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1. TIA architecture and circuit
This work designed a multi-channel, low-noise, high-gain, and scalable transimpedance amplifiers (TIA), offering greater selectivity and portability for heavy metal detection. The on-chip TIA adopts a fully differential architecture, which effectively reduces common-mode interference in the system. The TIA is composed of a first-stage integrator and a second-stage buffer. The integrator, as shown in Supplementary Figure 1, is a crucial component that determines the key performance of the TIA. 
A two-stage operational transconductance amplifier (OTA) is used in the integrator (Supplementary Figure 2). The first stage consists of a PMOS input pair with a load utilizing source degeneration techniques, which increases output impedance. The second stage includes a common-source amplifier with NMOS input, aimed at enhancing gain and providing more precise clamping voltage for electrochemical experiments.
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Supplementary Figure 1: The architecture of the TIA
Supplementary Figure 3 shows a second-stage non-unity gain buffer, which mitigates the bandwidth reduction caused by the introduction of feedback capacitance to some extent and further reduces the feedback capacitance size while maintaining system stability. The fully differential buffer structure reduces common-mode noise, and the introduction of common-mode feedback further stabilizes the common-mode operating point of the system. The common-mode detection circuit uses a capacitor in parallel with a resistor to reduce impedance at high frequencies, improving the stability of the common-mode feedback circuit.
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Supplementary Figure 2: Integrator circuit of the TIA
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Supplementary Figure 3: Out Buffer circuit of the TIA

2. Noise Analysis and Considerations. 
Supplementary Figure 1 also shows the equivalent impedance diagram of the electrochemical workstation. The input voltage is applied to the RE electrode through the first-stage operational amplifier, while the WE electrode is fixed at the reference potential via the negative feedback of the TIA. Therefore, the current flowing into the inverting terminal of the TIA can be expressed as:

                (1)
where VWE and VRE is the voltage of WE and RE respectively, RWE and CWE are the equivalent resistor and capacitor of WE and RRE is the equivalent resistor of RE.
The selection of the feedback circuit architecture has a significant impact on the performance of the TIA. To achieve better processing of continuous signals and to ensure high reliability in complex and extreme environments, this work chose a resistive continuous-time feedback architecture. For a resistive TIA, the input current noise can be expressed as:

                          (2)

                                        (3)
where  denotes the total input current noise,  and  are the current noise of feedback resistor RF and the amplifier OTA. 
Equations (2) and (3) indicate that a larger transimpedance can reduce the contribution of the feedback resistor to the current noise, while the size of the transimpedance also determines the transimpedance gain of the TIA. However, an excessively large transimpedance would occupy too much layout area and reduce the system's effective bandwidth. Based on the electrochemical input model and signal characteristics, we ultimately chose RF=257 MΩ, which provides a good balance between performance requirements.
To reduce the noise of the integrator, we optimized the design at the transistor level. First, PMOS inputs were selected due to their lower flicker noise, with dimensions of W/L=784 μm/240 nm. The efficient gm/Id and large gate area reduce noise and mismatch. Compared to traditional discrete components, the design advantages of integrated circuits reduce the parasitic capacitance introduced by wiring, further benefiting noise optimization. Additionally, the introduction of source degeneration resistors reduces the effective transconductance of the load transistors gm,eff​. The flicker noise of the active load current can be expressed as:

                          (4)
The introduction of source degeneration resistors effectively reduces the flicker noise of the load transistors. The thermal noise of the system can be expressed as:

                    (5)
The former demonstrates that the attenuation of the equivalent transconductance of the active load transistors contributes to the optimization of thermal noise, while the latter represents the thermal noise introduced by the resistor in the source degeneration technique. To prevent this resistor from becoming the primary noise source, it is necessary to ensure that gmRs 1. Under this condition, the system can achieve the optimal thermal noise level.

3. Heavy metal detection in artificial seawater
Supplementary Figures 4a and 4b present the TIA for detecting heavy metals in artificial seawater. We prepared artificial seawater with different concentration gradients of Cd²⁺ and Pb²⁺ in a base solution of 3.5% NaCl, without adding any other electrolytes or acids, to simulate real seawater conditions. Differential pulse stripping voltammetry (DPSV) was used to detect Cd²⁺ and Pb²⁺. Input Signal is a staircase rectangular wave. During each pulse cycle, current signals were collected at both the high and low levels, and the difference between them produced the voltammogram.
In the low concentration range (0.05-5 μg/L), R2 values are 0.999 for both Cd2+ and Pb2+. Cd2+ standard curve is as follows:

                                             (6)
Pb2+ standard curve is as follows:

                                            (7)
Where x is the concentration of Cd2+ and Pb2+ in the solution to be tested, the unit is μg/L.
Where y is the peak current, the unit is nA.
In the high concentration range (5-500 μg/L), R2 values are 0.999 for Cd2+ and 0.997 for Pb2+. Cd2+ standard curve is as follows:

                                              (8)
Pb2+ standard curve is as follows:

                                              (9)
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Supplementary Figure 4: DPSV detection of different concentration gradients in artificial seawater.
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