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I. THEORETICAL UNDERSTANDING17

A. Introduction to the gapless symmetry-protected topological phases18

To provide a more intuitive understanding of symmetry-protected topological properties in critical systems, we first introduce19

the fundamental concepts of gapless symmetry-protected topological phases (gSPTs). In this work, we study a prototypical20

model called the critical cluster Ising model in experiments as a concrete example.21

Topological phases form a cornerstone of modern condensed matter physics, extending beyond the Landau-Ginzburg-Wilson22

paradigm of symmetry-breaking. A notable example of topological states is symmetry-protected topological phases [1–3], which23

are typically associated with a bulk energy gap. It has been widely believed that these topological properties are destroyed when24

the bulk gap closes. However, recent achievements [4–8] have shown that many key features of topological physics, such as25

topological edge modes, can surprisingly emerge in the less explored realm of gapless quantum many-body systems. These26

systems include stable gapless phases or critical points, leading to the notion of gSPT phases. The topologically nontrivial27

quantum critical point (or state) discussed in the main text represents a special type of gSPT.28

To date, different families of gSPTs have been identified in the literature [9–12], and the classification of these phases based29

on whether they contain gapped sector and whether they are intrinsic (a term that will be clarified below), thereby leading to the30

categorization into four distinct types, as summarized in Table S1. The subsequent detailed explanations are mainly based on the31

literature [9].32

Contains gapped sector No gapped sector
Non-intrinsic gSPT purely gSPT

Intrinsic igSPT intrinsically purely gSPT

TABLE S1. Classification of the gSPTs by whether they are purely gapless (horizontal direction) or intrinsically gapless (vertical direction).
The table is taken from Ref. [9].

i) The gSPT phases: The first example of a gSPT phase, which is non-intrinsic (which means such topological phases has33

gapped counterparts) and includes a gapped sector, was systematically investigated in Ref. [4]. Specifically, a general construction34

of gSPT phases was introduced based on the decorated domain-wall (defect) picture of gapped SPT phases [13]. The central idea35

is to decorate the 𝐺-symmetry defects of a 𝐺-symmetric gapless system or conformal field theory (CFT) with an 𝐻-symmetric36

gapped SPT. This decorated defect construction creates a gapped sector that acts both on 𝐺 and 𝐻 symmetry, resulting in a37

gSPT phase whose topological properties can also manifest in gapped counterparts. As a result, these features are not “intrinsic”38

to the gapless system [4, 12]. In summary, the topological properties of these gSPT phases arise from the gapped SPT sector39

and can be interpreted as a gapped SPT stack with a CFT. Recent studies [6] have shown that such gSPT states can emerge at40

conformally invariant critical points separating spontaneously symmetry-breaking (SSB) phases and gapped SPT phases, also41

known as symmetry-enriched CFT or topologically nontrivial quantum critical points [6].42

ii) The intrinsically gSPT phases: On a different front, there exists an intriguing class of gapless topological phases, referred43

to as intrinsically gSPT (igSPT) phases [14], whose topological features are fundamentally prohibited in gapped counterparts.44

Specifically, recent works [9, 12] propose a systematic construction of igSPT phases, which we briefly outlined below: The total45

symmetry group is denoted by Γ, fitting into the group extension 1 → 𝐻 → Γ → 𝐺 → 1. The construction begins with a46

𝐺-symmetric gapless system or CFT characterized by a self-anomaly 𝜔𝐺 . An 𝐻-symmetric gapped SPT phase is then stacked47

on top of the 𝐺 symmetry domain walls (defects). Due to the non-trivial group extension, the resulting gapped sector exhibits48

an (emergent) anomaly −𝜔𝐺 that cancels the anomaly in the gapless sector, rendering the combined system an igSPT phase49

that is Γ-anomaly-free. By construction, igSPT phases also include a gapped sector, leading to exponentially localized edge50

modes near the boundaries. Importantly, the topological features of igSPT phases cannot be realized in any Γ-symmetric gapped51

SPT phase, thereby justifying the term “intrinsic”. Furthermore, Li et al. [9, 12] utilized the decorated defect construction and52

the Kennedy-Tasaki (KT) transformation to construct analytically tractable 1+1D spin models of both gSPT and igSPT phases,53

focusing on Z2 × Z2 symmetry and Z4 symmetry, respectively. Additionally, the recently developed topological holography54

principle (known as symmetry topological field theory) was employed to provide a unified classification of gapped and gapless55

SPT phases from a new perspective [10, 15]. Experimentally, these igSPT phases can emerge at the transition point between a56

quantum spin Hall insulator and an 𝑠-wave superconducting phase, which has recently been proposed to be realizable in materials57

such as WTe2 [16].58

iii) The purely and intrinsically purely gSPT phases: From the previous discussion, we have established that both gSPT and59

igSPT phases typically include a gapped sector, which results in exponentially localized topological edge modes. However,60

Verresen et al.[6, 17] studied the critical cluster Ising model with time-reversal symmetry and demonstrated that this model lacks61

a gapped sector, as evidenced by the algebraically decaying energy splitting of edge modes that are forbidden in gapped systems.62

This result suggests the existence of a gSPT phase without any gapped sector, referred to as a “purely gSPT phase” [9–12].63

However, to the best of our knowledge, the ground state of the critical cluster Ising chain provides the only known example of64
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a purely gSPT phase. Therefore, constructing additional lattice Hamiltonians that realize such novel phases is highly desirable.65

Furthermore, it is natural to explore the possibility of an igSPT phase without any gapped sectors, which has been termed an66

“intrinsically purely gapless SPT phase” [9]. Unfortunately, despite ongoing efforts [9], constructing such an intrinsically purely67

gSPT phase remains an open challenge, leaving it as an important direction for future research.68

It is important to emphasize that, although a topological semimetal can be broadly considered a gapless SPT phase, there69

is a qualitative distinction between their topological properties: the former relies on space-translational symmetry, making it70

susceptible to destabilization by disorder. In contrast, the topological edge modes at quantum criticality remain robust even in71

the presence of symmetry-preserving disorder.72

To provide a concrete and experimentally accessible example, we consider the following prototypical lattice Hamiltonian,73

previously studied in Ref. [18, 19], as an example of a purely gSPT phase:74

𝐻 = −
∑︁
𝑖

𝐽𝑍𝑖−1𝑋𝑖𝑍𝑖+1 −
∑︁
𝑖

𝑔𝑍𝑖𝑍𝑖+1 −
∑︁
𝑖

ℎ𝑋𝑖 , (1)

where 𝑋,𝑌, 𝑍 denote the Pauli matrices. The model enjoys the Z2 spin-flip symmetry (generated by 𝑃 =
∏

𝑖 𝑋𝑖) and the75

time-reversal symmetry Z𝑇2 (acting as the complex conjugation). The parameters 𝑔, ℎ, 𝐽 represent ferromagnetic (FM) coupling,76

transverse field, and cluster interactions, respectively, which drive the system toward FM, trivial paramagnetic (PM), and Z2 ×Z𝑇277

SPT [17, 20] phases, respectively. When ℎ = 0, 𝑔 = 1, the model reduces to the cluster Ising model discussed in the main text.78

We notice that although the FM-PM (𝐽 = 0, 𝑔 = ℎ) and FM-SPT (ℎ = 0, 𝐽 = 𝑔) transitions are both described by the 1+1D79

Ising CFT, the time-reversal symmetry acts differently on the disorder operator, leading to different symmetry-enriched CFTs [6].80

We refer to the former as the topologically trivial and the latter as the topologically nontrivial Ising critical point (purely gSPT81

phase). To briefly explain why this topological distinction arises, we note that both Ising critical points have a unique local82

(nonlocal) scaling operator with scaling dimension Δ = 1/8, typically denoted by 𝜎 (𝜇). These serve as the order parameters of83

the adjacent phases: 𝜎(𝑖) ∼ 𝑍𝑖 is the Ising order parameter that characterizes the FM order phase, while the disorder operator84

𝜇(𝑖) is the Kramers-Wannier-dual string order parameter that characterizes the symmetry-preserving phase (trivial PM and cluster85

SPT phases). In the trivial PM phase, 𝜇(𝑖) ∼ ∏𝑖
𝑗=−∞ 𝑋 𝑗 , while in the cluster SPT phase, 𝜇(𝑖) ∼ (∏𝑖−1

𝑗=−∞ 𝑋 𝑗 )𝑌𝑖𝑍𝑖+1 [17]. The86

distinction is reflected in the symmetry charge of the disorder operator under time-reversal symmetry: 𝑇𝜇𝑇 = ±𝜇, which means87

that the two critical points can not be smoothly connected and must be separated by another phase transition. In the non-trivial88

case (𝑇𝜇𝑇 = −𝜇), a topologically protected edge mode persists even when the bulk gap closes [6]. Intuitively, the boundary89

of such a critical system spontaneously breaks the Z2 spin-flip symmetry, resulting in a two-fold degenerate edge mode that is90

stable because the charged 𝜇 operator cannot condense near the boundary. The finite-size splitting of this edge mode decays91

algebraically as ∼ 1/𝐿14, which is parametrically faster than the finite-size bulk gap ∼ 1/𝐿. This faster decay ensures the stability92

of the topological edge mode, even in the presence of critical bulk fluctuations. In essence, the topologically distinct Ising critical93

points realize different conformal boundary conditions and boundary 𝑔-functions at low energy, serving as a form of “generalized94

ground-state degeneracy” even for gapless topological phases without edge modes [7]. The most important aspects of gSPT95

phases are the topological invariants, distinguishing different gSPT phases, and the bulk-boundary correspondence, a universal96

feature of gSPT phases. Fortunately, in a critical system described by CFT, these two aspects are reflected in the boundary97

𝑔-function and the bulk entanglement spectrum, respectively. These quantities are the main focus of our experiment and are98

typically extrapolated using the critical ground state in theoretical treatment. However, in this work, we investigate whether the99

more experimentally accessible low-lying critical states can effectively capture the fundamental quantities of gSPT phases.100

B. The boundary 𝑔-function serves as a topological invariant for classifying topologically distinct quantum critical states101

Traditionally, people are often interested in the low-energy universal behavior of critical many-body systems in the thermody-102

namic limit, known as the universality class or more specifically, the bulk universality class. This is typically described by the103

(bulk) CFT. A key quantity in determining such bulk critical universality is the central charge, which can be extracted from the104

entanglement entropy of a subsystem of length 𝑙 under periodic boundary conditions (PBCs) (e.g., for a one-dimension critical105

spin chain of total size 𝐿):106

𝑆PBC (𝐿, 𝑙) = 𝑐

3
ln

(
𝐿

𝜋
sin

[
𝜋𝑙

𝐿

] )
+ 𝑐PBC

1 , (2)

where 𝑐PBC
1 is a non-universal constant, and 𝑐 is the central charge of the underlying CFT. The central charge serves as a fingerprint107

for classifying the bulk universality class of quantum phase transitions and has garnered extensive theoretical and experimental108

attention [21, 22].109

However, in the presence of a boundary, an intriguing degree of freedom emerges where the bulk of the system can remain at a110

critical point, while the boundary may flow between different fixed points under boundary renormalization group transformations.111

The universal behavior of a critical system with a boundary, referred to as boundary (or surface) criticality, exhibits richer physics112
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compared to bulk universality and can be effectively characterized using boundary CFT [23]. According to the observation in113

Ref. [24], for a system with its bulk at the critical point, one can define an Affleck-Ludwig boundary entropy. This boundary114

entropy decreases under boundary renormalization group flow and equals to a number which is related to the universality115

class of the corresponding conformal boundary condition at the boundary fixed point. These boundary critical phenomena116

were first discussed in detail in the 1970s and have recently gained renewed attention due to their relevance in many areas of117

modern physics [25, 26]. In particular, in the context of gSPT phases or topologically nontrivial quantum critical points, recent118

advances [7] have unambiguously demonstrated that conformal boundary conditions (or equivalently, the boundary 𝑔-function)119

can serve as a topological invariant for topologically nontrivial conformal critical points, at least in 1+1D, encoding nontrivial120

topological properties that go beyond topological edge modes. The boundary entropy can be explicitly defined in terms of121

entanglement entropy under certain boundary conditions, using a one-dimensional critical spin chain with boundary b as an122

example:123

𝑆b (𝐿, 𝑙) = 𝑐

6
ln

(
2𝐿
𝜋

sin
[
𝜋𝑙

𝐿

] )
+
𝑐PBC

1
2

+ ln 𝑔 + G𝑏 (𝑙/𝐿) , (3)

where 𝑔 is the boundary 𝑔-function, which fully determines the boundary universality class and plays a role analogous to the central124

charge for bulk universality. The term G𝑏 represents a scaling function, which is generally challenging to determine analytically.125

Consequently, extracting the boundary 𝑔-function from the entanglement entropy is typically difficult, particularly in experimental126

settings where scalable measurements are even more challenging to achieve. To avoid potential confusion, we emphasize the127

distinction between two types of boundary conditions discussed throughout this paper: physical boundary conditions and128

conformal boundary conditions. The physical boundary condition refers to specific operations imposed on the boundary of129

the ultraviolet (or microscopic) lattice system, and we refer to it in the main text simply as "boundary condition". In contrast, the130

conformal boundary condition corresponds to the boundary fixed point that emerges under the boundary renormalization group131

flow in the infrared limit. Importantly, these two types of boundary conditions are generally not directly related.132

C. Extract the boundary 𝑔-function from the wavefunction overlaps133

To address the scaling challenges associated with entanglement entropy to extract the boundary 𝑔-function, recent theoretical134

progress [27, 28] have introduced a wavefunction overlap method. This approach offers a direct means to determine the value135

of the boundary 𝑔-function, eliminating the need to extract it indirectly through fitting the entanglement entropy. Thanks to the136

operator-state correspondence in CFT, expressions in terms of primary operators can be translated into the form involving the137

corresponding states. More specifically, as proofed in Ref. [28], the overlap between two low-lying eigenstates of the Hamiltonian138

with different defect deformations can be related to universal defect data, such as the defect 𝑔-function, the scaling dimension of139

the defect change operator Δ𝑎𝑏
𝛼 , and the four-point correlation function for defect change operators. Finally, by choosing suitable140

eigenstates, the universal data can be extracted from the ratio of different wavefunction overlaps by canceling out the unwanted141

parts. In particular, the 𝑔-function can be obtained by taking the ratio142

𝑔Def
𝑎 =

(
⟨𝜙00

0 |𝜙𝑎0
0 ⟩

⟨𝜙𝑎𝑎
0 |𝜙𝑎0

0 ⟩

)2

, (4)

where |𝜙𝑎𝑏
𝛼 ⟩ is the eigenstate of the Hamiltonian with defect deformations143

𝐻𝑎𝑏 = 𝐻 + 𝜆O𝑎
𝐿−1,0 + 𝜆′O𝑏

𝐿/2−1,𝐿/2 , (5)

which corresponds to the primary operator 𝜙𝑎𝑏
𝛼 . The superscript 𝑎 denotes the defect type (𝑎 = 0 means the trivial defect) while144

the subscript 𝛼 labels the primary operator (𝛼 = 0 means the lowest primary operator corresponding to the ground state of the145

defect Hamiltonian) and the perturbation O𝑎
𝑗, 𝑗+1 is the lattice realization of the defect type 𝑎 at sites 𝑗 and 𝑗 + 1.146

It is noted that the 𝑔-function, 𝑔Def
𝑎 , in Eq. (4) is the defect 𝑔-function. Actually, the boundary is a special type of line defect147

and the boundary 𝑔-function is the square root of its defect correspondence [29]. In the following, we use 𝑔𝑎 to denote the148

boundary 𝑔-function for the boundary condition 𝑎 and the square in Eq. (4) should be removed in its calculations.149

At last, we note that the expression Eq. (4) can be generalized to low-lying excited states corresponding to defect primary150

operators and the ratio of the wavefunction overlaps is151

⟨𝜙00
𝛽
|𝜙𝑎0

𝛼 ⟩
⟨𝜙𝑎𝑎

𝛾 |𝜙𝑎0
𝛿
⟩
= 𝑔𝑎

𝐶0𝑎0
0𝛼𝛽

𝐶𝑎0𝑎
𝛿0𝛾

, (6)
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FIG. S1. Explanation for the double degenerate of the entanglement spectrum calculated from the low-lying quantum critical state.
The red circle represents the UV cutoff induced by the entanglement cut and 𝜙𝛼 is the primary operator inserted at the infinity past/future
imaginary time, which corresponds to the eigenstate |𝜙𝛼⟩ of the periodic Hamiltonian. Via the conformal mapping 𝜉 (𝑧), the primary operators
are mapped into local operators in the bulk, which does not influence the boundary in the imaginary-time evolution.

where 𝐶0𝑎0
0𝛼𝛽 and 𝐶𝑎0𝑎

𝛿0𝛾 are defect operator product expansion (OPE) coefficients. It means that the ratio of overlaps between152

different excited states is proportional to the boundary 𝑔-function, with the proportionality constant determined by the ratio of the153

corresponding OPE coefficients. In principle, if the OPE coefficients of the underlying CFT are known, the boundary 𝑔-function154

can be extracted using the wavefunction overlap method, even for excited states. In our experiments, which corresponds to the155

Ising CFT, the Z2-odd sector 𝜎 under the periodic boundary condition is projected out as part of an error mitigation strategy156

because the correct ground state is in the Z2-even sector. Under this condition, the ratio between the relevant OPE coefficients157

all equal to 1 [27], leading to a direct equivalence between the wavefunction overlap of low-lying excited states and the boundary158

𝑔-function. This simple argument provides an intuitive explanation for why an accurate boundary 𝑔-function can be obtained159

from low-lying critical states. A more detailed and systematic investigation of this significant and intriguing question for general160

cases is left for future work.161

D. Universal entanglement spectrum at topologically nontrivial critical states162

The concept of the entanglement spectrum is a powerful tool in the study of topological phases of matter and SPT physics. As163

first noticed by Li and Haldane in their seminal work [30], the entanglement spectrum of a reduced density matrix is believed164

to encode additional information on the existence of the degenerate edge modes at the boundary of a gapped topological phase,165

which cannot be captured by the entanglement entropy. However, a remaining question is wether this observation still holds in166

gapless topological phases. This question has been addressed in a recent work [8, 31], at least in the context of one-dimensional167

gapless SPTs. Through extensive numerical calculations and conformal mappings, it has been found that the entanglement168

spectrum not only captures the topological edge degeneracy but also the operator content of the boundary CFT. Therefore, to169

experimentally observe the nontrivial edge degeneracy of the critical cluster-Ising chain, one can probe the entanglement spectrum170

of a contiguous interval of the periodic critical chain; the two-fold degeneracy in the low-lying entanglement spectrum reflects171

the nontrivial edge states. In this work, the bulk entanglement spectrum is obtained from the prepared state via the Entanglement172

Hamiltonian Tomograph (EHT) method, which can be performed efficiently on digital quantum simulation platforms.173

To provide an intuitive explanation for why the low-lying quantum critical state generated in experiments can effectively exhibit174

topological degeneracy in the bulk entanglement spectrum, we begin with the state-operator correspondence in CFT. According to175

this principle, a low-lying excited state can be interpreted as an operator inserted at infinity, as illustrated in Fig. S1. By applying176

a series of conformal transformations, the reduced density matrix of the low-lying quantum critical state can be mapped onto a177

cylinder. In this context, the excited states correspond to bulk local operators 𝜙𝛼 in imaginary time. However, the critical cluster178

Ising model is known to host two decoupled fractionalized edge states in the Majorana representation [5]. Consequently, the179

imaginary-time evolution of the bulk local operator does not influence the edge states, thereby preserving the double degeneracy180

in the entanglement spectrum. The more detailed proof for general cases can be left as future work.181

II. DETAILS OF THE DENSITY MATRIX RENORMALIZATION GROUP METHOD182

To better understand the prepared state, we need to analyze its overlap with the low-lying excited states of the target many-body183

Hamiltonian. For this purpose, we employ the Density Matrix Renormalization Group (DMRG) method [32] based on the Matrix184
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Product State (MPS) [33] formalism to solve the first several low-lying eigenstates of the cluster-Ising model under different185

boundary conditions.186

By exploiting the MPS representation, a quantum state can be expressed in a compact form:187

|𝜓⟩ =
∑︁
{𝜎𝑖 }

𝑀
𝜎1
1,𝑎1

· · ·𝑀𝜎𝑖
𝑎𝑖−1 ,𝑎𝑖 · · ·𝑀

𝜎𝐿

𝑎𝐿−1 ,1 |𝜎1 · · ·𝜎𝐿⟩ , (7)

where 𝜎𝑖 =↑, ↓ is a local basis of the qubit on site 𝑖, and 𝑀𝜎𝑖 are matrices with appropriate dimensions so that their multiplication188

leads to a scalar, namely, the wavefunction ⟨𝜎1 · · ·𝜎𝐿 |𝜓⟩. The ground state of the Hamiltonian can be obtained by optimizing189

the local matrices according to the variational principle. Once the expectation value of the Hamiltonian with respect to the MPS190

has reached the convergence criterion, the optimization process would stop and the final MPS can be used to represent the true191

ground state faithfully. The dimension of the bond index dim(𝑎𝑖) is a tunable parameter called bond dimension which controls192

the representation ability of the MPS. In practical simulations, we have chosen a sufficiently large bond dimension up to 1024 to193

ensure the accuracy of the optimized MPS.194

To access the excited eigenstates, we adopt a standard strategy by introducing an energy penalty for all the already obtained195

eigenstates. Assume that we have calculated the first 𝑚 low-lying eigenstates {|𝜓𝑘⟩}𝑚𝑘=1 of the Hamiltonian, to obtain the (𝑚+1)th196

eigenstate, we consider a modified Hamiltonian:197

𝐻𝑚+1 = 𝐻 + 𝜆

𝑚∑︁
𝑘=1

|𝜓𝑘⟩⟨𝜓𝑘 | , (8)

where 𝜆 is the penalty strength which should be large enough to shift the energies of the first 𝑚 eigenstates higher than the energy198

of the (𝑚 + 1)th eigenstate (𝜆 = 50 in our work). Based on the modified Hamiltonian 𝐻𝑚+1, the (𝑚 + 1)th eigenstate of 𝐻 can be199

accessed by running a conventional DMRG calculation. In this way, the first several low-lying excited states of the Hamiltonian200

can be systematically computed one by one.201

In the present work, the DMRG and MPS simulations are performed via ITensor [34] and Quimb [35] packages.202

III. EXPERIMENTAL DETAILS203

A. Further Simulations204

We devise an efficient state preparation algorithm for the cluster Ising model that prioritizes maximizing the overlap with the205

ground state. We then introduce a symmetry projection method to extract the boundary 𝑔-function and utilize entanglement206

Hamiltonian tomography to probe the two-fold degeneracy of the entanglement spectrum. In this paper, quantum circuit207

simulations of small system sizes (𝐿 ≤ 20) are performed via a state vector simulator from Pennylane [36] with Pytorch [37]208

backend and simulations of large system sizes (𝐿 > 20) are performed via an MPS simulator from Tensorcircuit [38] with209

Tensorflow [39] backend.210

A optimization workflow for entanglement Hamiltonian tomography is illustrated in Fig S4.211
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FIG. S2. Verification of the extrapolating functions. The dotted lines indicate parameters optimized directly without using energy-initialized
parameters. Markers indicate the fitted and extrapolated parameters.

We optimized the parameters by maximizing the fidelities with the target states using systems of up to 16 qubits, from which212

we fitted the extrapolation functions. We further optimize the circuit parameters (𝜖 𝑗 , 𝑐PBC
𝑗

) directly for 𝐿 = 18 and 𝐿 = 20 and213
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FIG. S3. Single-qubit rotation angles for other layers of the circuit.

block index( 𝑗) 1 2 3 4 5
𝑏 𝑗 (𝜖 𝑗 ) -0.930 -0.710 -1.479 -0.813 -0.766

𝑏 𝑗 (𝑐PBC
𝑗

) -1.365 -1.892 -1.780 -1.651 -1.894

TABLE S2. Optimized 𝑏 𝑗 in the extrapolation function of all five blocks. The negative nature converges the single-qubit gate rotation
angles to the infinite-volume (𝐿 → ∞) limit in a power-law speed.

State
Preparation

Circuit

ρA

U(n)

u
(0)
0

u
(0)
1

u
(0)
l

State
Preparation

Circuit

ρA

U(1)

u
(0)
0

u
(0)
1

u
(0)
l

State
Preparation

Circuit

ρA

U(0)

u
(0)
0

u
(0)
1

u
(0)
l

U(1) :
[
P

(1)
0 , P

(1)
1 , ..., P

(1)

2l

]
U(0) :

[
P

(0)
0 , P

(0)
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[
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]
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Random Basis Measurement
Postprocessing

EHT ansatz ρA(β) = e−H̃A(β)/ZA(β)

L
E
H

T

βinit

βopt

Iteration

ξ

Level index
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β optimization Entanglement spectrum

FIG. S4. EHT optimization workflow. We first measure bitstring probabilities of the prepared PBC state under different Pauli bases. Then
we fit 𝛽 in the EHT ansatz to the measured data. With the optimized 𝛽, we calculate the subsystem’s entanglement spectrum and observe a
two-fold topological degeneracy.

observe a good agreement with the extrapolated ones. The resulting parameters of the third circuit block for OBC and PBC are214

displayed in Fig. 2b in the main text, and the parameters of the left circuit blocks are shown in Fig. S3. 𝑏 𝑗s for both 𝜖 𝑗 and 𝑐PBC
𝑗

215

in the extrapolation function are negative as shown in Table S2.216

B. Device Information217

The experiment is performed on a superconducting quantum chip containing 125 qubits and 218 couplers, from which spin218

chains with various sizes can be constructed, as illustrated in Fig. S5.219

The qubits have a mean energy relaxation time 𝑇1 of 64.6 𝜇s and dephasing time (obtained by spin Echo) 𝑇2 of 19.1 𝜇s, which220

are measured at the qubit idling frequencies. The single- and two-qubit gates are implemented following the procedure outlined221

in [40], with gate lengths of 20 and 32 ns, respectively. The qubit measurements are optimized using the method described in222

[41]. The distributions of gate and measurement error rates are presented in Fig. S6, with dashed lines indicating the median223

values. Single- and two-qubit gate errors are estimated with simultaneous cross-entropy benchmarking technique.224
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FIG. S5. Qubit layout details. We construct 1D qubit chains with 20, 40, 60, 80, and 100 qubits out of the 125-qubit superconducting
processor.
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FIG. S6. Cumulative distributions of gate Pauli errors and measurement error. The dashed lines indicate the median values. We consider
every CZ gate used in our experiments into the distribution, with some couplers used multiple times. The measurement error is calculated from
the average error of |0⟩ and |1⟩.

C. Error Mitigation225

In this part, we outline the error mitigation strategies employed in our experiments. Specifically, we combine Zero Noise226

Extrapolation (ZNE) with Pauli twirling (PT) and circuit simplification for energy measurements and use PT and circuit227

simplification for boundary 𝑔-function measurements.228
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1. Zero Noise Extrapolation229

To mitigate the effects of noise in the quantum circuits, we apply Zero Noise Extrapolation (ZNE) in conjunction with random230

Pauli twirls. We estimate the error-free outcome by running unitary-equivalent quantum circuits at different noise levels. Due231

to the regular structure of our state preparation circuit, it is particularly well-suited for applying ZNE with unitary folding [42],232

which increases the noise level of the circuit. We implement Pauli twirling (PT) at each noise level to transfer the coherent errors233

into Pauli errors, which involves randomly applying a sequence of Pauli operations to the quantum system and averaging the234

results over multiple randomized circuits. We observe that the averaged outcomes become stable when the number of random235

Pauli-twirled circuits reaches 25. We then extrapolate the circuit’s outcome as the noise approaches zero with a linear model.236

This enables us to estimate the ideal, noise-free results.237

In Fig. S7, we present the results of the energy measurement experiment and the error-mitigated outcomes for the 100-qubit238

PBC ground state. The experimental state preparation circuit consists of 4 CZ gate layers and 5 single-qubit gate layers. To239

increase the noise levels, we randomly select and fold different numbers of CZ gate layers as well as the adjacent single-qubit240

gate layers. For example, the noise scale factor would be three if we fold each CZ layer exactly once. The error bars are computed241

using bootstrapping, where we resample shots uniformly with replacements from the pool of shots for all 25 Pauli-twirled circuits.242

This procedure generates 100 mitigated energy expectation values, from which we calculate the mean and standard deviation.243

We tried to use both linear and exponential extrapolation to extract the error-mitigated value. While the exponential extrapo-244

lation could sometimes yield outcomes with less errors, we found a larger deviation compared with the results obtained based245

on linear extrapolation. Besides, we also observed that the exponential model is less stable than the linear model. Therefore, we246

adopted linear extrapolation in our experiment.247

0 1 2 3
Noise scale

-110

-120

En
er

gy

Linear fit
Noiseless simulation
Unmitigated
Mitigated

FIG. S7. Energy measurement with zero noise extrapolation. We display the measured energies of a 100-qubit PBC ground state with
different noise scale factors (𝐹 ∈ {1, 1.5, 2, 2.5, 3}). For each noise scale, we add Pauli twirls in 25 randomly folded circuits. Error bars
indicate 68% confidence interval, obtained from bootstrapping 100 configurations.

2. Circuit Simplification248

During the measurement of state energies and overlaps, the circuit can be further simplified according to the commutation249

relations between CZ gates and single-qubit Pauli operators, as depicted in Fig. S8.250

Specifically, rewriting the unitary of the state preparation circuit as 𝑈 = 𝑈CZ𝑈
′, where 𝑈CZ represents the unitary of the last251

CZ layer, and 𝑈′ denotes the circuit unitary excluding the last CZ layer, we have |Ψ⟩ = 𝑈CZ𝑈
′ |0⟩⊗𝐿 . The expectation value of252

an observable 𝑂 can be written as253

⟨Ψ|𝑂 |Ψ⟩ = ⟨0|⊗𝐿𝑈′†𝑈CZ𝑂𝑈CZ𝑈
′ |0⟩⊗𝐿 = ⟨0|⊗𝐿𝑈′†𝑂

′
𝑈′ |0⟩⊗𝐿 , (9)

where 𝑂′ = 𝑈CZ𝑂𝑈CZ. Since the observable 𝑂 in our experiment is a Pauli operator, 𝑂′ remains a Pauli operator, enabling the254

removing of CZ layer by substituting 𝑂.255
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FIG. S8. Circuit simplification for energy and overlap measurement. a and b, In the energy measurement circuit, the final CZ gate layer is
eliminated by modifying the observables according to Eq. 9. c, In the overlap measurement circuit, the Pauli 𝑋 gates, which are sandwiched
between two CZ gate layers in the middle of the circuit, can be simplified to a single layer of Pauli 𝑌 gates.

3. Intrinsic Noise Resistance256

The boundary 𝑔-function measurement and EHT-based entanglement spectrum detection are naturally resistant to noise. For257

the boundary 𝑔-function, both the numerator and denominator overlaps will decrease under decoherent noise, but their ratio258

remains nearly constant. In Fig. S9, We simulate the effect of CZ depolarization error on the measurement of boundary 𝑔-function259

for a system size 𝐿 = 8, and observe that the resulting 𝑔-function remains robust over a wide range of noise rates.260
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FIG. S9. Robustness of 𝑔-function measurement. We perform noisy circuit simulations on 8 qubits with experimentally measured 𝑇1 and
𝑇2. We add an additional CZ depolarization channel with controlled depolarizing rate, denoted by 𝑝

𝐶𝑍
. While the overlap decreases as the

depolarizing rate increases, the 𝑔-function value remains almost unaffected, demonstrating its robustness.

To demonstrate the robustness of EHT to noises, we first extract the noiseless density matrix 𝜌 of an eight-qubit subsystem261

from the 100-qubit ground state with PBC, which is obtained using DMRG. We then introduce a depolarizing channel to the262

system, obtaining the noisy density matrix 𝜌𝑛 = (1− 𝑝)𝜌 + 𝑝𝐼/𝑑, where 𝑝 is the depolarizing error rate and 𝑑 = 28. As shown in263

Fig. S10, the fidelity between 𝜌 and 𝜌𝑛 decreases with the increase of the depolarizing error rate as expected. In contrast, when264

we apply EHT on the eight qubits with the loss function defined in Eq. 4 in the main text and random 200 Pauli bases, we find265
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that the fidelities of the resulting density matrices 𝜌EHT to 𝜌 are much less affected by the depolarizing noises.266
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FIG. S10. EHT noisy simulation. We compare the fidelity between 𝜌 and 𝜌EHT , as well as 𝜌𝑛 with different depolarizing rate 𝑝. The results
demonstrate that the EHT learning protocol is robust to depolarizing noise.
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