observe that the resulting g-function remains robust over a wide range of noise rates.

V2 {amee-e-0----@---=0=———0
- @— gvalue
(W3O whe )]

I S - o [(WRlwi)

Noisy simulation results
—
1

‘\*§\
\*55
‘s._~~
-9
O 1 1 1
0.00 0.05 0.10
pCZ

FIG. S9. Robustness of g-function measurement. We perform noisy circuit simulations on 8 qubits with experimentally measured 77 and
T>. We add an additional CZ depolarization channel with controlled depolarizing rate, denoted by p ... While the overlap decreases as the
depolarizing rate increases, the g-function value remains almost unaffected, demonstrating its robustness.

To demonstrate the robustness of EHT to noises, we first extract the noiseless density matrix p of an eight-qubit subsystem
from the 100-qubit ground state with PBC, which is obtained using DMRG. We then introduce a depolarizing channel to the
system, obtaining the noisy density matrix p,, = (1 — p)p + pI/d, where p is the depolarizing error rate and d = 28. As shown in
Fig. S10, the fidelity between p and p,, decreases with the increase of the depolarizing error rate as expected. In contrast, when
we apply EHT on the eight qubits with the loss function defined in Eq. 4 in the main text and random 200 Pauli bases, we find
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that the fidelities of the resulting density matrices pgyr to p are much less affected by the depolarizing noises.
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FIG. S10. EHT noisy simulation. We compare the fidelity between p and pgyr , as well as p, with different depolarizing rate p. The results
demonstrate that the EHT learning protocol is robust to depolarizing noise.
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