

Supplementary Material

NeuberNet: a neural operator solving elastic-plastic PDEs at V-notches
from low-fidelity elastic simulations

T. Grossi¹, M. Beghini¹, and M. Benedetti²

¹Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Italy

²Dipartimento di Ingegneria Industriale, Università di Trento, Italy

S1 Additional results

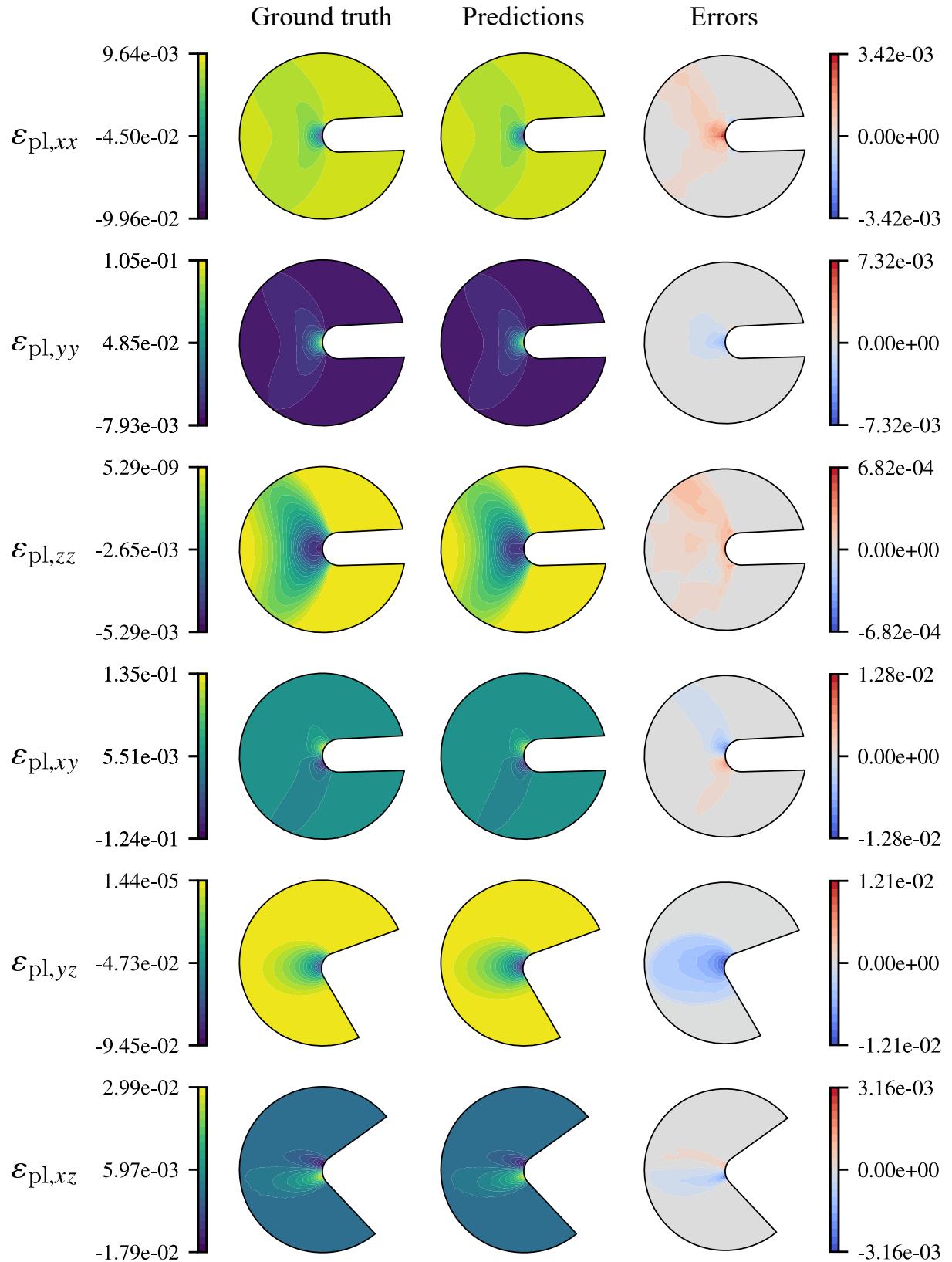


Figure S1: Worst-case performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Ω for the six plastic strain components, expressed in the local reference system $Oxyz$ of Figure 3a.



Figure S2: Worst-case performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Ω for the normalized elastic strain energy density and the normalized plastic work per unit volume.

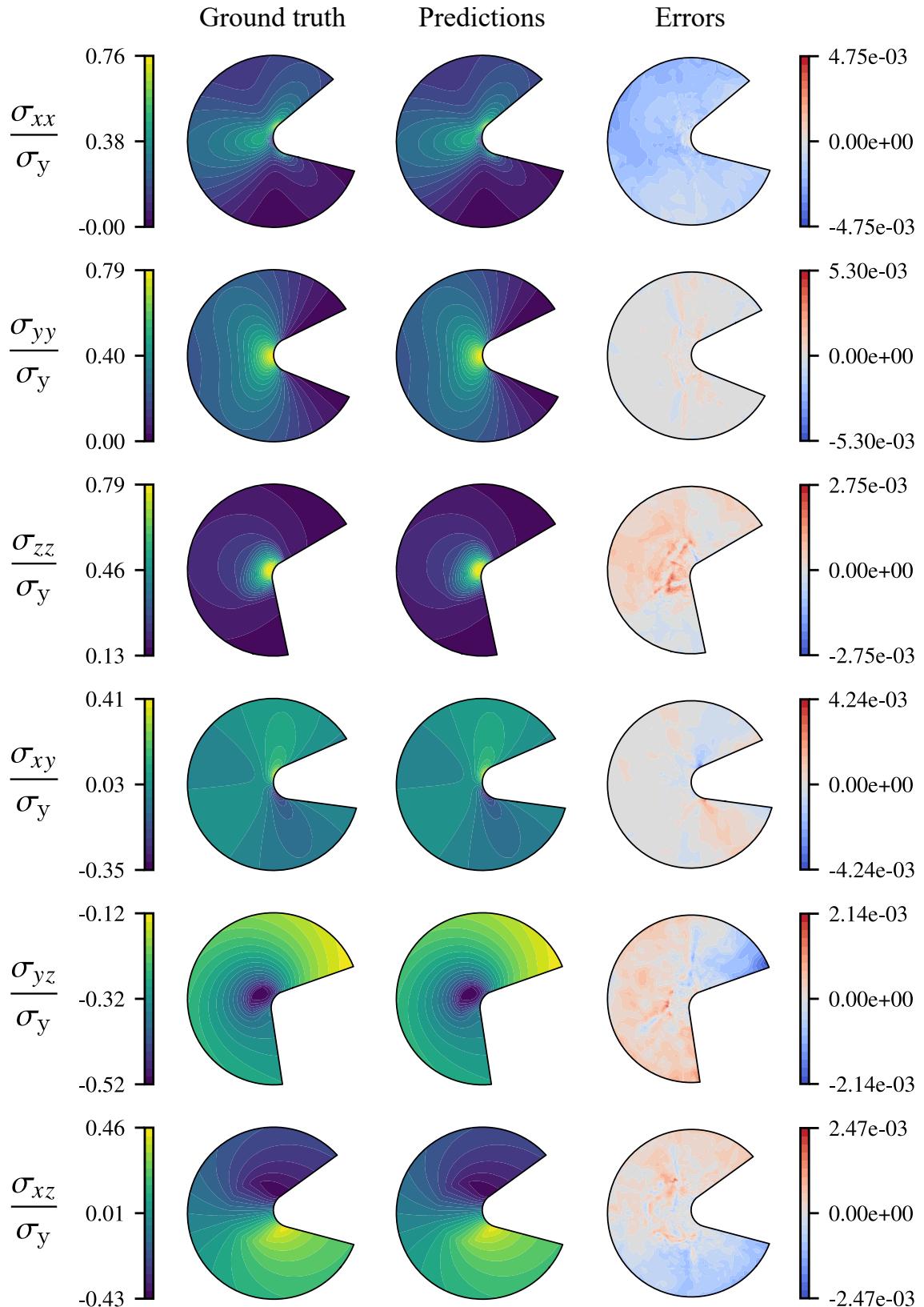


Figure S3: 50th percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Ω for the six normalized stress components, expressed in the local reference system $Oxyz$ of Figure 3a.

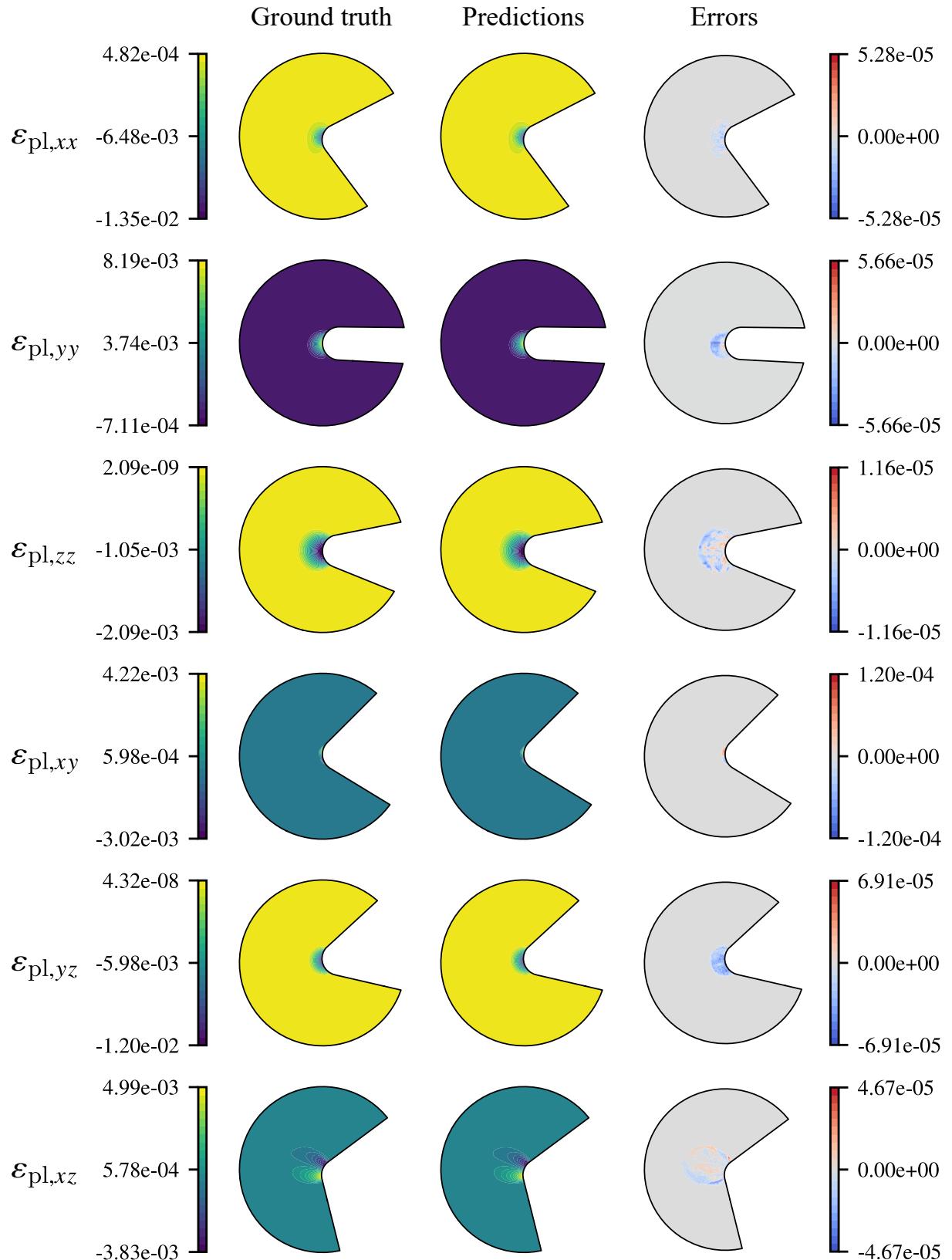


Figure S4: 50th percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Ω for the six plastic strain components, expressed in the local reference system $Oxyz$ of Figure 3a.



Figure S5: 50th percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Ω for the normalized elastic strain energy density and the normalized plastic work per unit volume.

S2 FE model details

1 Every geometry-material combination is uniquely identified by a tuple of scalar parameters, reported in Figure 3a
 2 and 3b, whose range of variation is reported in Table S1. This range has been designed to span an extensive library of
 3 structural engineering materials and practical use cases. Leveraging Buckingham’s π -theorem, linear measurements
 4 and stress-like input quantities are normalized, respectively, over the notch radius R_n and over the Young modulus
 5 E , reducing the actual dimensions of the parameters space. The diameter of the reentrant corner domain is a design
 6 parameter, which has been fixed to 10 times the notch radius. For ease of interpretability of FE models, simulations
 7 are carried out with a notch radius of 1 mm and a Young modulus of 200 GPa, with all other variables following
 8 accordingly. Far-field loads are specified in terms of the ratios between the tension and torsion components, with
 9 their absolute values automatically adjusted in the simulations, as described below. Assuming tension-compression
 10 symmetry in the material’s plastic behavior and neglecting large-deflection effects, the database can be augmented
 11 fourfold by alternatively reversing the signs of the in-plane and out-of-plane components; details are reported in
 12 Section S4. As the notch radius R_n becomes negligible compared to its distance R from the axis of cylindrical
 13 symmetry, the solution fields corresponding to axisymmetric solid mechanics converge to the plane strain solutions
 14 and no longer depend on the distance itself; hence, we crop R/R_n at 100.

15 The $N = 10^4$ d -tuples of scalar parameters are obtained by generating a $2^{\lceil \log_2 N \rceil}$ scrambled Sobol’ sequence on
 16 $[0, 1]^d$, truncating it to N , and rescaling it to the desired range. This is done to ensure a low-discrepancy coverage
 17 of the parameter space. The tuples are written over separate txt files that will be imported at runtime by the APDL
 18 solver routine. As a result, the computational burden of FE analyses can be shared across multiple computing servers
 19 by simply partitioning the set of input files that are fed to the solver.

20 The FE models are meshed in ANSYS with 8-node quadratic PLANE183 elements in their axisymmetric
 21 formulation; to include torsional behavior, an additional DOF per node is added, representing the rotation about
 22 the symmetry axis. The reentrant corner subdomain is meshed using a mapped scheme with a randomly generated
 23 number of divisions along the domain boundary. This ensures that the training locations vary between simulations
 24 of similar notches and serves as a natural regularizer against model overfitting. The number of divisions is lower-
 25 bounded by preliminary convergence tests. The rest of the domain is free-meshed through the smart-sizing tool
 26 included in ANSYS. Plastic behavior is introduced with a bilinear isotropic hardening data table, activated for all the
 27 model elements. The lower side of the model is fully restrained; the upper side of the model is rigidly constrained
 28 with MPC184 elements, and the resulting master node is subjected to the external loads.

29 The simulation is carried out in steps. First, a linear elastic solution is pursued, and the corresponding stress
 30 fields are obtained. Then, the external load is scaled to match the onset of yield in the reentrant corner subdomain,
 31 according to a Von Mises stress criterion, and the corresponding displacements fields \mathbf{u} at the boundary of the
 32 reentrant corner subdomain are stored. Let us call the corresponding external loads vector as \mathbf{f} . From this point
 33 onward, non-linear material behavior is activated. External loads are increased in steps of $0.25\mathbf{f}$, and a new solution
 34 is searched with an iterative Newton-Raphson solver. Convergence is typically achieved in just a few iterations,
 35 given the moderate change of boundary conditions. Once the solution is attained, it is checked whether the plastic
 36 zone has reached the boundary of the reentrant corner subdomain. If the plastic zone has reached the boundary, the
 37 simulation is terminated; otherwise, the stress, plastic strain, and energy density fields at corner node locations are
 38 stored, and another load increment is applied. Tensorial quantities are expressed with respect to the $Oxyz$ reference
 39 system in Figure 3a. Since the neural operator is trained to learn the functional mapping between the elastic boundary
 40 conditions and the plastic fields, the former are obtained by linearly scaling the ones stored in the first step.

Table S1: Range of normalized geometric and constitutive parameters

	Geometric parameters			Material parameters		
	R/R_n	α	β	ν	σ_y/E	E_t/E
max	100	75°	50°	0.45	10^{-2}	10^{-1}
min	10	0°	-50°	0.05	10^{-3}	10^{-3}

41 **S3 NeuberNet loss histories**

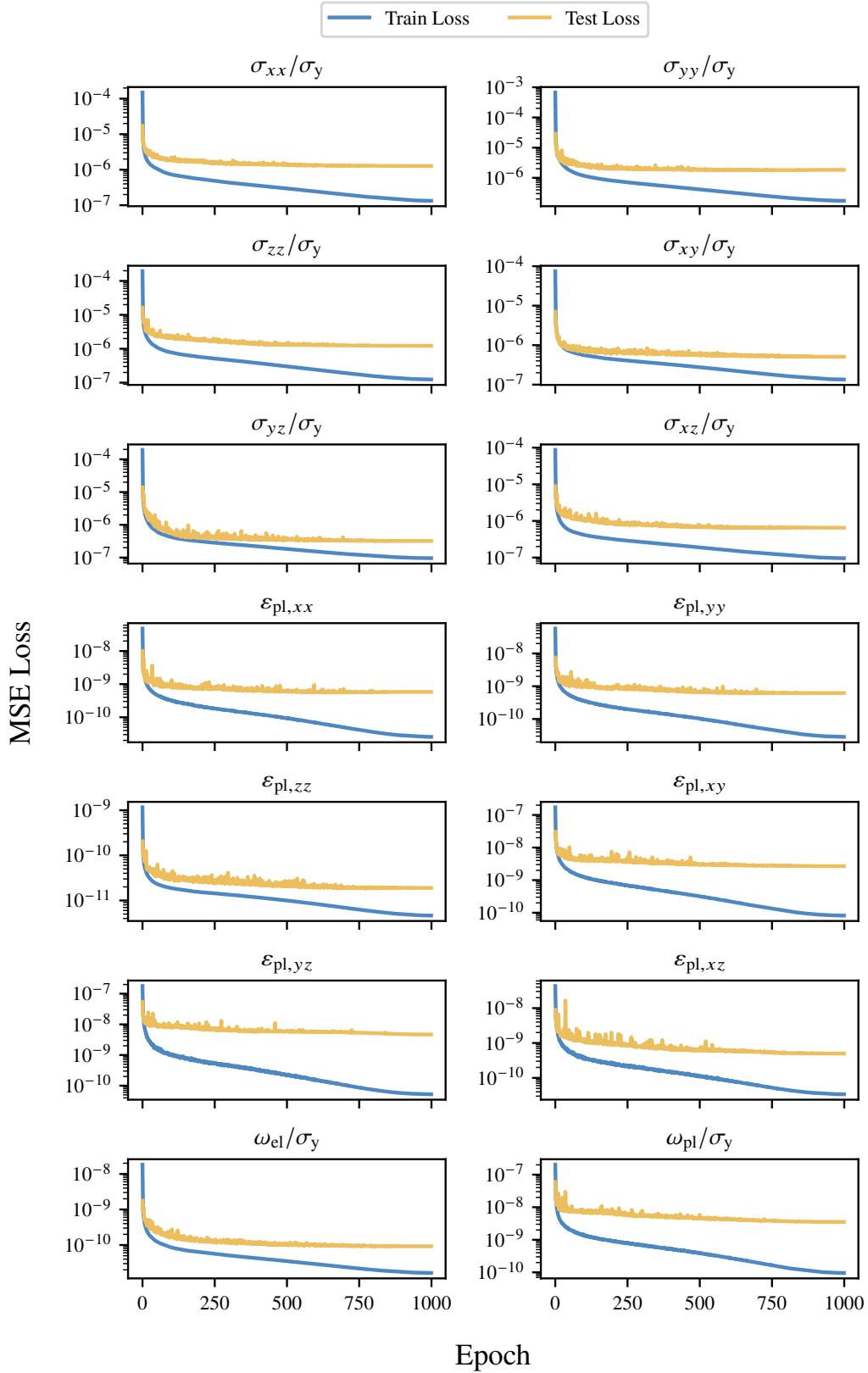


Figure S6: Train and test MSE losses observed for each target variable during NeuberNet training. Losses are reported in their true scale, although training is conducted with unit-variance data.

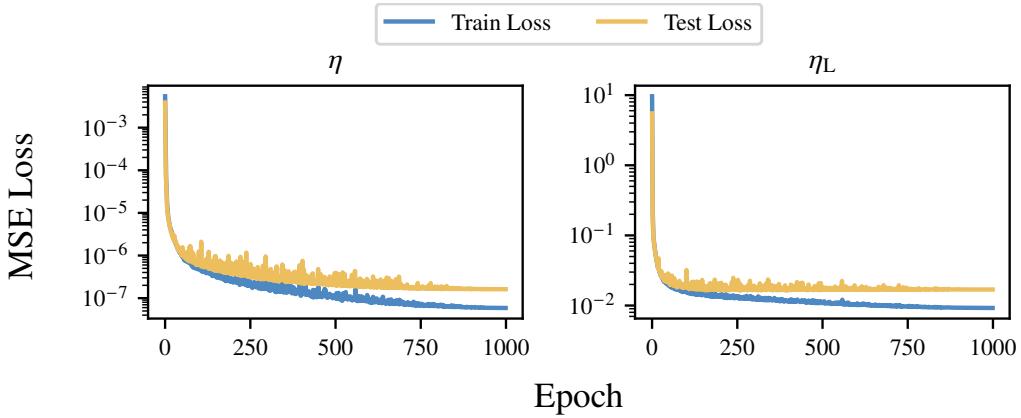


Figure S7: Train and test MSE losses observed for each target variable during YieldNet training. Losses are reported in their true scale, although training is conducted with unit-variance data.

42 S4 YieldNet training

43 Starting from the FE dataset, we take the 10^4 input boundary displacements \mathbf{u} at yield onset and augment the
 44 dataset by randomly scaling them by a number between 0 and 2 times the maximum factor at which the small-scale
 45 plasticity condition has been violated. Then, we train a neural network—referred to as YieldNet—that takes \mathbf{u} and
 46 the geometric/constitutive parameters as inputs and returns two outputs: 1) the ratio $\eta = \max_{\Omega} \sigma_{\text{vm}} / \sigma_y$ between the
 47 maximum Von Mises stress inside the reentrant corner subdomain Ω and the material yield stress; 2) the maximum
 48 factor η_L by which the boundary displacements corresponding to the yield limit can be scaled without violating the
 49 small-scale plasticity hypothesis, according to the FE dataset. For ease of implementation and given the relative
 50 simplicity of this task, we keep the same NOMAD architecture, while we remove the two spatial coordinates (x, y)
 51 from the decoder inputs. We train YieldNet for 1000 epochs with an AdamW optimizer, using a batch size of 128, an
 52 initial learning rate of 10^{-4} , a cosine annealing scheduler and a weight decay of 10^{-4} . Loss histories are available in
 53 Figure S7. Recall that the load step size in FE simulations is 0.25 times the yielding displacements, so η_L is known
 54 up to a random variable that is uniformly distributed over $[-0.25, 0]$. As a result, the MSE loss in predicting η_L is
 55 theoretically bounded by $0.25^2/3 \approx 0.02$, which is closely matched by YieldNet.

56 As mentioned in Section S2, the training dataset can be augmented fourfold by reversing the signs of in-plane and
 57 out-of-plane displacements and accordingly adjusting the signs of the respective tensorial target variables. However,
 58 instead of increasing the dataset size—which would result in longer training times—we opt to include only analyses
 59 with predominantly tensile in-plane loading and counterclockwise out-of-plane loading. To ensure consistency with
 60 the training dataset, we use a neural network trained to minimize a Binary Cross-Entropy (BCE) loss to classify
 61 each input into one of two binary categories: tension/compression and clockwise/counterclockwise. Based on this
 62 classification, we adjust the input signs of \mathbf{u} accordingly before inference and adapt the solutions post-inference. This
 63 step is entirely optional and can be omitted in favor of explicitly augmenting the FE database.