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S1 Additional results
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Figure S1: Worst-case performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain Q for

the six plastic strain components, expressed in the local reference system Oxyz of Figure 3a.
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Figure S2: Worst-case performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain € for
the normalized elastic strain energy density and the normalized plastic work per unit volume.
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Figure S3: 50" percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain
Q for the six normalized stress components, expressed in the local reference system Oxyz of Figure 3a.
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Figure S4: 50" percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain
Q for the six plastic strain components, expressed in the local reference system Oxyz of Figure 3a.
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Figure S5: 50" percentile performance on the test dataset in terms of maximum absolute error Max (AE) over the subdomain
Q for the normalized elastic strain energy density and the normalized plastic work per unit volume.
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S2 FE model details

Every geometry-material combination is uniquely identified by a tuple of scalar parameters, reported in Figure 3a
and 3b, whose range of variation is reported in Table S1. This range has been designed to span an extensive library of
structural engineering materials and practical use cases. Leveraging Buckingham’s n-theorem, linear measurements
and stress-like input quantities are normalized, respectively, over the notch radius R, and over the Young modulus
E, reducing the actual dimensions of the parameters space. The diameter of the reentrant corner domain is a design
parameter, which has been fixed to 10 times the notch radius. For ease of interpretability of FE models, simulations
are carried out with a notch radius of 1 mm and a Young modulus of 200 GPa, with all other variables following
accordingly. Far-field loads are specified in terms of the ratios between the tension and torsion components, with
their absolute values automatically adjusted in the simulations, as described below. Assuming tension-compression
symmetry in the material’s plastic behavior and neglecting large-deflection effects, the database can be augmented
fourfold by alternatively reversing the signs of the in-plane and out-of-plane components; details are reported in
Section S4. As the notch radius R, becomes negligible compared to its distance R from the axis of cylindrical
symmetry, the solution fields corresponding to axisymmetric solid mechanics converge to the plane strain solutions
and no longer depend on the distance itself; hence, we crop R/R, at 100.

The N = 10* d-tuples of scalar parameters are obtained by generating a 2'°% N1 scrambled Sobol’ sequence on
[0, 1]¢, truncating it to N, and rescaling it to the desired range. This is done to ensure a low-discrepancy coverage
of the parameter space. The tuples are written over separate txt files that will be imported at runtime by the APDL
solver routine. As a result, the computational burden of FE analyses can be shared across multiple computing servers
by simply partitioning the set of input files that are fed to the solver.

The FE models are meshed in ANSYS with 8-node quadratic PLANE183 elements in their axisymmetric
formulation; to include torsional behavior, an additional DOF per node is added, representing the rotation about
the symmetry axis. The reentrant corner subdomain is meshed using a mapped scheme with a randomly generated
number of divisions along the domain boundary. This ensures that the training locations vary between simulations
of similar notches and serves as a natural regularizer against model overfitting. The number of divisions is lower-
bounded by preliminary convergence tests. The rest of the domain is free-meshed through the smart-sizing tool
included in ANSYS. Plastic behavior is introduced with a bilinear isotropic hardening data table, activated for all the
model elements. The lower side of the model is fully restrained; the upper side of the model is rigidly constrained
with MPC184 elements, and the resulting master node is subjected to the external loads.

The simulation is carried out in steps. First, a linear elastic solution is pursued, and the corresponding stress
fields are obtained. Then, the external load is scaled to match the onset of yield in the reentrant corner subdomain,
according to a Von Mises stress criterion, and the corresponding displacements fields # at the boundary of the
reentrant corner subdomain are stored. Let us call the corresponding external loads vector as f. From this point
onward, non-linear material behavior is activated. External loads are increased in steps of 0.25 f, and a new solution
is searched with an iterative Newton-Raphson solver. Convergence is typically achieved in just a few iterations,
given the moderate change of boundary conditions. Once the solution is attained, it is checked whether the plastic
zone has reached the boundary of the reentrant corner subdomain. If the plastic zone has reached the boundary, the
simulation is terminated; otherwise, the stress, plastic strain, and energy density fields at corner node locations are
stored, and another load increment is applied. Tensorial quantities are expressed with respect to the Oxyz reference
system in Figure 3a. Since the neural operator is trained to learn the functional mapping between the elastic boundary
conditions and the plastic fields, the former are obtained by linearly scaling the ones stored in the first step.

Table S1: Range of normalized geometric and constitutive parameters

Geometric parameters Material parameters
R/R, 10 B v oy/E E\/E
max 100 75° 50° 045 1072 107!

min 10 0°  -=50° 0.05 1073 1073




» S3 NeuberNet loss histories
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Figure S6: Train and test MSE losses observed for each target variable during NeuberNet training. Losses are reported in their
true scale, although training is conducted with unit-variance data.
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Figure S7: Train and test MSE losses observed for each target variable during YieldNet training. Losses are reported in their
true scale, although training is conducted with unit-variance data.

S4 YieldNet training

Starting from the FE dataset, we take the 10* input boundary displacements u at yield onset and augment the
dataset by randomly scaling them by a number between 0 and 2 times the maximum factor at which the small-scale
plasticity condition has been violated. Then, we train a neural network—referred to as YieldNet—that takes # and
the geometric/constitutive parameters as inputs and returns two outputs: 1) the ratio 7 = maxgq ovm/0y between the
maximum Von Mises stress inside the reentrant corner subdomain Q and the material yield stress; 2) the maximum
factor n7r, by which the boundary displacements corresponding to the yield limit can be scaled without violating the
small-scale plasticity hypothesis, according to the FE dataset. For ease of implementation and given the relative
simplicity of this task, we keep the same NOMAD architecture, while we remove the two spatial coordinates (x, y)
from the decoder inputs. We train YieldNet for 1000 epochs with an AdamW optimizer, using a batch size of 128, an
initial learning rate of 10~%, a cosine annealing scheduler and a weight decay of 10~. Loss histories are available in
Figure S7. Recall that the load step size in FE simulations is 0.25 times the yielding displacements, so 7 is known
up to a random variable that is uniformly distributed over [-0.25,0]. As a result, the MSE loss in predicting ny is
theoretically bounded by 0.25%/3 ~ 0.02, which is closely matched by YieldNet.

As mentioned in Section S2, the training dataset can be augmented fourfold by reversing the signs of in-plane and
out-of-plane displacements and accordingly adjusting the signs of the respective tensorial target variables. However,
instead of increasing the dataset size—which would result in longer training times—we opt to include only analyses
with predominantly tensile in-plane loading and counterclockwise out-of-plane loading. To ensure consistency with
the training dataset, we use a neural network trained to minimize a Binary Cross-Entropy (BCE) loss to classify
each input into one of two binary categories: tension/compression and clockwise/counterclockwise. Based on this
classification, we adjust the input signs of u accordingly before inference and adapt the solutions post-inference. This
step is entirely optional and can be omitted in favor of explicitly augmenting the FE database.
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