
Supplementary Information

Supplementary Figure 1. Intra-dataset covariate shifts in the MIMIC-III dataset. a. K-mean clustering
MIMIC-III drugs. b. Negative log of p-values from Fisher-exact test for admission types. "NEWBORN"
indicates admissions pertaining to patient’s birth. "EMERGENCY" indicates unplanned medical care.
"ELECTIVE" indicates unplanned admission. c. Negative log of p-values from Fisher-exact test for surgery
procedures.
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Supplementary Figure 2. Performance of FedWeight on the simulation dataset. a. AUPRC for model
predictions. b. AUPRC compared model weights and influential features. c. Pearson correlation calculated
between the weights of the trained and reference models. We evaluated their statistical significance using
the Wilcoxon test against the baseline, denoting * for test p-values < 0.05 and ** for p-values < 0.01.
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Supplementary Figure 3. Sample re-weight correlation analysis across three FedWeight density
estimators: MADE, VAE, and VQ-VAE. For this study, we selected two eICU hospitals (420 and 167) with
the largest patient populations. Hospital 420 was selected as the source hospital, and Hospital 167 as the
target hospital. Using three selected density estimators, we calculated sample re-weights for source
hospital patients. Then, we calculated the Pearson correlation between these re-weights generated by
MADE, VAE, and VQ-VAE. a. Pairwise comparison of sample re-weights assigned by MADE and VAE
(Pearson correlation: 0.695). b. Pairwise comparison of sample re-weights assigned by MADE and
VQ-VAE (Pearson correlation: 0.719). c. Pairwise comparison of sample re-weights assigned by VAE and
VQ-VAE (Pearson correlation: 0.610).
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Supplementary Figure 4. Performance variation of FedWeightVAE with respect to the number of training
epochs of the target density estimator (VAE) across four clinical prediction tasks, evaluated on eICU
Hospital 458. The green curve represents the task model’s performance (AUPRC for mortality, ventilator,
and sepsis prediction; loss for ICU length of stay), while the orange curve denotes the validation likelihood
of the VAE. a. Mortality prediction. b. Ventilator prediction. c. Sepsis prediction. d. ICU length of stay
prediction.
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Supplementary Figure 5. Performance comparison of ETM-based models in predicting readmission
mortality. We used first-admission ICD codes as input to ETM-based models to generate patient-topic
mixtures. A logistic regression model was then used to predict readmission mortality based on these
mixtures. a. Performance on eICU. b. Performance on MIMIC-III.
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Supplementary Figure 6. Percentage of missing values for patient demographics (age, sex, BMI, and
ethnicity) and clinical outcomes (mortality, ventilator, sepsis, and ICU length of stay) in the eICU and
MIMIC-III datasets. A value is considered missing if it is null or marked as "unknown". Percentage was
calculated as the number of missing values divided by the total number of admissions in each dataset.
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Supplementary Table 1. Clinical outcome prediction of standalone and federated methods evaluated on
eICU Hospital 167. For the standalone method, we trained separate models on data from each of the nine
source hospitals (420, 199, 458, 252, 165, 148, 281, 449, and 283) independently, and each model was
subsequently evaluated individually on the target hospital 167. In comparison, for the federated methods,
the model was trained collaboratively on the nine source hospitals and evaluated on target hospital 167.
For mortality, ventilator, and sepsis prediction, we employed AUPRC as the evaluation metric. We utilised
loss for ICU length of stay prediction. Colour red was used to highlight the method with the highest AUPRC
values and blue was applied to denote the method achieving the lowest loss values.

Algorithm
Source

Hospital
Mortality

(AUPRC ↑)
Ventilator
(AUPRC ↑)

Sepsis
(AUPRC ↑)

Length of Stay
(Loss ↓)

Standalone

420 0.546±0.042 0.312±0.013 0.181±0.013 0.070±0.004
199 0.561±0.045 0.420±0.015 0.167±0.016 0.068±0.003
458 0.468±0.049 0.405±0.013 0.145±0.012 0.067±0.003
252 0.493±0.045 0.403±0.015 0.188±0.019 0.069±0.004
165 0.580±0.046 0.487±0.015 0.191±0.016 0.066±0.003
148 0.525±0.043 0.436±0.013 0.208±0.019 0.078±0.005
281 0.463±0.046 0.394±0.013 0.180±0.016 0.070±0.004
449 0.415±0.045 0.343±0.014 0.127±0.012 0.091±0.006
283 0.397±0.042 0.384±0.013 0.203±0.019 0.076±0.004

FedAvg N/A 0.625±0.045 0.514±0.013 0.257±0.023 0.057±0.004
FedWeightMADE N/A 0.630±0.043 0.519±0.016 0.266±0.022 0.056±0.003
FedWeightVAE N/A 0.637±0.038 0.521±0.015 0.283±0.020 0.056±0.004

FedWeightVQVAE N/A 0.663±0.044 0.517±0.013 0.284±0.021 0.057±0.004
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Supplementary Table 2. Performance comparison of federated models across clinical outcome
predictions, including mortality, ventilator, sepsis, and ICU length of stay prediction. FedWeight methods
were compared with FedAvg, FedProx, and a centralized model (i.e., model trained on the pooled eICU
data and corrected by the covariate indicator variable for each hospital). Performance of clinical outcome
predictions on eICU, which was evaluated on a bootstrap-sampled dataset from five target hospitals (167,
199, 252, 420, and 458), with mean and standard deviation computed from the bootstrap samples.
Performance of cross-dataset federated model trained on eICU and evaluated on a bootstrapped test set
of MIMIC-III. For mortality, ventilator, and sepsis prediction, we employed AUPRC as the evaluation metric.
We utilised loss for ICU length of stay prediction. Colour red was used to highlight the federated method
with the highest AUPRC values, and blue was applied to denote the federated method achieving the
lowest loss values.

Task Algorithm
Target Hospital ID Cross

Dataset167 199 252 420 458

Mortality

(AUPRC ↑))

FedAvg 0.627±0.044 0.630±0.047 0.656±0.043 0.704±0.027 0.741±0.032 0.207±0.024

FedProx 0.633±0.047 0.655±0.039 0.642±0.039 0.743±0.031 0.756±0.036 0.235±0.028

FedWeightMADE 0.630±0.043 0.645±0.042 0.662±0.042 0.731±0.027 0.766±0.032 0.214±0.027

FedWeightVAE 0.635±0.041 0.634±0.042 0.676±0.044 0.744±0.023 0.760±0.030 0.216±0.027

FedWeightVQVAE 0.668±0.043 0.645±0.040 0.674±0.040 0.728±0.024 0.781±0.031 0.219±0.023

Centralized 0.673±0.044 0.654±0.038 0.683±0.043 0.742±0.026 0.754±0.030 0.224±0.022

Ventilator

(AUPRC ↑))

FedAvg 0.515±0.014 0.496±0.015 0.482±0.016 0.427±0.010 0.509±0.012 0.043±0.005

FedProx 0.496±0.013 0.488±0.013 0.485±0.012 0.444±0.011 0.505±0.011 0.051±0.006

FedWeightMADE 0.519±0.017 0.500±0.013 0.489±0.013 0.435±0.011 0.516±0.011 0.049±0.005

FedWeightVAE 0.522±0.018 0.514±0.015 0.492±0.013 0.441±0.012 0.522±0.013 0.051±0.006

FedWeightVQVAE 0.518±0.013 0.518±0.013 0.503±0.014 0.449±0.011 0.516±0.010 0.048±0.006

Centralized 0.531±0.013 0.513±0.013 0.497±0.013 0.451±0.010 0.526±0.011 0.048±0.006

Sepsis

(AUPRC ↑))

FedAvg 0.258±0.024 0.177±0.019 0.267±0.018 0.372±0.017 0.174±0.027 0.033±0.010

FedProx 0.264±0.023 0.198±0.019 0.272±0.021 0.389±0.018 0.201±0.035 0.063±0.031

FedWeightMADE 0.266±0.024 0.185±0.017 0.282±0.024 0.380±0.017 0.192±0.026 0.038±0.016

FedWeightVAE 0.284±0.020 0.184±0.021 0.277±0.021 0.384±0.018 0.211±0.036 0.040±0.011

FedWeightVQVAE 0.285±0.021 0.179±0.018 0.267±0.020 0.385±0.018 0.209±0.037 0.037±0.014

Centralized 0.280±0.017 0.183±0.018 0.270±0.021 0.382±0.015 0.197±0.031 0.046±0.017

Length of Stay

(Loss ↓))

FedAvg 0.057±0.004 0.050±0.003 0.052±0.004 0.054±0.002 0.061±0.004 0.132±0.007

FedProx 0.060±0.004 0.049±0.003 0.050±0.003 0.054±0.003 0.059±0.004 0.108±0.005

FedWeightMADE 0.056±0.004 0.048±0.002 0.051±0.003 0.054±0.002 0.060±0.004 0.121±0.007

FedWeightVAE 0.056±0.004 0.048±0.003 0.050±0.003 0.054±0.002 0.060±0.004 0.119±0.006

FedWeightVQVAE 0.057±0.004 0.046±0.003 0.051±0.003 0.053±0.002 0.060±0.003 0.111±0.006

Centralized 0.055±0.003 0.048±0.003 0.049±0.002 0.054±0.002 0.059±0.004 0.109±0.006
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Supplementary Table 3. Notations in FedWeight

Notation Description
K Total number of source hospitals
τ Target hospital in the federated network
k Source hospital in the federated network
D Feature size across the federated network
Nk Number of patients in source hospital k
N Total number of patients across all source hospitals
X Input data for hospital
y Labels for hospital
p Density estimator for hospital
f The linear model used in generating simulation labels
wk Local model parameters for source hospital k
w Aggregated model parameters for target hospital τ
q Model parameters for the ETM encoder
u Model parameters for the ETM linear layer which outputs µ
s Model parameters for the ETM linear layer which outputs σ
ρ ETM ICD embedding
α ETM topic embedding
θ ETM patient-topic mixture
β ETM topic-ICD mixture
Z ETM latent representation
φ The re-weighting ratio used in the weighted log-likelihood algorithm
λ Hyper-parameter that controls the degree of re-weighting

Supplementary Table 4. Lab tests, abbreviations, and units

Lab Tests Abbreviations Units
Oxygen Saturation o2sat %
Partial pressure of oxygen pao2 mm Hg
Partial pressure of carbon dioxide paco2 mm Hg
pH value of blood ph Units
Albumin albumin g/dL
Bands bands %
Blood urea nitrogen bun mg/dL
Hematocrit hct %
International Normalized Ratio (PT test) inr ratio
Lactate lactate mmol/L
Platelets platelets K/mcL
White blood cell wbc K/mcL
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Supplementary Note 1. Convergence analysis of FedWeight under covariate shifts

Problem definition and notations
In FedWeight, we consider the federated optimization problem under covariate shift. Suppose there are K

source hospitals indexed by k. The global objective of FedWeight is defined as:

F FedWeight(w) =

K∑
k=1

Nk

N
Ex∼pk(x)[φk(x)ℓ(w;x)],

where Nk is the number of patients in hospital k, N denotes the total number of patients, pk(x) represents

the source data distribution at hospital k, φk(x) =
(
pτ (x)
pk(x)

)λ
is the re-weight in FedWeight, pτ (x) represents

the data distribution of the target hospital, and ℓ(w;x) = log p(y|x,wk).
We also define the local weighted objective as:

F
FedWeight
k (w) = Ex∼pk(x)[φk(x)ℓ(w;x)].

Thus:

F FedWeight(w) =

K∑
k=1

Nk

N
F

FedWeight
k (w).

Let w∗ be the global minimizer:

w∗ = argmin
w

FFedWeight(w).

Assumptions
Following the convergence analysis framework used in FedAvg [1], we establish the following four standard
assumptions on each local weighted objective function F

FedWeight
k (w):

Assumption 1 (L-Smoothness): Each local objective function is assumed to be L-smooth, i.e., for any
u,v, we have:

F
FedWeight
k (u) ≤ F

FedWeight
k (v) +∇F

FedWeight
k (v)⊤(u− v) +

L

2
∥u− v∥2.

Assumption 2 (µ-Strong Convexity): Each local objective is µ-strongly convex, i.e., for any u,v, we
have:

F
FedWeight
k (u) ≥ F

FedWeight
k (v) +∇F

FedWeight
k (v)⊤(u− v) +

µ

2
∥u− v∥2.

Assumption 3 (Bounded Variance): The stochastic gradient variance of F FedWeight
k (w) is bounded.

Specifically, there exists a constant σ2
k and Cφ satisfying:

E∥∇F
FedWeight
k (w; ξ)−∇F

FedWeight
k (w)∥2 ≤ σ2

kCφ,
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where the variance-increase constant Cφ is defined by:

Cφ = Ex∼pk(x)[φk(x)
2] < ∞.

Assumption 4 (Bounded Gradient Norm): The squared norm of the stochastic gradient is bounded,
i.e., there exists constant G such that:

E∥∇F
FedWeight
k (w; ξ)∥2 ≤ G2Cφ.

Convergence analysis
Let wt be the global model at communication round t. At the start, each hospital k initializes its local model
as:

wk,0
t = wt,

and performs E local SGD updates with learning rate ηt on its reweighted loss FFedWeight
k :

wk,i+1
t = wk,i

t − ηt∇F
FedWeight
k (wk,i

t ; ξk,it ), i = 0, . . . , E − 1.

Then after E steps, global aggregation at the target hospital side is:

wt+1 =

K∑
k=1

Nk

N
wk,E

t .

Define average local updates deviation from global updates:

w̄t+1 = wt − ηt

K∑
k=1

Nk

N

E−1∑
i=0

∇FFedWeight
k (wk,i

t ; ξk,it ),

Then we have:

wt+1 − w̄t+1 = ηt

K∑
k=1

Nk

N

E−1∑
i=0

[
∇FFedWeight

k (wk,i
t ; ξk,it )−∇FFedWeight

k (wk,i
t )
]
.

Taking expectation conditioned on wt:

E [wt+1 − w̄t+1 | wt] = 0.

Thus, the update bias is zero-mean. Base on Assumption 3 and Assumption 4, we have:

E ∥wt+1 − w̄t+1∥2 = η2t

K∑
k=1

(
Nk

N

)2 E−1∑
i=0

E
∥∥∥∇F

FedWeight
k (wk,i

t ; ξk,it )−∇F
FedWeight
k (wk,i

t )
∥∥∥2

≤ Eη2t

N∑
k=1

(
Nk

N

)2

σ2
kCφ.

Considering smoothness and strongly convex assumptions (Assumption 1 and Assumption 2) on
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global objective FFedWeight, we have the standard descent lemma:

E
[
F FedWeight(wt+1)

]
≤ F FedWeight(wt) + E

〈
∇F FedWeight(wt),wt+1 − wt

〉
+

L

2
E ∥wt+1 −wt∥2 .

Substitue wt+1 into above and taking expectation:

E
[
F FedWeight(wt+1)

]
− F FedWeight(wt) ≤ −ηt

K∑
k=1

Nk

N

E−1∑
i=0

E
∥∥∥∇F

FedWeight
k (wk,i

t )
∥∥∥2 + L

2
E ∥wt+1 −wt∥2

≤ −ηtEE
∥∥∥∇F FedWeight(wt)

∥∥∥2
+

L

2

(
2E2η2tG

2Cφ + 2Eη2t

K∑
k=1

(
Nk

N

)2

σ2
kCφ

)
.

After applying strong convexity (Assumption 2), we obtain the standard inequality for strongly convex
objectives:

E
[
F FedWeight(wt+1)

]
− F ∗ ≤ (1− µEηt)

[
F FedWeight(wt)− F ∗

]
+

Lη2tE

2

[
2EG2Cφ + 2

K∑
k=1

(
Nk

N
)2σ2

kCφ

]
,

where F ∗ = minw FFedWeight(w). We simplify to obtain clearly:

E
[
F FedWeight(wt+1)

]
− F ∗ ≤ (1− µEηt)

[
F FedWeight(wt)− F ∗

]
+ η2tE

2LG2Cφ + Lη2tE

K∑
k=1

(
Nk

N
)2σ2

kCφ.

Choosing the learning rate as:

ηt =
2

µ(γ + t)
, where γ = max

(
8L

µ
,E

)
,

and applying telescoping sums across all T rounds, we have:

E
[
F FedWeight(wT )

]
− F ∗ ≤ γ

γ + T − 1

[
F FedWeight(w1)− F ∗

]
+

4
(
E2G2Cφ +

∑K
k=1(

Nk
N )2σ2

kCφ

)
L

µ2(γ + T − 1)
.

Define clearly:

BFedWeight = E2G2Cφ +

K∑
k=1

(
Nk

N
)2σ2

kCφ.

Finally, we obtain the final convergence bound of FedWeight explicitly:

E[F FedWeight(wT )]− F ∗ ≤ 2L/µ

γ + T − 1

(
2BFedWeight

µ
+

µγ

2
∥w1 −w∗∥2

)
.

Thus, FedWeight achieves a clear and rigorous convergence rate of O(1/T ).

Conclusion
This rigorous convergence analysis establishes that FedWeight, under covariate shift, achieves a con-
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vergence rate of O(1/T )—matching that of FedAvg [1]. However, FedWeight demonstrates superior
performance by explicitly reweighting source hospitals’ distributions, ensuring better alignment with the
target hospital’s data distribution.
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Supplementary Note 2. Model architecture

For the simulation dataset, our objectives are to evaluate the model’s predictive performance and
interpretability. Due to the ease of linear models in revealing influential features, we opted for a linear
model in our simulation studies. In contrast, the real-world mortality and ICU length of stay prediction using
the eICU dataset involves leveraging patient demographics and drug data from the initial 48 hours of ICU
admission to predict mortality after this period. Therefore, we selected a Multi-Layer Perceptron (MLP)
architecture, reflecting its capacity for handling complex, non-linear relationships in high-dimensional data.
For predicting ventilator use and sepsis diagnosis, which requires analyzing current interval data to predict
outcomes in the next interval, we employed a Long Short-Term Memory (LSTM) architecture [2], owing to
its proficiency in capturing temporal dependencies within sequence data.

Regarding our FedWeight density estimators, we utilized a standard MADE architecture. For density
estimation with VAE, we employed a beta-VAE with KL divergence annealing to mitigate posterior collapse
[3,4]. In employing VQ-VAE as a density estimator, we adopted an Exponential Moving Average (EMA)
method for stable codebook updates [5].
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