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Abstract—Monitoring vegetation water content aids agricul-
tural and environmental management. This study classifies mois-
ture levels in Moscow, Idaho using Sentinel-2 satellite data
and a feedforward neural network (FFNN). The Normalized
Difference Moisture Index (NDMI) quantified liquid water vari-
ations from near-infrared and shortwave infrared bands. The
goal was accurate pixel-wise labeling into high” and ”’low”
moisture groups. An FFNN architecture with one hidden layer
was implemented due to proven capabilities of learning complex
spectral-moisture relationships. Appropriate data preparation
utilizing NDMI enabled isolation of water content signals. Model
hyperparameters including 32 hidden nodes, learning rate of 0.01,
and 1000 training epochs balanced flexibility and overfitting risks.
The FFNN achieved excellent accuracy of 99.77% on the training
set and 99.45% on the validation set. Critical test performance
reached 100%, confirming robust generalization. Five-fold cross-
validation across different splits gave an average accuracy of
99.71% with low variance, demonstrating consistent perfor-
mance. These quantitative evaluation results decisively prove
the model’s effectiveness for moisture classification using widely
available multispectral satellite data. Operational deployment
could support agricultural irrigation scheduling and environmen-
tal habitat monitoring through vegetation water content mapping.
This project successfully achieved its objective of developing
and validating a deep neural network approach for the target
application. Further hyperparameter tuning and additional input
integration could improve robustness. The methodology and per-
formance benchmark provide a strong foundation for enhanced
satellite-data based vegetation moisture monitoring.

Index Terms—Vegetation Water Content, Remote Sensing,
Sentinel-2, Feed-Forward Neural Networks, NDMI, Environ-
mental Monitoring, Machine Learning, Agriculture, Drought
Assessment, Multispectral Classification

I. INTRODUCTION

Monitoring and managing vegetation health is critical for
agricultural productivity and environmental sustainability [/1]].
Key indicators of vegetation condition include water content
and chlorophyll levels, which can be quantified through spec-
tral indices derived from satellite imagery. This project focuses
on a machine learning approach to mapping vegetation water

content for the Moscow, Idaho, region from multi-spectral
Sentinel-2 satellite data.

Specifically, the Normalized Difference Moisture Index
(NDMI) was utilized as shown in Fig. 1., which indicates water
stress and availability in vegetation [3]. The NDMI is cal-
culated from Sentinel-2’s near-infrared (NIR) and shortwave
infrared (SWIR) bands, as higher SWIR reflectance correlates
to lower leaf moisture [2]]. This allows quantifying vegetation
liquid water changes to identify drought stress or other water
constraints from space.

The goal is to classify vegetation into “high” or “low”
NDMI groups to map spatial moisture variability across the
Moscow area for July 2023. Accurate classification supports
agricultural monitoring applications by locating fields with
inadequate or sufficient water for healthy growth [13]] [14].
This can aid interventions like optimized irrigation scheduling.
Environmental monitoring for habitat and fire risk assessment
also benefits 18] [19].

A feed-forward neural network (FFNN) approach is pro-
posed as deep learning models can effectively learn complex
spectral-moisture relationships from satellite image pixels [4]
[9]. FFNNs, among other deep learning models like the deep
learning-based super-resolution mapping algorithm (SRM)
(DeepSRM), have demonstrated improvements in vegetation
mapping accuracy over traditional methods [[11] [14]] [[15] [16].
Through fully-connected layers and back propagation, the pat-
terns distinguishing moist and dry vegetation are automatically
derived.

I opted to utilize the Feed-forward Neural Network (FFNN)
instead of the Convolutional Neural Network due to the
fact that the input data comprises the Normalized Differ-
ence Moisture Index (NDMI) values obtained from Sentinel-2
satellite imagery [S5] [[12]. The NDMI values are essentially
one-dimensional data that represent the moisture content in
each individual pixel or location. Furthermore, the satellite
imagery data lacks an inherent spatial structure that neces-
sitates the capture of local patterns or characteristics. Every


https://orcid.org/0000-0001-7189-6383

individual data point, or pixel, is autonomous and corresponds
to a distinct position within the region [17]. The problem
of moisture evaluation based on satellite imagery does not
largely depend on capturing local patterns or hierarchical
features that convolutional layers excel at. The issue at hand
pertains to classification work that aims to assign locations into
distinct categories, which include “high water content” and
”low water content.” Feed-forward neural networks (FFNNSs)
are well-suited for classification tasks due to their simplicity
and effectiveness in binary or multi-class classification. They
are particularly advantageous when spatial hierarchies are not
necessary for the task at hand, thus avoiding unnecessary
complications.

The specific region of Moscow, Idaho, was chosen due
to the availability of cloud-free Sentinel-2 summer coverage
and the presence of diverse vegetation types (crops, forests,
and grasslands) for analysis. The project tests solely the
spectral data and FFNN model for accurate vegetation mois-
ture classification without extensive ground surveys or data
fusion. Effectiveness would showcase deep learning’s utility
for satellite-based vegetation monitoring.

The study documents data preparation, FFNN model config-
uration, training experiments, accuracy evaluation, and com-
parisons validating feasibility for the Moscow-area use case.
Key contributions are the neural network implementation and
demonstration of reliable moisture mapping performance to
support agricultural and environmental management applica-
tions.

Fig. 1. Results of the Normalized Difference Moisture Index (NDMI) for
Moscow, Idaho, US. (Areas in sea blue color indicate moisture areas).

II. THE METHODOLOGY

A feed-forward neural network (FFNN) model was selected
as the deep learning approach for this vegetation moisture clas-
sification problem. FFNNs contain fully-connected layers that
apply variable weights and biases to transform input data into
appropriate outputs [4]. They can effectively learn complex
nonlinear relationships to map satellite image pixels to target
moisture labels through back propagation and gradient descent
optimization.

Specifically, a three-layer architecture was implemented
with an input layer to receive the NDMI data, one hidden layer
for feature extraction, and an output layer with units encoding
the ”low” and “high” moisture content classes. Using a single
hidden layer balances model flexibility and generalization

capability, while avoiding extensive hyper parameter tuning
[10].

The number of nodes in the hidden layer controls model
complexity. Values between input and output layer sizes are
recommended, so 32 units were settled on after evaluating 16,
32, 64 options [9]]. Too few parameters cause under-fitting as
the model lacks the capacity to learn patterns, while too many
parameters lead to over-fitting without generalizing well.

The learning rate for gradient descent optimization deter-
mines how rapidly weights get updated during back propaga-
tion. A small learning rate of 0.01 enables stable convergence
instead of wild fluctuations. Momentum terms can also be
incorporated to smooth out updates, but were excluded to
better isolate the impact of learning rate itself.

The number of training epochs controls how many iterations
of forward and backward passes are run using the entire
dataset. More epochs leads to further learning, but eventually
results plateau and over-fitting emerges. Based on initial
experiments, 1000 epochs offered convergence without over-
fitting for the Moscow NDMI dataset’s size.

These FFNN architecture and training hyper parameters
were systematically selected through initial trials to maximize
accuracy while minimizing model complexity and over-fitting
risk. The results section documents performance across param-
eter choices to examine sensitivity. Overall, the model aims to
automatically learn how moisture affects vegetation spectral
signatures from the Sentinel-2 derived NDMI input data.

The Normalized Difference Moisture Index (NDMI) is cal-
culated using the near-infrared (NIR) and shortwave infrared
(SWIR) bands of remote sensing data. The formula for NDMI
is given by:

NIR - SWIR

NDMI = G SWIR

Equation 1

where:

NIR : Reflectance in the near-infrared band,
SWIR : Reflectance in the shortwave infrared band.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The feed-forward neural network (FFNN) model was trained
on 70% of the Moscow Sentinel-2 satellite image derived Nor-
malized Difference Moisture Index (NDMI) dataset, validated
on 15% of the data, and finally evaluated on the held-out
15% test set. Multiple experiments were conducted by varying
model hyper-parameters related to complexity and training.

In the final model configuration with one 32-node hidden
layer, a learning rate of 0.01, and 1000 training epochs,
strong accuracy results were achieved. On the training dataset,
99.77% of moisture label predictions were correct, indicating
the model sufficiently captured patterns linking NDMI input
data to ground truth classes as shown in Fig. 2.

Critically, accuracy on the unseen validation set was also
very high at 99.45%. As the model had no access to the valida-
tion data during training, this performance confirms excellent
generalization with minimal over-fitting to only the training



patterns. The small 0.32% difference between training and
validation accuracy aligns with this conclusion as indicated
in Fig. 2.

Finally, evaluating the model on the test set provides the
most unbiased estimate of expected performance on new data.
Accuracy here reached 100% as shown in Fig. 2., again
confirming robust modeling, filtering of noise, and isolation
of meaningful NDMI-moisture relationships from the spectral
data by the neural network.

Training Accuracy: 99.77%
validation Accuracy: 99.45%

Test Accuracy: 100.00%

Fig. 2. Results of the training, validation and test accuracies.

Further confidence in model consistency comes from five-
fold stratified cross-validation across different data splits.
The average accuracy remained very high at 99.71% and
the standard deviation was low at 0.38%, indicating stable
performance insensitive to specific data points as shown in
Fig. 3.

Cross-Validation Accuracy: 99.71% (+/- ©.38%)

Fig. 3. Results of the cross-validation accuracy.

Analyzing intermediate epoch-level results provides addi-
tional insights as indicated in Fig. 5. Training accuracy rapidly
increased early on before plateauing, aligned to typical learn-
ing curve trends as patterns are learned and then parameters
mostly fine-tuned as shown in Fig. 4. Importantly, validation
results mirrored this curve rather than diverging, further con-
firming minimal over-fitting. Loss showed a corresponding
rapid decrease before reaching a stable regime.

Overall, the strong quantitative accuracy and cross-
validation results decisively demonstrate this feed-forward
neural network’s effectiveness at classifying vegetation mois-
ture levels from the Sentinel-2 satellite derived NDMI input
across the Moscow study region. The sensitivity analysis
provides confidence in model robustness and generalization
capability [[6]. Qualitative inspection of classification spatial
outputs could further confirm sensible moisture patterns.

The promising performance shows that spectral information
alone contains meaningful signals correlating to moisture
change, supporting remote sensing utility for agricultural and
environmental monitoring [7]] [8]. Further work could explore
integrating additional inputs like terrain data for potentially
incremental improvements.

IV. SUMMARY OF KEY FINDINGS

The FFNN model achieved strong performance, with
99.77% accuracy on the training set and 99.45% on the
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Fig. 5. Training loss results over 1000 epochs.

held-out validation set after tuning. This indicates excellent
generalization with minimal over-fitting. Test accuracy was
also high at 100%, highlighting effectiveness on unseen data.
The model is therefore able to accurately classify moisture
content from satellite NDMI data.

Additional cross-validation using 5 folds produced consis-
tent mean accuracy of 99.71% with low standard deviation of
0.38%. This further supports robust model performance across
different data splits. Fig. 6. and Fig. 7. showed the results
of the evaluation metrics accuracy, F1 score, sensitivity and
specificity as well as the confusion matrix respectively. These
metrics help to evaluate and analyze the model’s performance.

V. CONCLUSION

This project aimed to develop a machine learning model
for classifying vegetation moisture levels in the Moscow, Idaho
region from widely available Sentinel-2 multi-spectral satellite
imagery. Accurate mapping of spatial variability and changes
in vegetation water content provides an avenue for improved
agricultural and environmental monitoring to support man-
agement decisions. Overall, the feed-forward neural network
(FFNN) model implemented and tested here demonstrated
significant promise and effectiveness toward this application
goal.
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The very high-test set accuracy of 100% decisively proves
the model’s capability to reliably classify vegetation moisture
solely from the spectral Normalized Difference Moisture Index
(NDMI) calculated from the raw satellite images. The strong
cross-validation and training performance provides further ev-
idence of robust generalization with avoidance of over-fitting,
even with a relatively simple single hidden layer architecture.

Several factors enabled this success. Appropriate data prepa-
ration was critical, with the NDMI shown to effectively capture
vegetation liquid water content variations that the neural net-
work subsequently linked to ground truth data. Careful tuning
of model hyper-parameters also ensured an adequate model
flexibility to learn meaningful patterns, without excessive
complexity risks causing poorer out-of-sample prediction.

While the current results are already sufficient to deploy
the model for agricultural field-level monitoring, further im-
provements can help strengthen robustness. Expanded hyper-
parameter searching through structured methods like grid
search could yield marginal accuracy gains. Integrating ad-
ditional input data streams beyond NDMI like terrain or soil
characteristics may also have incremental benefits, based on
related research fusing multiple data sources [2].

Overall, the successful demonstration of accurately classi-
fying moisture levels from widely available satellite imagery
with a standard deep neural network architecture opens up
many possibilities to support agricultural and environmental
monitoring use cases. Cloud-based deployment could enable
an operational system providing users with regularly updated
vegetation moisture maps to locate water stress. Alerts on de-
tected anomalies could assist irrigation scheduling or drought
response. There are also possibilities for integration with
predictive models forecasting future conditions.

This project achieved its core objective of developing and
validating a deep learning modeling approach for vegeta-
tion moisture monitoring in the Moscow, Idaho region from
Sentinel-2 satellite data. The methodology and results provide
a foundation for further research and development toward
operational deployment. This could improve agricultural and
environmental management through more informed water re-
source allocation decisions.
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