Effect of Local Heterogeneities on Single-Layer DNA-Directed Protein Lattices Through Non-Averaged Single-Molecule 3D Structure Determination

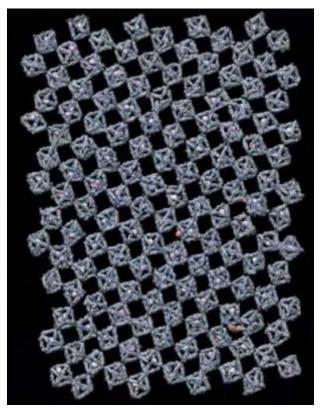
Jianfang Liu^{1,*}, Shih-Ting Wang², Meng Zhang¹, Zijian Hu^{1,3}, Hao Wu³, Oleg Gang^{2,4,5,*} and Gang Ren^{1,*}

*Corresponding Author

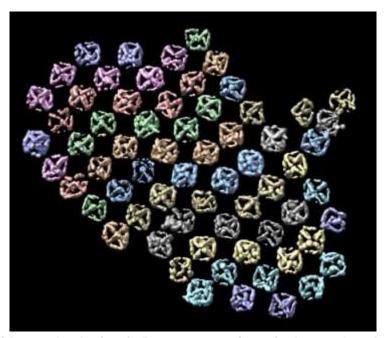
Gang Ren, E-mail: gren@lbl.gov; Jianfang Liu, E-mail: jianfangliu@lbl.gov; Oleg Gang, E-mail: <a href="mailt

Supplementary Video 1. 3D reconstruction process of 2D lattices with 100% ferritin	2
Supplementary Video 2. 3D reconstruction process of 2D lattices with 70% ferritin	3
Supplementary Video 3. 3D reconstruction process of 2D lattices without ferritin	4
Supplementary Video 4. MD simulations of 2D lattices without ferritin	5
Supplementary Table 1. Detailed information on IPET 3D reconstructions of all units.	6-12
Supplementary Fig. 1. Secondary structure of DNA origami octahedral cage	13
Supplementary Fig. 2. IPET 3D reconstruction intermediate of 4 unit-cell particle	14
Supplementary Fig. 3. Statistical analysis of structural variability in unit-cell particles .	15
Supplementary Fig. 4. Correlation between particle size and lattice lengths	16
Supplementary Fig. 5. Correlation between linker and lattice	17
Supplementary Fig. 6. MD simulation of particles and their 2D lattices	18
Supplementary Fig. 7. Pore size variability by MD simulations	19
Supplementary Fig. 8. Analysis of structural variability after repaired	20
Supplementary Fig. 9-345. IPET 3D and fitting model of an individual particle	. 21-357

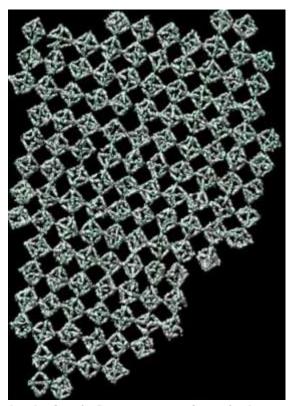
¹ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA;

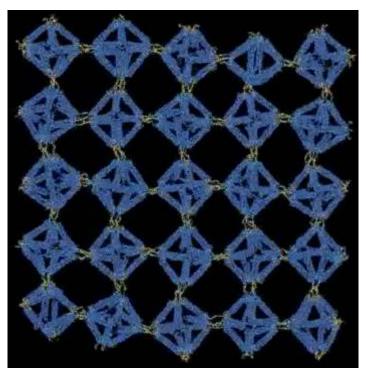

²Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA;

³ College of Artificial Intelligence, Beijing Normal University, Beijing, China;


⁴ Department of Chemical Engineering, Columbia University, New York City, NY, 10027, USA;

⁵ Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, 10027, USA.


Supplementary Videos:


Supplementary Video 1: Analysis of 3D reconstruction of a low-ordered 2D lattice of DNA-origami octahedral cages loaded with 100% ferritin. This video illustrates the cryo-ET and IPET 3D reconstruction process of DNA origami 2D lattices fully loaded with ferritin. It showcases the detailed steps involved in obtaining the final 3D model and performing the distortion analysis of the lattice.

Supplementary Video 2: Analysis of 3D reconstruction of a low-ordered 2D lattice of DNA-origami octahedral cages loaded with 70% ferritin. This video illustrates the cryo-ET and IPET 3D reconstruction process of DNA origami 2D lattices fully loaded with ferritin. It showcases the detailed steps involved in obtaining the final 3D model and performing the distortion analysis of the lattice.

Supplementary Video 3: Analysis of 3D reconstruction of a low-ordered 2D lattice of DNA-origami octahedral cages without ferritin loading. This video illustrates the cryo-ET and IPET 3D reconstruction process of DNA origami 2D lattices without ferritin loading. It showcases the detailed steps involved in obtaining the final 3D model and performing the distortion analysis of the lattice.

Supplementary Video 4: MD simulations of a 5x5 lattice of DNA-origami octahedral cages without ferritin loading. This video illustrates the MD simulation process of 5 x 5 unit-cell formed DNA origami 2D lattices without ferritin loading.

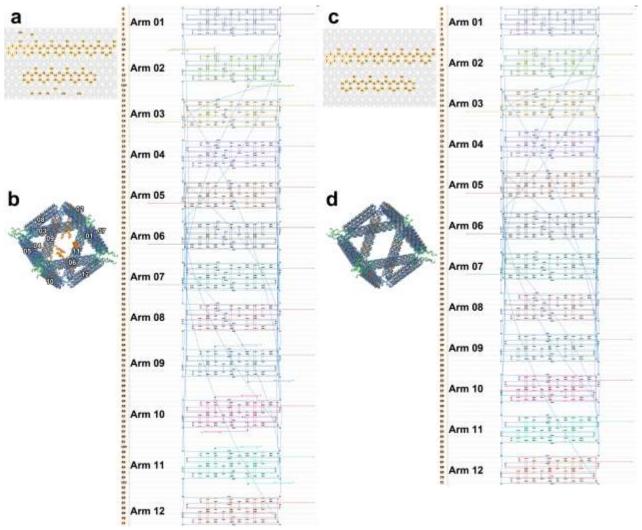
Supplementary Table 1. The parameters of IPET 3D reconstructions of the unit-cell particles

			-							2 1 /\$3				Figure
						_	Total				Resolutions (Å)		Ferritin #	#
Part. ID	Sample	EMDB ID	TEM, camera, CDS mode	Mag. and Å/pix (Å)	Dose rate (e ⁻ Å ⁻² s ⁻¹)	Exp. time (s)	dose (e ⁻ Å ⁻²)	Angle range; step	Contour levels	Map-map FSC @0.5	Map-map FSC @0.143	Map-model FSC@0.5		
1	100% load	<u>46070</u>	Krios G2, K3, Yes	53Kx, 1.46 Å	3.0	2.2	231	-51° to +51°; 3°	0.6/1.0	64	20	82	1	S9
2	100% load	<u>46071</u>	Krios G2, K3, Yes	53Kx, 1.46 Å	3.0	2.2	231	-51° to +51°; 3°	0.6/1.0	77	19	75	1	S10
3	100% load	<u>46072</u>	Krios G2, K3, Yes	53Kx, 1.46 Å	3.0	2.2	231	-51° to +51°; 3°	0.6/1.0	70	20	90	2	S11
4	100% load	<u>46073</u>	Krios G2, K3, Yes	53Kx, 1.46 Å	3.0	2.2	231	-51° to +51°; 3°	0.6/1.0	72	20	83	1	S12
5	100% load	<u>46074</u>	Krios G2, K3, Yes	53Kx, 1.46 Å	3.0	2.2	231	-51° to +51°; 3°	0.6/1.0	74	19	73	2	S13
6	100% load	<u>46075</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	28	88	1	S14
7	100% load	<u>46076</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	89	29	82	1	S15
8	100% load	<u>46077</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	88	31	80	1	S16
9	100% load	<u>46078</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	28	350	1	S17
10	100% load	<u>46079</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	85	30	78	1	S18
11	100% load	<u>46080</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	30	76	1	S19
12	100% load	<u>46081</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	252	63	79	1	S20
13	100% load	<u>46082</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	28	302	1	S21
14	100% load	<u>46083</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	29	91	1	S22
15	100% load	<u>46084</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	36	29	233	2	S23
16	100% load	<u>46085</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	27	103	1	S24
17	100% load	<u>46086</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	29	280	1	S25
18	100% load	<u>46087</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	30	262	2	S26
19	100% load	<u>46088</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	30	260	1	S27
20	100% load	<u>46089</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	30	253	1	S28
21	100% load	<u>46090</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	88	68	80	1	S29
22	100% load	<u>46091</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	28	75	1	S30
23	100% load	<u>46092</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	84	29	75	1	S31
24	100% load	<u>46093</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	29	77	1	S32
25	100% load	<u>46094</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	27	128	1	S33
26	100% load	<u>46095</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	100	2	S34
27	100% load	<u>46096</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	107	2	S35
28	100% load	<u>46097</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	67	1	S36
29	100% load	<u>46098</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	82	69	90	1	S37
30	100% load	<u>46099</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	30	127	2	S38
31	100% load	<u>46100</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	47	27	125	1	S39
32	100% load	<u>46101</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	37	28	117	3	S40
33	100% load	<u>46102</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	36	27	125	2	S41
34	100% load	<u>46103</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	28	110	2	S42
35	100% load	<u>46104</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	32	80	0	S43
36	100% load	<u>46105</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	28	79	1	S44
37	100% load	<u>46106</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	29	92	1	S45
38	100% load	<u>46107</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	156	2	S46
39	100% load	<u>46108</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	86	1	S47
40	100% load	<u>46109</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	84	28	88	1	S48
41	100% load	<u>46110</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	40	81	1	S49
42	100% load	<u>46111</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	31	77	2	S50
43	100% load	<u>46112</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	27	83	1	S51
44	100% load	<u>46113</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	32	86	2	S52
45	100% load	<u>46114</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	29	92	2	S53
46	100% load	<u>46115</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	47	30	89	1	S54

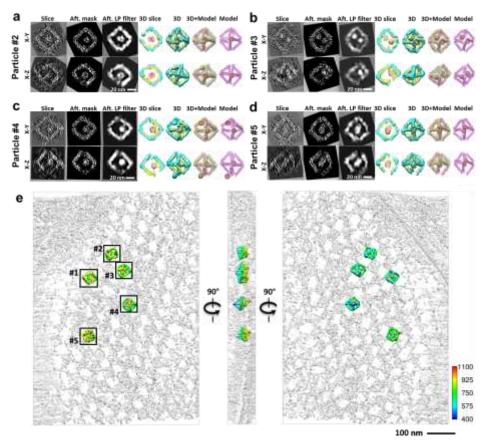
	1000/1			= 0.11 1 1 C S			242	=10. =10.00	0.5/1.0					
47	100% load	<u>46116</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	66	29	91	1	S55
48	100% load	<u>46117</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	64	28	272	1	S56
49	100% load	<u>46118</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	82	30	73	1	S57
50	100% load	<u>46119</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	29	74	1	S58
51	100% load	<u>46120</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	63	28	91	1	S59
52	100% load	<u>46121</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	120	30	267	1	S60
53	100% load	<u>46122</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	31	74	1	S61
54	100% load	<u>46123</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	30	152	2	S62
55	100% load	<u>46124</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	29	76	1	S63
56	100% load	<u>46125</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	29	84	2	S64
57	100% load	<u>46126</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	30	77	1	S65
58	100% load	<u>46127</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	29	79	1	S66
59	100% load	<u>46128</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	30	260	1	S67
60	100% load	<u>46129</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	65	29	195	1	S68
61	100% load	<u>46130</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	29	82	2	S69
62	100% load	<u>46131</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	67	29	139	2	S70
63	100% load	<u>46132</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	82	1	S71
64	100% load	<u>46133</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	94	30	90	1	S72
65	100% load	<u>46134</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	30	292	1	S73
66	100% load	<u>46135</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	29	88	1	S74
67	100% load	<u>46136</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	63	30	136	2	S75
68	100% load	<u>46137</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	29	81	1	S76
69	100% load	<u>46138</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	61	29	252	1	S77
70	100% load	<u>46139</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	30	82	1	S78
71	100% load	<u>46140</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	29	89	1	S79
72	100% load	<u>46141</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	30	76	1	S80
73	100% load	<u>46142</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	90	1	S81
74	100% load	<u>46143</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	84	29	72	1	S82
75	100% load	<u>46144</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	30	92	2	S83
76	100% load	<u>46145</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	30	78	1	S84
77	100% load	<u>46146</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	92	68	82	1	S85
78	100% load	<u>46147</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	30	74	2	S86
79	100% load	<u>46148</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	30	84	1	S87
80	100% load	<u>46149</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	30	320	1	S88
81	100% load	<u>46150</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	29	256	1	S89
82	100% load	<u>46151</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	31	97	2	S90
83	100% load	<u>46152</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	68	29	70	1	S91
84	100% load	<u>46153</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	28	91	1	S92
85	100% load	<u>46154</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	30	101	1	S93
86	100% load	46155	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	31	78	1	S94
87	100% load	<u>46156</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	40	29	134	1	S95
88	100% load	46157	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	31	247	2	S96
89	100% load	<u>46158</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	66	30	307	1	S97
90	100% load	<u>46159</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	30	97	1	S98
91	100% load	<u>46160</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	29	108	1	S99
92	100% load	<u>46161</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	28	80	1	S100
93	100% load	<u>46162</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	38	28	276	2	S101
94	100% load	<u>46163</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	82	30	95	1	S102
95	100% load	<u>46164</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	30	104	1	S103
96	100% load	<u>46165</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	28	110	1	S104
97	100% load	<u>46166</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	31	77	1	S105

98	100% load	46167	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	87	30	87	1	S106
99	100% load	46168	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	94	1	S107
100	100% load	46169	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	30	74	1	S107
101	100% load	46170	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	30	83	1	S109
102	100% load	46171	Krios G2, K3, No	53Kx. 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	29	134	1	S110
103	100% load	46172	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	27	78	1	S111
104	100% load	46173	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	31	74	1	S112
105	100% load	46174	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	68	29	82	1	S113
106	100% load	46175	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	102	1	S114
107	100% load	46176	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	60	28	146	3	S115
108	100% load	46177	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	64	29	116	2	S116
109	100% load	46178	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	85	31	85	1	S117
110	100% load	46179	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	29	85	1	S118
111	100% load	46180	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	28	314	2	S119
112	100% load	46181	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	87	31	77	1	S120
113	100% load	46182	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	30	302	1	S121
114	100% load	46183	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	82	31	82	1	S122
115	100% load	46184	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	81	1	S123
116	100% load	46185	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	29	85	1	S124
117	100% load	46186	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	29	77	1	S125
118	100% load	46187	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	31	87	1	S126
119	100% load	46188	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	88	1	S127
120	100% load	46189	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	68	29	78	1	S128
121	100% load	46190	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	94	30	76	2	S129
122	100% load	46191	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	29	74	1	S130
123	100% load	46192	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	53	29	104	1	S131
124	100% load	46193	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	29	100	1	S132
125	100% load	46194	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	31	150	2	S133
126	100% load	46195	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	85	28	84	1	S134
127	100% load	46196	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	29	87	1	S135
128	100% load	46197	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	30	89	1	S136
129	100% load	46198	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	98	30	75	2	S137
130	100% load	46199	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	28	89	1	S138
131	100% load	46200	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	28	98	1	S139
132	100% load	46201	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	61	29	135	2	S140
133	100% load	46202	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	74	1	S141
134	100% load	46203	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	30	76	1	S142
135	100% load	46204	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	29	73	2	S143
136	100% load	46205	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	29	105	1	S144
137	100% load	46206	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	88	30	90	1	S145
138	100% load	46207	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	31	80	1	S146
139	100% load	46208	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	32	87	1	S147
140	100% load	46209	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	87	31	78	1	S148
141	100% load	46210	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	29	71	1	S149
142	100% load	46211	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	32	80	1	S150
143	100% load	46212	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	29	79	1	S151
144	100% load	46213	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	31	80	1	S152
145	100% load	46214	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	29	81	1	S153
Part. ID	Sample	EMDB ID	TEM, camera, CDS mode	Mag. and Apix (Å)	Dose rate (e ⁻ Å ⁻² s ⁻¹)	Exp. time (s)	Total dose (e ⁻ Å ⁻²)	Angle range;	Contour levels	Map-map FSC @0.5	Map-map FSC @0.143	Map-model FSC @0.5	Ferritin#	Figure #

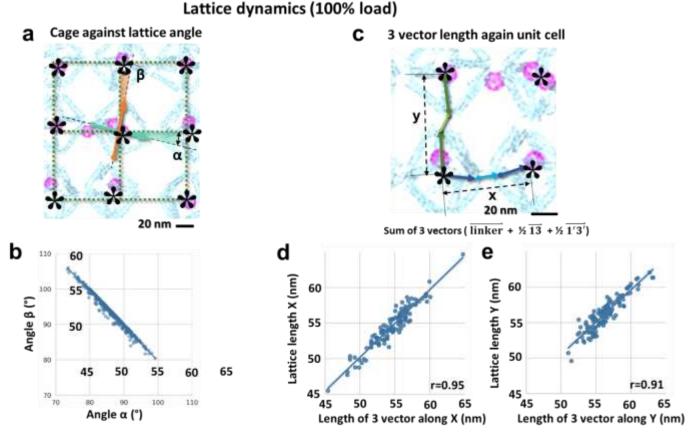
446	700/	46245	7 : 420 CCD N	001/ 4 40 8		1.0		400 1 . 400 20	0.7/4.2	70	C4			C454
146	70% load	<u>46215</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	72	64	77	1	S154
147	70% load	<u>46216</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	74	62	82	1	S155
148	70% load	<u>46217</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	76	60	81	1	S156
149	70% load	<u>46218</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	60	81	1	S157
150	70% load	<u>46219</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	65	74	1	S158
151	70% load	<u>46220</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	76	65	78	0	S159
152	70% load	<u>46221</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	60	83	2	S160
153	70% load	<u>46222</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	63	277	1	S161
154	70% load	<u>46223</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	60	75	0	S162
155	70% load	<u>46224</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	74	63	94	1	S163
156	70% load	<u>46225</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	64	73	0	S164
157	70% load	<u>46226</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	76	65	85	1	S165
158	70% load	<u>46227</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	66	89	1	S166
159	70% load	<u>46228</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	73	62	75	1	S167
160	70% load	<u>46229</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	64	71	1	S168
161	70% load	<u>46230</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	72	57	84	1	S169
162	70% load	<u>46231</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	61	91	1	S170
163	70% load	<u>46232</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	63	74	1	S171
164	70% load	<u>46233</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	64	81	1	S172
165	70% load	<u>46234</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	71	55	80	1	S173
166	70% load	<u>46235</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	62	77	1	S174
167	70% load	<u>46236</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	62	81	1	S175
168	70% load	<u>46237</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	74	64	75	1	S176
169	70% load	<u>46238</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	57	81	1	S177
170	70% load	<u>46239</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	80	67	79	0	S178
171	70% load	<u>46240</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	69	93	1	S179
172	70% load	<u>46241</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	81	59	82	0	S180
173	70% load	<u>46242</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	82	65	80	1	S181
174	70% load	<u>46243</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	83	70	73	1	S182
175	70% load	<u>46244</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	68	89	1	S183
176	70% load	<u>46245</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	61	157	1	S184
177	70% load	<u>46246</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	67	77	1	S185
178	70% load	<u>46247</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	66	75	0	S186
179	70% load	<u>46248</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	64	85	1	S187
180	70% load	<u>46249</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	65	79	0	S188
181	70% load	<u>46250</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	64	82	1	S189
182	70% load	<u>46251</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	76	65	80	1	S190
183	70% load	<u>46252</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	81	64	79	1	S191
184	70% load	<u>46253</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	77	66	73	1	S192
185	70% load	<u>46254</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	63	82	1	S193
186	70% load	<u>46255</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	74	63	73	1	S194
187	70% load	<u>46256</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	65	79	1	S195
188	70% load	<u>46257</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	56	75	1	S196
189	70% load	<u>46258</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	74	65	128	1	S197
190	70% load	<u>46259</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	70	46	133	2	S198
191	70% load	<u>46260</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	62	78	1	S199
192	70% load	<u>46261</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	56	81	2	S200
193	70% load	<u>46262</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	79	62	77	0	S201
194	70% load	<u>46263</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	76	62	87	1	S202
195	70% load	<u>46264</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	73	62	84	1	S203
196	70% load	<u>46265</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	75	63	81	1	S204

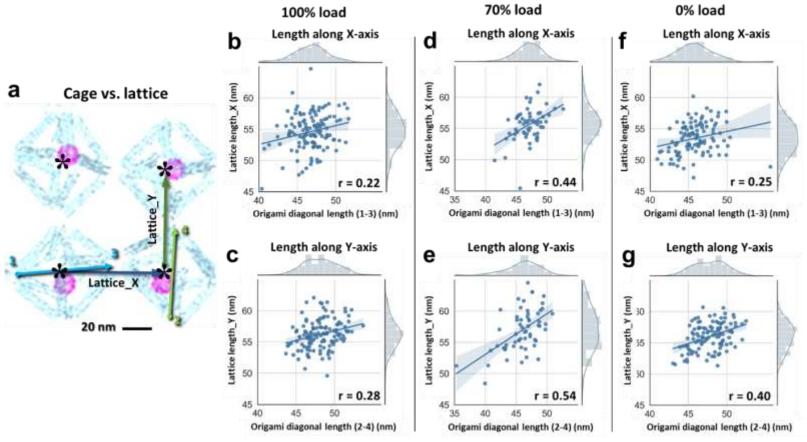

198 70% load 5228 2681120, CCD, No. 80K1, 448Å - 1.0 66 48° to 48°; 3° 0.713 75 64 82 0.520°		=00/1		= : ::::::::::::::::::::::::::::::::::		ı			100 : 100 00	0 = // 0					
199 70% load 52528 Zees 13 DC, CO, No 800x, 1484k - 1.0 66 48° to 48°; 3° 071,3 73 54 62 0 520°	197	70% load	<u>46266</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	78	63	76	1	S205
200						-								-	
201 70% load 62/27 2791 120, CCD, No. 80%, 148Å . 1.0 66 48° to -48/3 2° 07/1.3 75 64 92 1 5209					,				,						
202 70% load 65027 2681 120, CCD, No. 80K, 148A - 1.0 66 48* to 48*; 3* 0.71.3 77 58 82 0 \$210					,				,						
204 70% load 60272 76% 120 CCD, No. 80%, 1.48Å 1.0 66 48* to 448*; 3* 0.71.3 78 64 80 1 \$211 205 70% load 60274 76% 120 76% 1				, ,	, ,	-			,	,					
204 70% load 45973 28is 120,CCD, No. 80Ks, 1.48A - 1.0 66 48° to 148°; 3° 0.7/1.3 78 57 78 1 5271				, ,	, ,	-			,	•				-	
205 70% load 48274 Zebs 120, CCD, No. 80Ks, 1.488				, , -	,	-	_		,						
206 70% load \$62.75 Zels 120, CCD, No 80Ks, 148Å 1.0 66 48° to +48°; 3* 0.7/13 74 61 76 1 5214						-									
207 70% load 62276 Zeiss 120, CCD, No 80%, 148Å - 1.0 66 48° to 48°; 3° 0.71,3 77 63 82 1 5215															
208 70% load 46272 Zelis 120, CCD, No 80kx, 148Å - 1.0 66 48° to 48°; 3° 0.71, 3 77 63 82 1 5216					,	-			,						
200 70% load 66278 Zelis 120, CCD, No 80Kx, 148Å - 10 66 -48* to +48*; 3* 0.71, 3 75 66 76 0 5217					,	-									
210 70% load 46272 Zeiss 120, CCD, No 80Ks, 1.48A - 1.0 66 -48° to +48°; 3° 0.7/1.3 74 59 80 0 5218	208	70% load	<u>46277</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-		66	,	0.7/1.3					
211 70% load 45280 Zelss 120, CCD, No 80Ks, 1.48A 1.0 66 48° to 48°; 3° 0.7/1.3 88 62 82 1 5219 213 70% load 45281 Zelss 120, CCD, No 80Ks, 1.48A - 1.0 66 48° to 48°; 3° 0.7/1.3 81 53 53 141 1 5220 213 70% load 45282 Zelss 120, CCD, No 80Ks, 1.48A - 1.0 66 48° to 48°; 3° 0.7/1.3 81 53 141 1 5220 215 70% load 45282 Zelss 120, CCD, No 80Ks, 1.48A - 1.0 66 48° to 48°; 3° 0.7/1.3 81 53 141 1 5220 215 70% load 45282 Zelss 120, CCD, No 80Ks, 1.48A - 1.0 66 48° to 48°; 3° 0.7/1.3 78 67 79 1 5222 215 70% load 45282 Zelss 120, CCD, No 80Ks, 1.48A - 1.0 66 48° to 48°; 3° 0.7/1.3 78 67 79 1 5223 216 70% load 55253 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 69 28 79 0 5224 217 00% load 45282 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 72 27 84 0 5226 218 00% load 45282 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 221 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 222 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 221 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 222 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 222 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 223 00% load 45288 Krios CS, R.S. No 53Ks, 1.46A 6.0 1.0 210 551 to 451°; 3° 0.6/1.0 79 29 77 0 5222 224 00% load 45289 Krios CS, R.S. No 53Ks, 1.46A 6.0		70% load		Zeiss 120, CCD, No	80Kx, 1.48Å	-				-					
212 70% load 45282 Zeiss 120, CCD, No 80/Ks, 148Å - 1.0 66 48* to 48*; 3* 0.71/3 85 64 91 1 5220		70% load		Zeiss 120, CCD, No	80Kx, 1.48Å	-		66	-48° to +48°; 3°	0.7/1.3				ŭ	S218
233 77% load 46282 Zeiss 120, CCD, No 800x, 148Å - 1.0 66 48° to 48°; 3° 0.71,3 81 53 141 1 5221	211	70% load	<u>46280</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3		62		1	S219
214 70% load 45283 Zeiss 120, CCD, No 80%, 148Å - 1.0 66 48° to 48°; 3° 0.7/1.3 78 67 79 1 5222 15 70% load 46284 Zeiss 120, CCD, No 80%, 148Å - 1.0 66 48° to 48°; 3° 0.7/1.3 78 67 79 1 5222 78 79 1 5223 79 79 79 79 79 79 79 7	212	70% load	<u>46281</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3	85			1	S220
Part. ID Sample EMDB ID TEM, camera, CDS mode Agis (Å) Dose rate Exp. (dose Lime (s) (sr. Å) Angle range; Lime (s) (sr. Å) Lime (sr. Å) Lime (s) (sr. Å) Lime (sr. Å) Lime (s) (sr. Å) Lime (sr. Å) Lime (s) (sr. Å) Lime (sr. Å) Lime (s) (sr. Å) Lime (s) (sr. Å) Lime (sr. Å)				, ,	,	-			,						
Part. ID Sample EMBB ID TEM, camera, CDS mode Mag, and Apix (Å) Dose rate (eA²²) Exp. dose (eA²²) Contour step Contour levels Map-map FSC @0.5 Map-map FSC @0.5 Ferritin # Figure FSC @0.143 FSC @0.5 FSC @0.143 PSC @0.5 Ferritin # # Figure FSC @0.5 FSC @0.143 PSC @0.5 FSC @0.15 FSC @0.143 PSC @0.5 FSC @0.143 PSC @0.5 PSC @0.143 PSC @0.5 PSC @0.143 PSC @0.5 PSC @0.143 PSC @0.5 PSC @0.143 ASS &146 A 6.0 1.0 210 -51' to +51'; 3'' 0.6/10 79 29 77 0 522 22 20' SC &2 S		70% load	<u>46283</u>	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0	66	-48° to +48°; 3°	0.7/1.3				1	S222
Part. ID Sample EMOB ID Comode Aph; (A) Cose Carbon	215	70% load	46284	Zeiss 120, CCD, No	80Kx, 1.48Å	-	1.0		-48° to +48°; 3°	0.7/1.3	78	67	79	1	S223
Part, ID Sample EMDB ID CDS mode Apix (Å) (eÅ's') time (s) (eÅ's) step step levels FSC @0.5 FSC @0.143 FSC @0.5 Fertitin f step s															
216 O% load 46286				· ·			•		Angle range;	Contour					Figure
217 0% load 46286 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 73 27 73 0 \$225 218 0% load 46287 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 72 27 84 0 \$225 229 0% load 46288 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 27 79 0 \$227 220 0% load 46289 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 27 79 0 \$227 220 0% load 46289 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 27 79 0 \$227 221 0% load 46291 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 26 75 0 \$229 222 0% load 46291 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 26 75 0 \$229 223 0% load 46291 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 74 26 75 0 \$229 224 0% load 46292 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 79 25 78 0 \$230 223 0% load 46292 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 79 75 74 0 \$222 225 0% load 46293 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 97 75 74 0 \$222 225 0% load 46295 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 97 75 74 0 \$223 226 0% load 46295 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 97 75 74 0 \$223 226 0% load 46295 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 97 75 76 0 \$233 226 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$235 228 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$235 228 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$235 231 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$232 232 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$232 233 0% load 46299 Krios G2, K3, No 53Kx, 146 Å 6.0 1.0 210 51* to +51*; 3* 0.6/1.0 77 27 76 0 \$232 233 0% load 46209 Krios G2		•							•						
218	_				,		_							_	
219 0% load 46288									,						
220					· · · · · · · · · · · · · · · · · · ·				,						
221	219	0% load	<u>46288</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0		210	,	0.6/1.0					
222 0% load 46291 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 69 28 77 0 5230 223 0% load 46292 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 73 25 78 0 5231 224 0% load 46294 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 97 75 74 0 5223 225 0% load 46294 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 82 32 76 0 5233 226 0% load 46295 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 84 28 79 0 5235 228 0% load 46297 Krios G2, K3, No 53Kx, 1.46 Å 6.0					, .										
223 0% load 46292 Krios G2, K3, No 53KX, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 73 25 78 0 S231 224 0% load 46293 Krios G2, K3, No 53KX, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 97 75 74 0 S232 225 0% load 46294 Krios G2, K3, No 53KX, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 97 75 74 0 S232 226 0% load 46296 Krios G2, K3, No 53KX, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 84 28 79 0 S234 227 0% load 46296 Krios G2, K3, No 53KX, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 77 27 76 0 S235 228 0% load 46299 Krios G2, K3, No 53KX, 1.46 Å 6.0										-					
224 0% load 46293 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 97 75 74 0 \$232 225 0% load 46294 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 82 32 76 0 \$233 2 76 0 \$233 2 76 0 \$234 227 0% load 46295 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 84 28 79 0 \$234 227 0% load 46296 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 77 27 76 0 \$235 228 0% load 46297 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 \$236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 \$236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 \$236 239 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 231 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 231 0% load 46290 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 231 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$239 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 27 76 0 \$239 232 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 27 76 0 \$239 232 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 74 27 77 0 \$241 234 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 74 27 77 0 \$241 234 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 235 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 237 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 237 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 237 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 28 76 0 \$244 23					,										
225 0% load 46294 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 82 32 76 0 \$233 226 0% load 46295 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 84 28 79 0 \$234 227 0% load 46296 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 77 27 76 0 \$235 228 0% load 46297 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 \$236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 \$236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 73 25 81 0 \$237 230 0% load 46299 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 231 0% load 46300 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 \$238 234 0% load 46302 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 29 75 0 \$240 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 74 27 77 0 \$241 234 0% load 46303 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$241 235 0% load 46303 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 78 27 79 0 \$242 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 26 77 0 \$244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 26 77 0 \$244 238 0% load 46306 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 28 77 0 \$244 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 28 77 0 \$245 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 79 28 77 0 \$245 240 0%															
226 0% load 46295 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 84 28 79 0 S234 227 0% load 46296 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 77 27 76 0 S235 228 0% load 46297 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 72 25 75 0 S236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 73 25 81 0 S237 230 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51* to +51*; 3* 0.6/1.0 75 27 76 0 S238 231 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0				Krios G2, K3, No	· · · · · · · · · · · · · · · · · · ·				,						
227 0% load 46296 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°, 3° 0.6/1.0 77 27 76 0 5235 228 0% load 46297 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°, 3° 0.6/1.0 72 25 75 0 5236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°, 3° 0.6/1.0 73 25 81 0 5237 230 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°, 3° 0.6/1.0 73 25 81 0 5237 231 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°, 3° 0.6/1.0 72 27 76 0 5239 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0					,		_		,						
228 0% load 46297 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 25 75 0 \$236 229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 73 25 81 0 \$237 230 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 27 76 0 \$238 231 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 \$238 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 \$238 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0					· · · · · · · · · · · · · · · · · · ·										
229 0% load 46298 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 73 25 81 0 S237 230 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 27 76 0 S238 231 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 5239 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 5240 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 27 77 0 5242 235 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0		0% load		Krios G2, K3, No	53Kx, 1.46 Å										
230 0% load 46299 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 27 76 0 \$238 231 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 \$239 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 29 75 0 \$240 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 27 77 0 \$241 234 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 \$242 235 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0															
231 0% load 46300 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 27 76 0 5239 232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 29 75 0 5240 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 27 77 0 5241 234 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5242 235 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5243 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 5244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 5244 238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5245 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5244 240 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5244 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5244 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 244 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 244 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 245 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 246 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 27 80 0 0 5251	229	0% load	<u>46298</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0					S237
232 0% load 46301 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 29 75 0 5240 233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 27 77 0 5241 234 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5242 235 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5242 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 5244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0	230	0% load	<u>46299</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	_	210	-51° to +51°; 3°	0.6/1.0			-		
233 0% load 46302 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 27 77 0 S241 234 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 S242 235 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 S243 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 S244 237 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 S244 237 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0							_		,						
234 0% load 46303 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5242 235 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5243 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 5244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 26 77 0 5245 238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5245 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0															
235 0% load 46304 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 27 79 0 5243 236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 5244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 26 77 0 5245 238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 26 77 0 5245 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5247 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0															
236 0% load 46305 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 74 28 75 0 S244 237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 26 77 0 5245 238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5246 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5247 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0					,										
237 0% load 46306 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 26 77 0 5245 238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 5246 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 80 29 77 0 5247 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0		0% load			, ,					•				_	
238 0% load 46307 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 77 28 76 0 S246 239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 80 29 77 0 5247 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 S249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0		0% load		Krios G2, K3, No	53Kx, 1.46 Å	6.0							_		
239 0% load 46308 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 80 29 77 0 5247 240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 S249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0	237		<u>46306</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0		210		0.6/1.0					S245
240 0% load 46309 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 78 28 76 0 5248 241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S251	238	0% load	<u>46307</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0				0	S246
241 0% load 46310 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 75 28 74 0 5249 242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 27 80 0 S251	239	0% load	46308	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80			0	S247
242 0% load 46311 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 72 28 82 0 S250 243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 27 80 0 S251	240	0% load	46309	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0			76	0	S248
243 0% load 46312 Krios G2, K3, No 53Kx, 1.46 Å 6.0 1.0 210 -51° to +51°; 3° 0.6/1.0 69 27 80 0 S251	241	0% load	46310	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0				0	S249
	242	0% load	<u>46311</u>	Krios G2, K3, No	53Kx, 1.46 Å		1.0	210	-51° to +51°; 3°	0.6/1.0	72		82	0	S250
244 0% load 46313 Krips G2 K3 No 53Kx 146Å 60 10 210 -51° to +51° · 3° 06/10 75 27 80 0 5252	243	0% load	46312	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	27	80	0	S251
2.1 0.0 1.0		OO/ load	46212	Krios G2 K3 No	53Kx 1 46 Å	6.0	1.0	210	-51° to +51° · 3°	0.6/1.0	75	27	80	0	S252

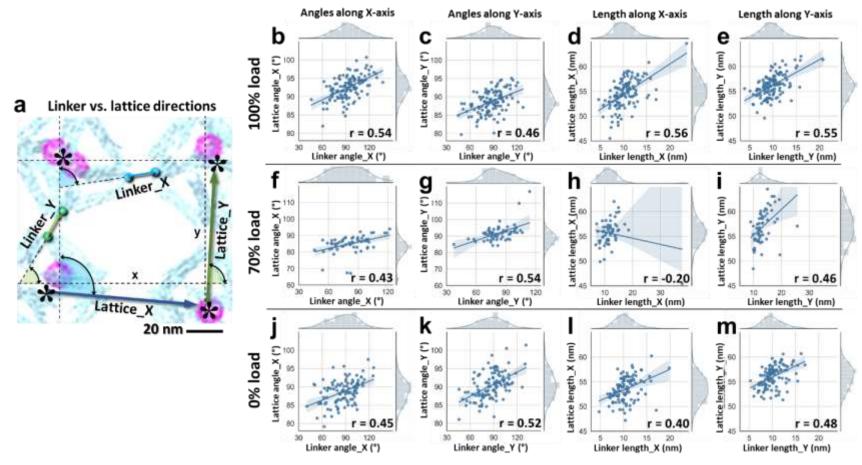
	00/1 1						212	=10. =10.00	0.5/4.0					
245	0% load	<u>46314</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	93	70	86	0	S253
246	0% load	<u>46315</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	28	77	0	S254
247	0% load	<u>46316</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	29	72	0	S255
248	0% load	<u>46317</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	27	74	0	S256
249	0% load	<u>46318</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	26	75	0	S257
250	0% load	<u>46319</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	28	79	0	S258
251	0% load	<u>46320</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	28	74	0	S259
252	0% load	<u>46321</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	27	75	0	S260
253	0% load	<u>46322</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	27	78	0	S261
254	0% load	<u>46323</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	28	79	0	S262
255	0% load	<u>46324</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	93	63	84	0	S263
256	0% load	<u>46325</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	29	82	0	S264
257	0% load	<u>46326</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	30	76	0	S265
258	0% load	<u>46327</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	26	74	0	S266
259	0% load	<u>46328</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	77	0	S267
260	0% load	<u>46329</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	27	79	0	S268
261	0% load	<u>46330</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	27	78	0	S269
262	0% load	<u>46331</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	27	78	0	S270
263	0% load	<u>46332</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	78	0	S271
264	0% load	<u>46333</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	85	29	76	0	S272
265	0% load	<u>46334</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	27	78	0	S273
266	0% load	<u>46335</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	27	77	0	S274
267	0% load	<u>46336</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	27	79	0	S275
268	0% load	<u>46337</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	27	77	0	S276
269	0% load	<u>46338</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	28	80	0	S277
270	0% load	<u>46339</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	26	78	0	S278
271	0% load	<u>46340</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	28	74	0	S279
272	0% load	<u>46341</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	29	80	0	S280
273	0% load	<u>46342</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	26	74	0	S281
274	0% load	<u>46343</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	26	76	0	S282
275	0% load	<u>46344</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	27	76	0	S283
276	0% load	<u>46345</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	29	73	0	S284
277	0% load	<u>46346</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	27	74	0	S285
278	0% load	<u>46347</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	28	77	0	S286
279	0% load	<u>46348</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	27	79	0	S287
280	0% load	<u>46349</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	29	82	0	S288
281	0% load	<u>46350</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	82	0	S289
282	0% load	<u>46351</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	63	27	77	0	S290
283	0% load	<u>46352</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	66	27	73	0	S291
284	0% load	<u>46353</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	29	73	0	S292
285	0% load	<u>46354</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	84	25	78	0	S293
286	0% load	<u>46355</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	29	83	0	S294
287	0% load	<u>46356</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	28	75	0	S295
288	0% load	<u>46357</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	28	76	0	S296
289	0% load	<u>46358</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	27	79	0	S297
290	0% load	<u>46359</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	84	26	79	0	S298
291	0% load	<u>46360</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	27	76	0	S299
292	0% load	<u>46361</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	27	74	0	S300
293	0% load	<u>46362</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	80	28	83	0	S301
294	0% load	<u>46363</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	29	80	0	S302
295	0% load	<u>46364</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	89	76	87	0	S303

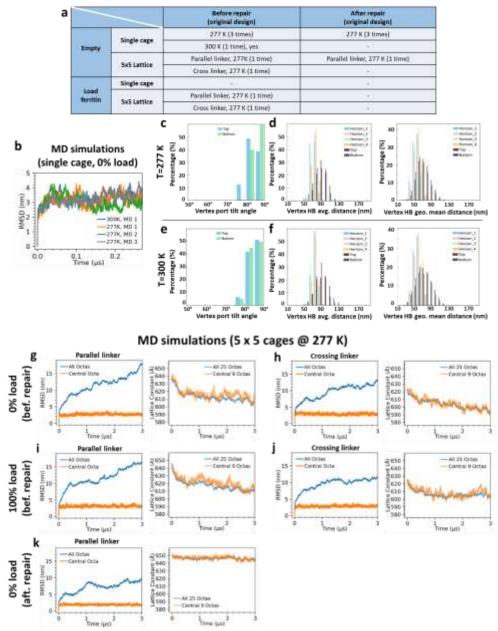

			TEM, camera,	Mag. and	Dose rate	Exp.	dose	Angle range;	Contour	Map-map	Map-map	Map-model		Figure
33/	U% IUdu	40400	N1105 GZ, N3, N0	33NX, 1.40 A	0.0	1.0	Total	-51 (0+51;3	0.6/1.0	08	20	//	U	3343
336 337	0% load 0% load	46405 46406	Krios G2, K3, No Krios G2, K3, No	53Kx, 1.46 Å 53Kx, 1.46 Å	6.0	1.0	210 210	-51° to +51°; 3° -51° to +51°; 3°	0.6/1.0 0.6/1.0	98 68	28 26	73 77	0	S344 S345
335	0% load	46404 4640F	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	71	0	S343
334	0% load	<u>46403</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	28	74	0	S342
333	0% load	<u>46402</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	79	0	S341
332	0% load	<u>46401</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	29	75	0	S340
331	0% load	<u>46400</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	27	74	0	S339
330	0% load	<u>46399</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	27	76	0	S338
329	0% load	<u>46398</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	27	79	0	S337
328	0% load	<u>46397</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	27	75	0	S336
327	0% load	<u>46396</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	70	28	74	0	S335
326	0% load	<u>46395</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	95	30	83	0	S334
325	0% load	<u>46394</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	83	69	76	0	S333
324	0% load	<u>46393</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	26	78	0	S332
323	0% load	<u>46392</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	28	72	0	S331
322	0% load	<u>46391</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	28	80	0	S330
321	0% load	<u>46390</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	79	27	78	0	S329
320	0% load	<u>46389</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	28	73	0	S328
319	0% load	<u>46388</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	109	73	76	0	S327
318	0% load	<u>46387</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	78	0	S326
317	0% load	<u>46386</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	26	77	0	S325
316	0% load	<u>46385</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	76	30	74	0	S324
315	0% load	<u>46384</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	74	27	77	0	S323
314	0% load	<u>46383</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	63	77	0	S322
313	0% load	46382	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	77	26	74	0	S321
312	0% load	46381	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	91	28	77	0	S320
311	0% load	<u>46380</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	27	74	0	S319
310	0% load	<u>46379</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	69	30	81	0	S318
309	0% load	<u>46378</u>	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	27	73	0	S317
308	0% load	46377	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	29	78	0	S316
307	0% load	46376	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	78	26	74	0	S315
306	0% load	46375	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	28	74	0	S314
305	0% load	46374	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	75	26	75	0	S313
304	0% load	46373	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	86	34	82	0	S312
303	0% load	46372	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	29	79	0	S311
302	0% load	46371	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	81	28	76	0	S310
301	0% load	46370	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	71	26	74	0	S309
300	0% load	46369	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	73	28	80	0	S308
299	0% load	46368	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	61	27	75	0	S307
298	0% load	46367	Krios G2, K3, No	53Kx, 1.46 Å	6.0	1.0	210	-51° to +51°; 3°	0.6/1.0	72	26	79	0	S306
296 297	0% load 0% load	46365 46366	Krios G2, K3, No Krios G2, K3, No	53Kx, 1.46 Å 53Kx, 1.46 Å	6.0	1.0	210 210	-51° to +51°; 3° -51° to +51°; 3°	0.6/1.0 0.6/1.0	69 78	33 29	83 76	0	S304 S305

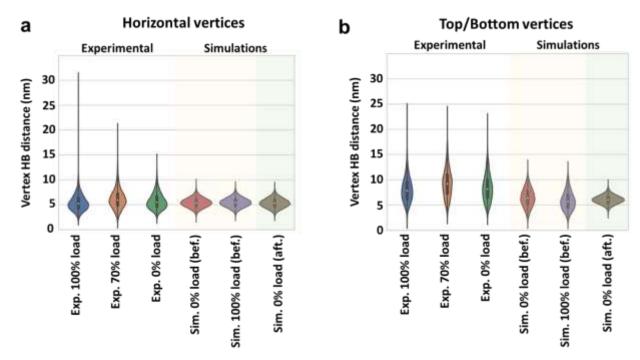
EMDB stands for Electron Microscopy Data Bank, https://www.ebi.ac.uk/pdbe/emdb/. Krios G2 refers to the FEI Titan Krios TEM. Zeiss 120 refers to the Zeiss Libra 120 Plus TEM. K3 refers to the Gatan K3 Direct Detector. CCD refers to the Gatan UltraScan 4000 4Kx4K charged-coupled device. CDS stands for correlated-double sampling mode.


Supplementary Figures:

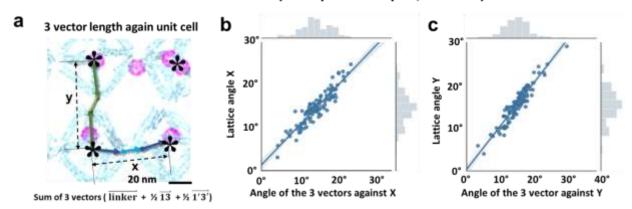

Supplementary Fig. 1: Secondary structure of DNA origami octahedral cage with and without a linker for ferritin. a, Secondary structure of the DNA origami octahedral cage with ferritin linkers. b, Secondary structure of the DNA origami octahedral cage without ferritin linkers.


Supplementary Fig. 2: Examples of IPET 3D reconstruction intermediate for four representative unit-cell particle in a 2D lattice with 100% ferritin loading. **a**, Perpendicular cross-sections of an IPET 3D reconstruction for the unit-cell particle #38. The first four images (left) show the reconstruction stages: before and after applying a soft-boundary mask, following low-pass filtering, and the 3D view of the cross-section in the final reconstruction. These are compared with the next three columns (right), which display the 3D map, the superimposed fitting model, and the final fitted model. **b-d**, Examples of IPET 3D reconstructions for three additional particles (#46, #65, and #101), analyzed using the same methodology as in a. **e**, Three views of the low-resolution 3D map of the entire 2D lattice reconstructed by IMOD, with five IPET 3D density maps from five individual unit-cell particles superimposed. The color scheme represents depth, enhancing visualization of structural features.

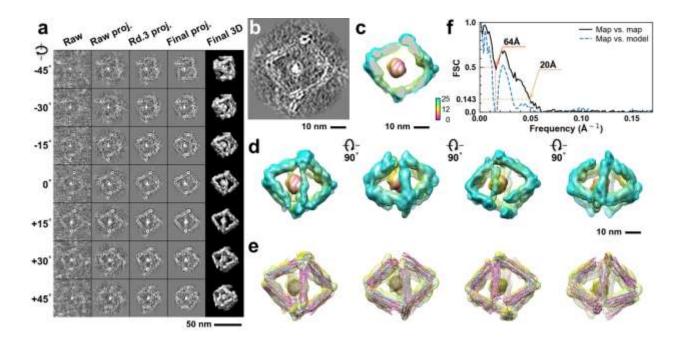

Supplementary Fig. 3: Statistical analysis of structural variability in unit-cell particles relative to their formed lattice (100% ferritin loading). a, Schematic representation of the measurement of the unit-cell angle relative to the lattice. This angle is defined as the direction from vertex to vertex along the diagonal within the unit-cell in-plane quadrilateral formed by the 4 HBs, compared to the lattice-averaged direction along the X and Y axes, respectively. **b**, Correlation analysis the angles along X-axis versus the Y-axis. **c**, Schematic illustration of the measurement of the center-to-center distances between two adjunct unit-cell particles, as well as the combined distances of the vectors. These vectors are composed of two halves of the adjacent unit-cell particle sizes plus their linker, measured along the X and Y axes, respectively. **d,e**, Correlation analyses of the center-to-center distances and the combined distances of the three vectors along the X-axis and Y-axis, respectively.


Supplementary Fig. 4: Correlation analysis between unit-cell particle size and lattice lengths. a, Schematic illustration of unit-cell particle size and lattice length measurements. The particle size is determined by the vertex-to-vertex distances along two diagonal directions within the in-plane quadrilateral formed by the 4 HBs of a unit-cell particle. The lattice length is measured as the distance between the centers of two adjacent unit-cell particles. b,c, Histograms of particle sizes and lattice lengths within a lattice with 100% ferritin loading, along with correlation analyses between particle sizes and lattice lengths along the X- and Y-axes, respectively. d, e, Equivalent analyses performed on a lattice with 70% ferritin loading. f, g, Equivalent analyses performed on a lattice with 0% ferritin loading.

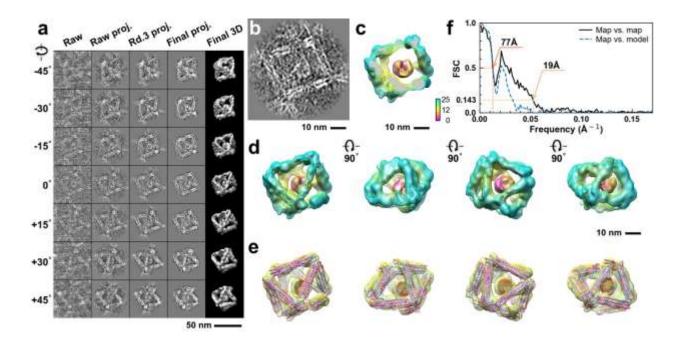
Supplementary Fig. 5: Correlation analysis between linker angle and length versus lattice angles and lengths. a, Schematic illustration of the measurements. The linker angle and length are determined between the closest vertices of two adjacent unit-cell particles relative to the averaged lattice direction. The lattice angle and length are measured between the centers of two adjacent unit-cell particles. b,c, Histograms of linker angles and lattice angles along the X- and Y-axes within the 100% ferritin-loaded 2D lattice, along with correlation analyses between these angles along the X- and Y-axes, respectively. d,e, Histograms of linker lengths and lattice lengths along the X- and Y-axes within the 100% ferritin-loaded 2D lattice, along with correlation analyses between these lengths along the X- and Y-axes, respectively. f-i, Equivalent analyses performed on a lattice with 70% ferritin loading. j-m, Equivalent analyses performed on a lattice with 0% ferritin loading.

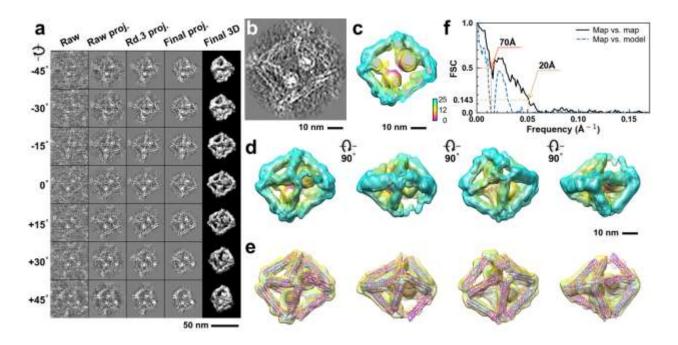


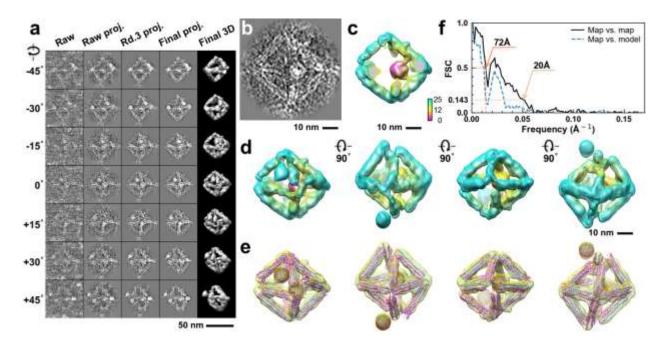
Supplementary Fig. 6: MD simulation of DNA origami unit-cell particles and their 2D lattices. a, Overview of MD simulation performance under various conditions. b, RMSD of a single unit-cell (a cage) over 0.25 µs at different temperatures. c, Distribution of the top and bottom vertex angles relative to the lattice plane under a temperature of 277 K. d, Distribution of pore sizes analyzed using two averaging methods. e,f, A similar MD simulation under a temperature of 300 K. g, MD simulation of a 5×5 2D lattice of unit-cell particles without repair or ferritin loading, using parallel linkers for a 3 µs simulation. Both RMSD and lattice lengths are analyzed. h, MD simulation of the above 5x5 2D lattice under crossing linker conditions. i,j, MD simulations of the above 2D lattice with 100% ferritin loading. k, MD simulation of the repaired 2D lattice under the parallel linker condition.

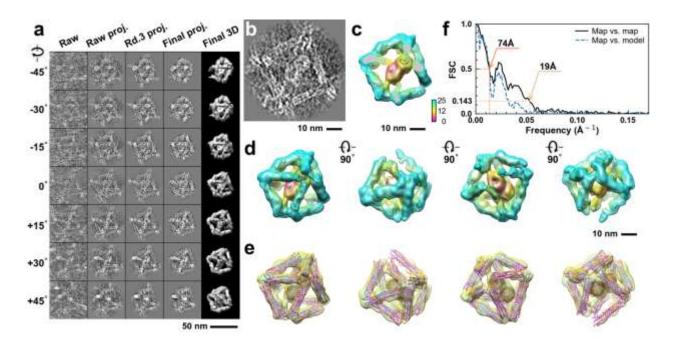


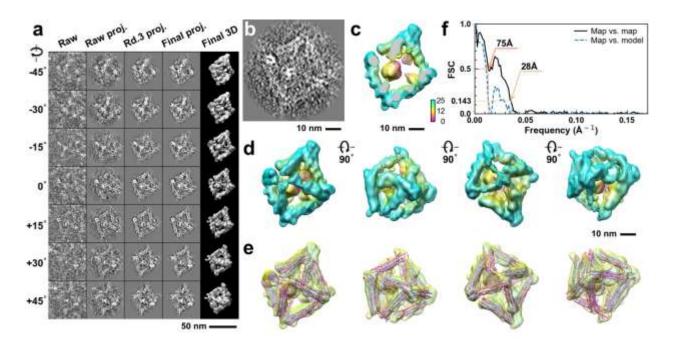
Supplementary Fig. 7: Analysis of pore size variability under different experimental and MD simulations conditions. a, Comparison of pore size distributions, measured as the average distances among the four distal ends of helical bundles at each vertex, along the lattice plane. b, Comparison of pore size distributions above and below the lattice plane.

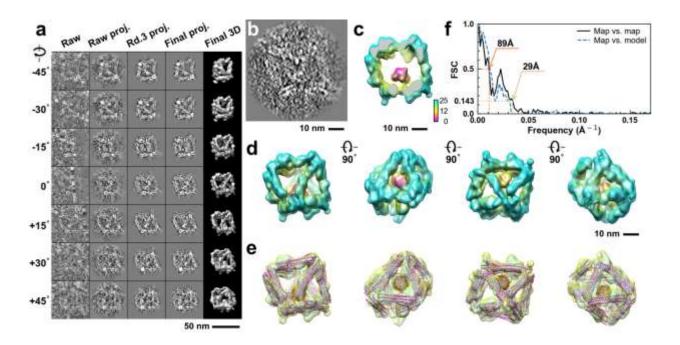

MD Simulations (after parallel repair, 0% load)

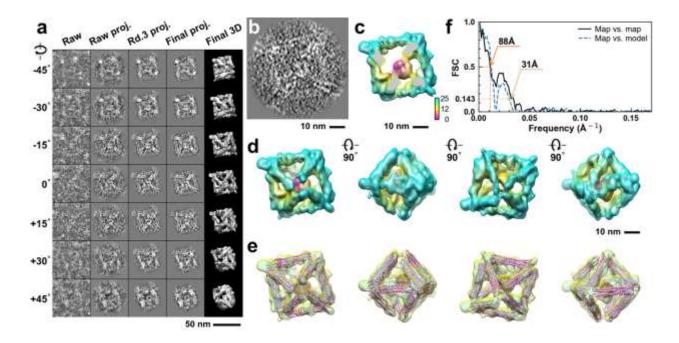

Supplementary Fig. 8: Analysis of structural variability in repaired unit-cell particles relative to their simulated lattice formation. a, A schematic representation of the measurement process for center-to-center distances between adjacent unit-cell particles, as well as the combined distances of their associated vectors. These vectors consist of the sum of two halves of the adjacent unit-cell particle sizes and their linker, measured along the X and Y axes, respectively. **b,c**, Correlation analyses of the center-to-center distances and combined vector distances along the X-axis and Y-axis, respectively.

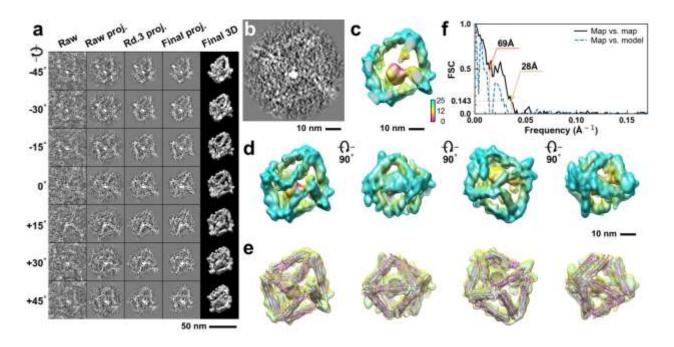

Supplementary Fig. 9: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 001) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

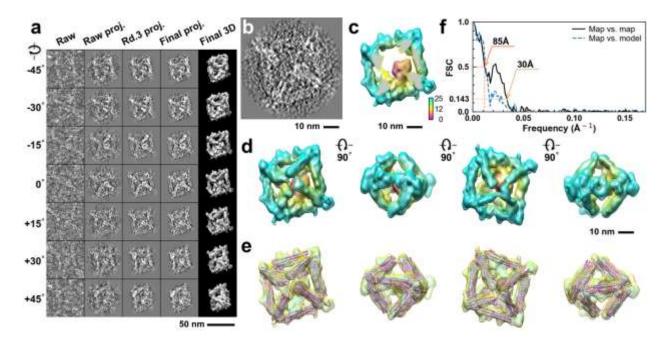

Supplementary Fig. 10: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 002) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

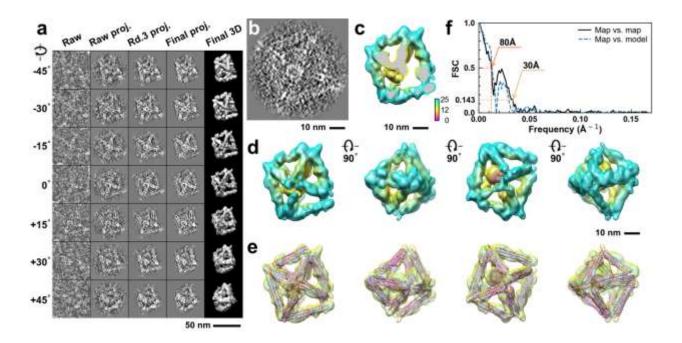

Supplementary Fig. 11: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 003) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

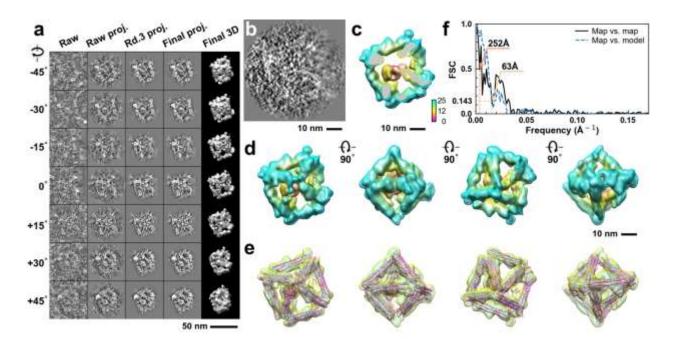

Supplementary Fig. 12: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 004) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

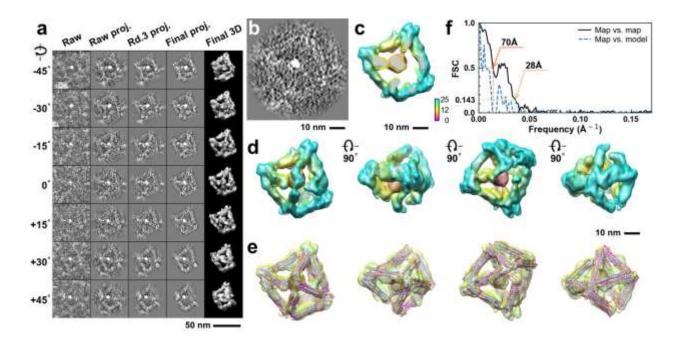

Supplementary Fig. 13: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 005) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

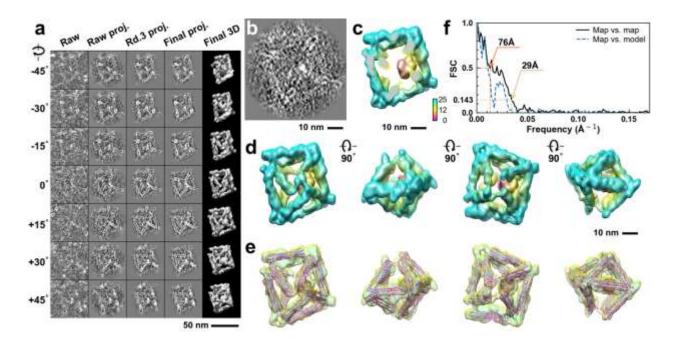

Supplementary Fig. 14: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 006) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

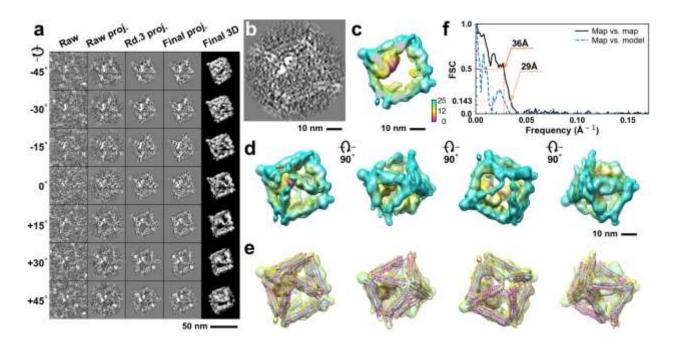

Supplementary Fig. 15: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 007) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

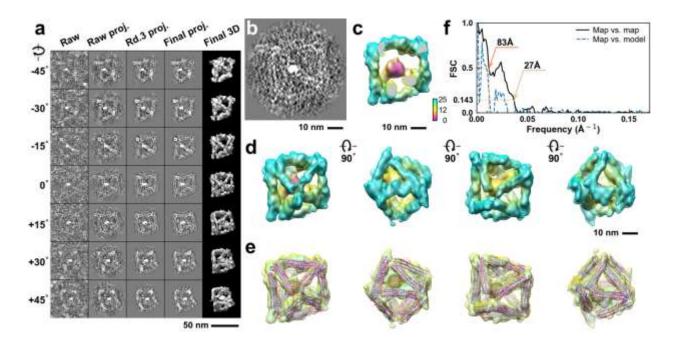

Supplementary Fig. 16: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 008) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

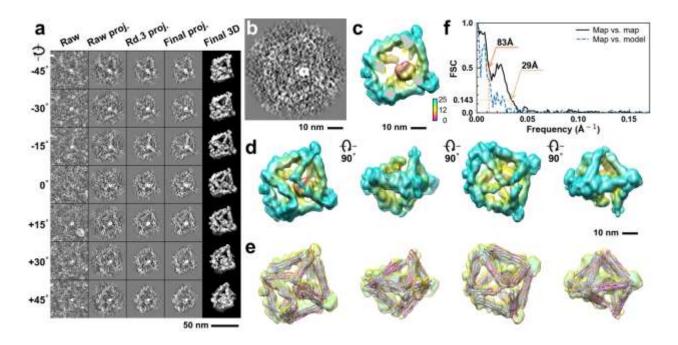

Supplementary Fig. 17: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 009) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

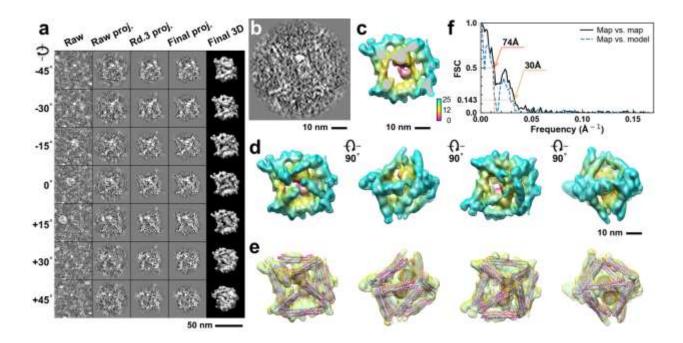

Supplementary Fig. 18: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 010) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

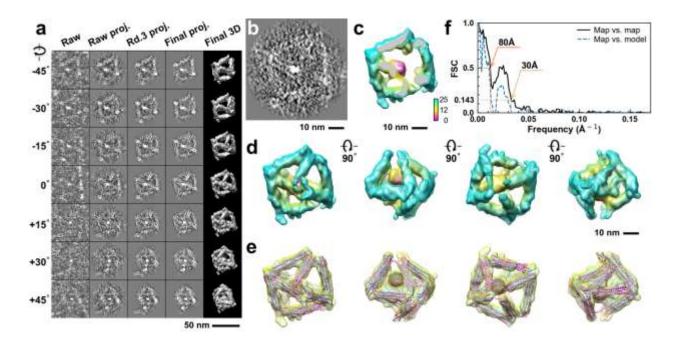

Supplementary Fig. 19: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 011) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

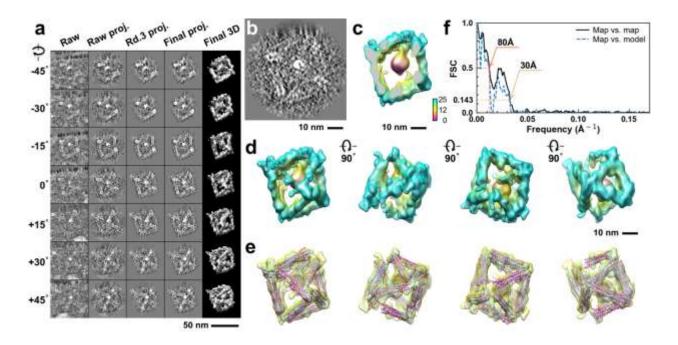

Supplementary Fig. 20: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 012) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

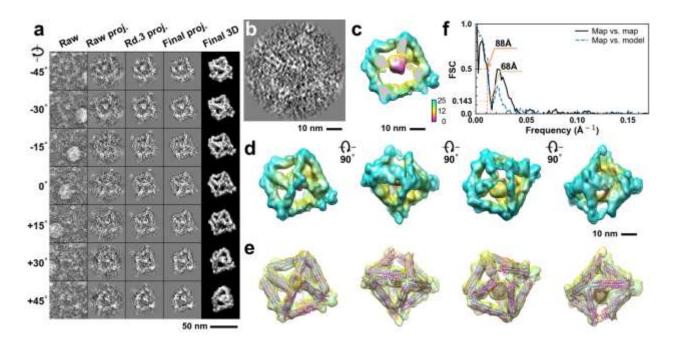

Supplementary Fig. 21: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 013) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

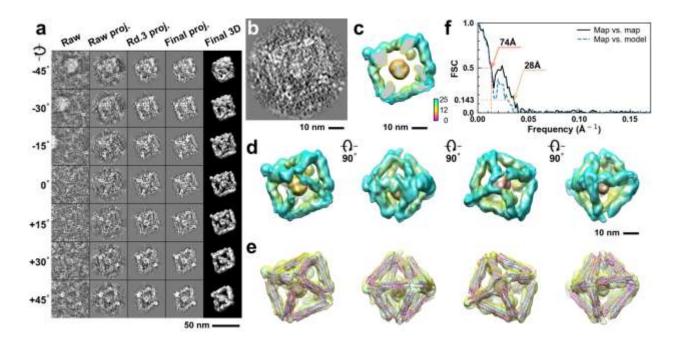

Supplementary Fig. 22: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 014) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

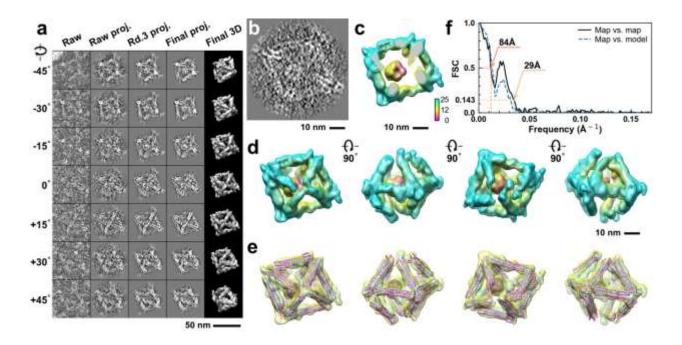

Supplementary Fig. 23: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 015) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

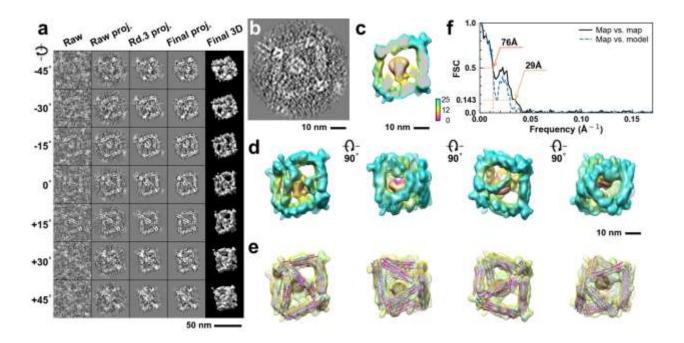

Supplementary Fig. 24: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 016) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 25: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 017) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

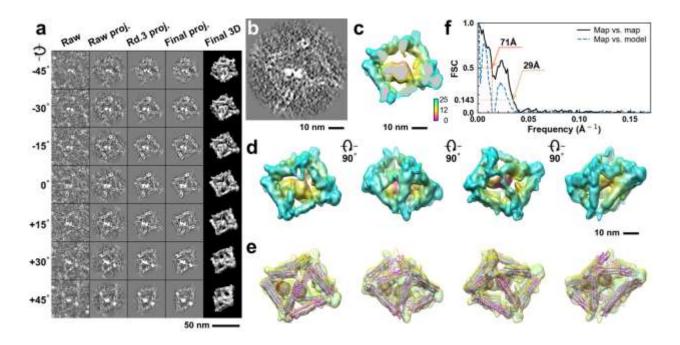

Supplementary Fig. 26: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 018) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

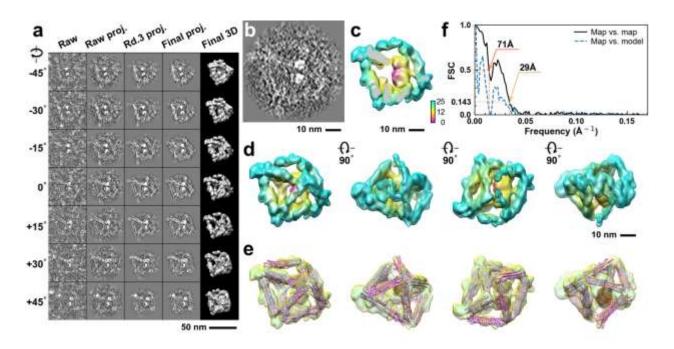

Supplementary Fig. 27: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 019) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

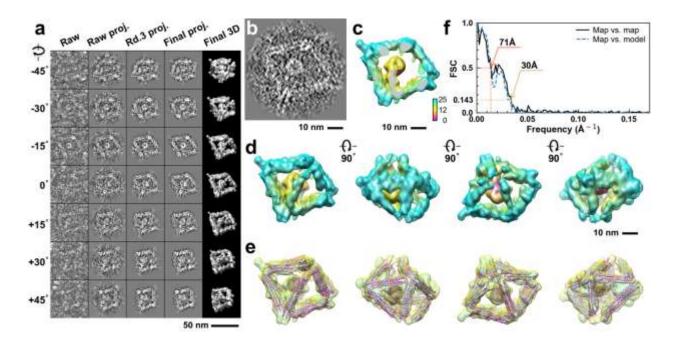

Supplementary Fig. 28: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 020) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

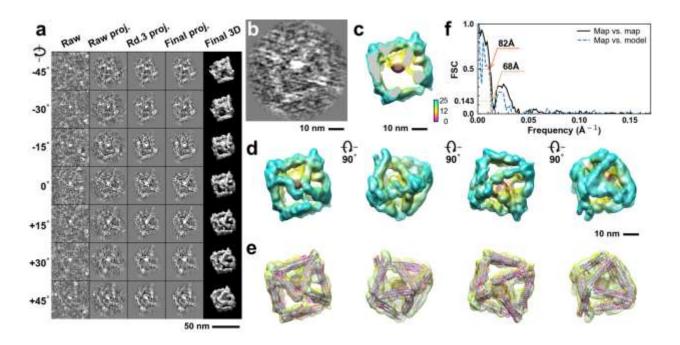

Supplementary Fig. 29: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 021) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

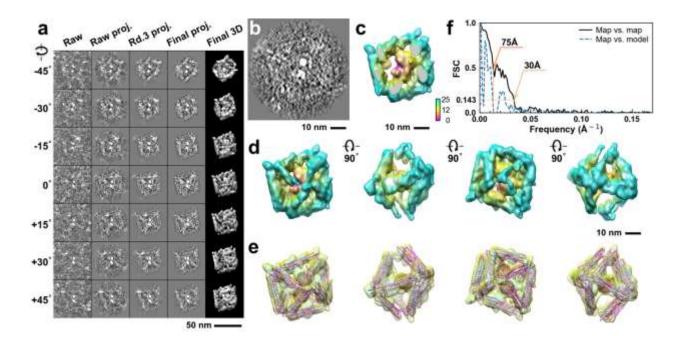
Supplementary Fig. 30: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 022) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

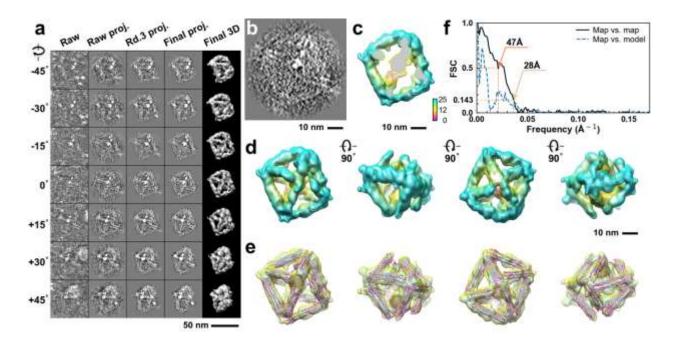

Supplementary Fig. 31: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 023) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

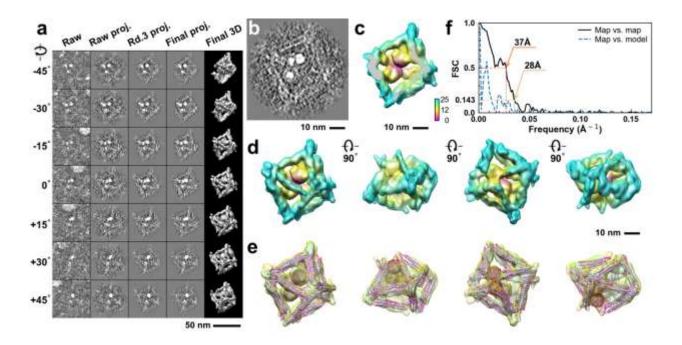

Supplementary Fig. 32: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 024) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

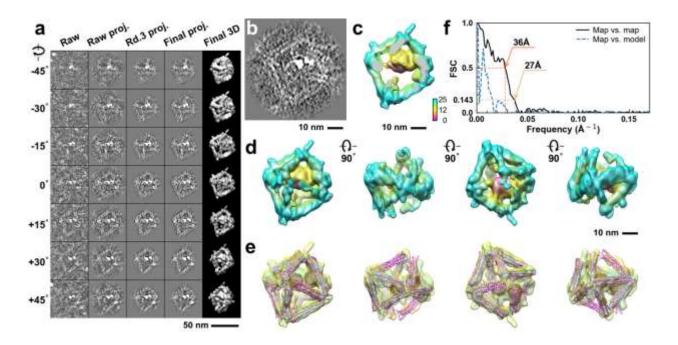

Supplementary Fig. 33: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 025) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

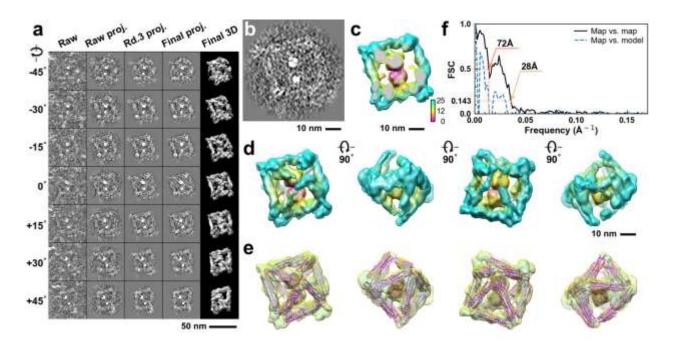

Supplementary Fig. 34: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 026) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

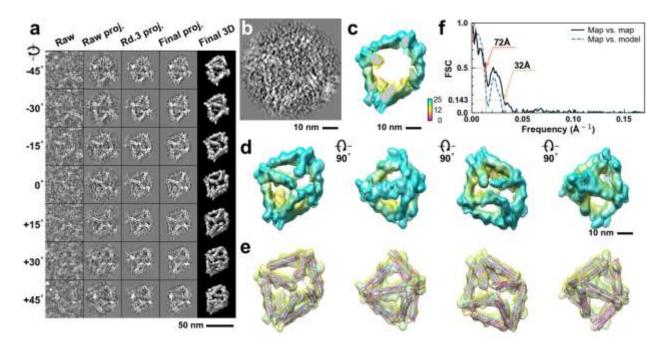

Supplementary Fig. 35: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 027) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

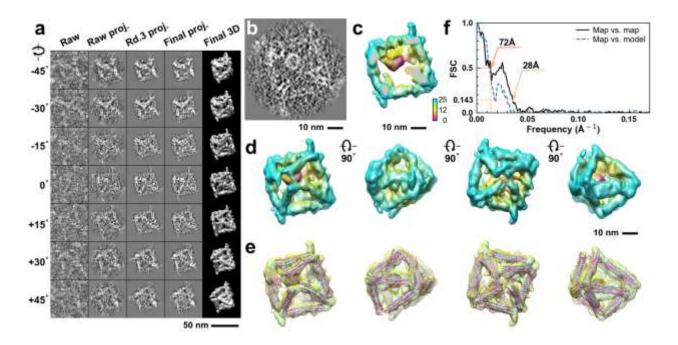

Supplementary Fig. 36: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 028) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

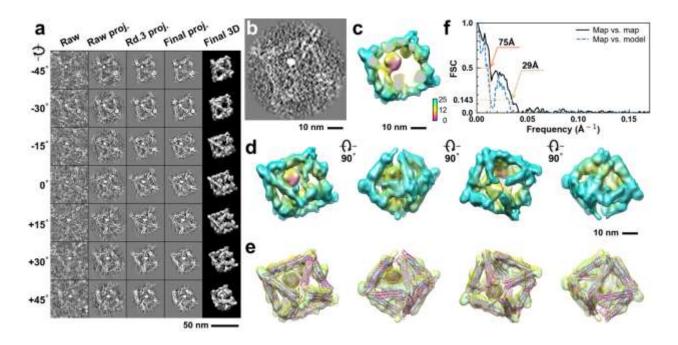

Supplementary Fig. 37: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 029) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

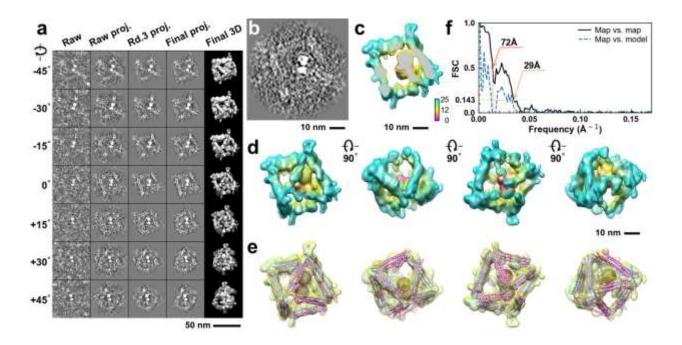

Supplementary Fig. 38: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 030) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

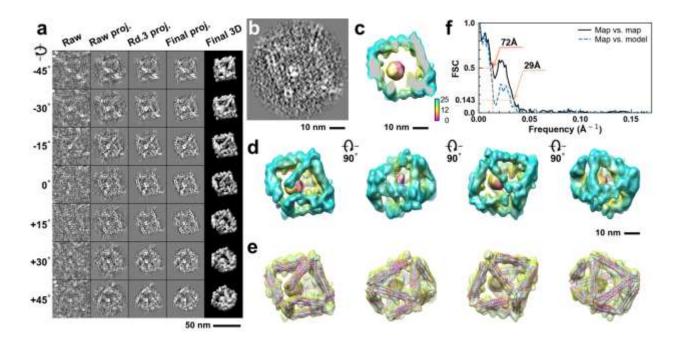

Supplementary Fig. 39: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 031) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

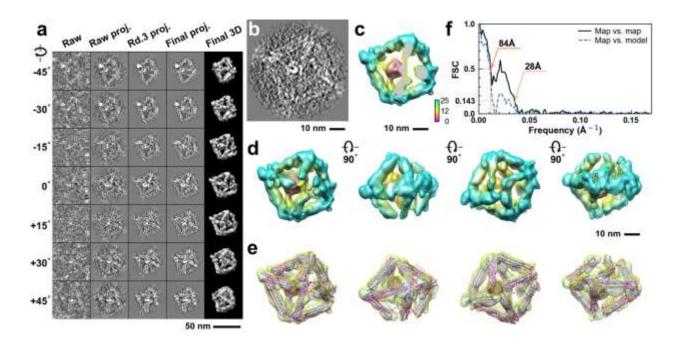

Supplementary Fig. 40: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 032) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

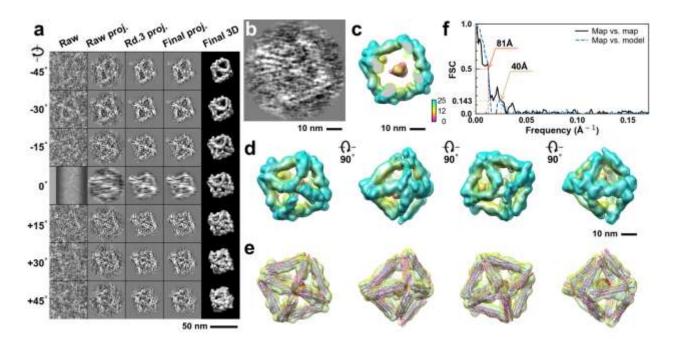

Supplementary Fig. 41: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 033) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

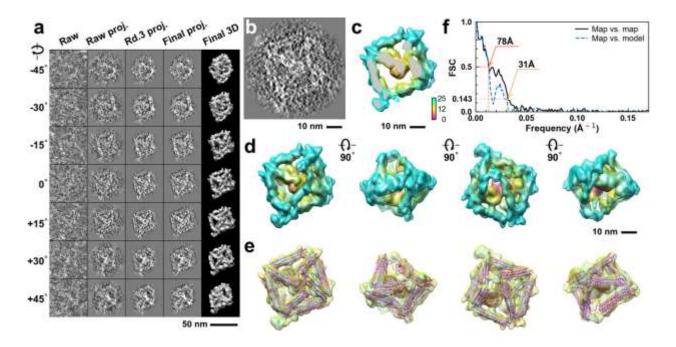

Supplementary Fig. 42: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 034) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

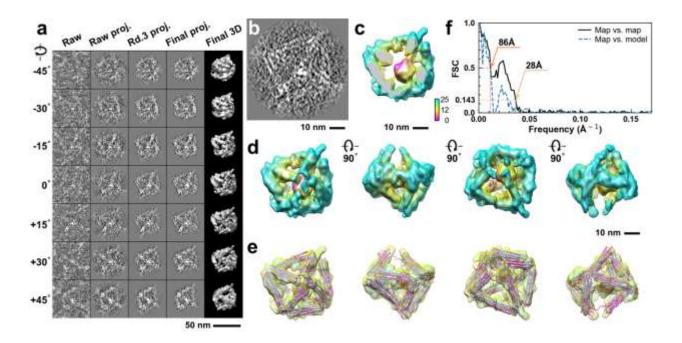

Supplementary Fig. 43: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 035) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

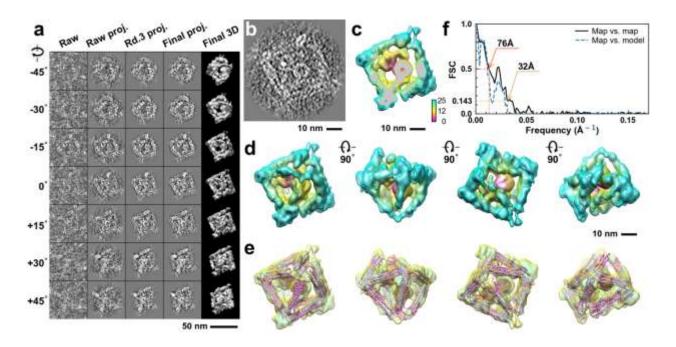

Supplementary Fig. 44: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 036) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

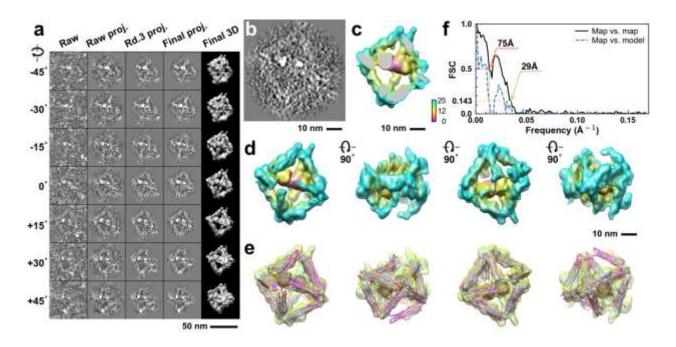

Supplementary Fig. 45: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 037) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

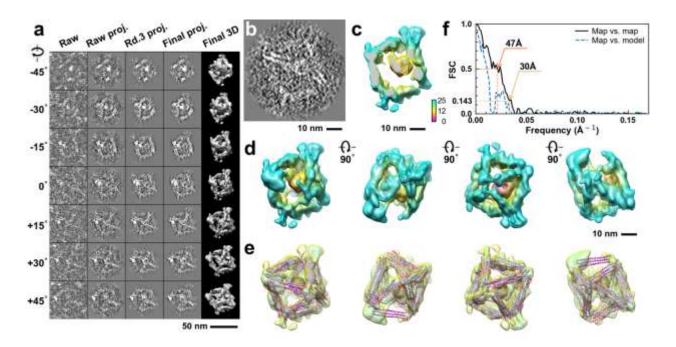

Supplementary Fig. 46: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 038) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

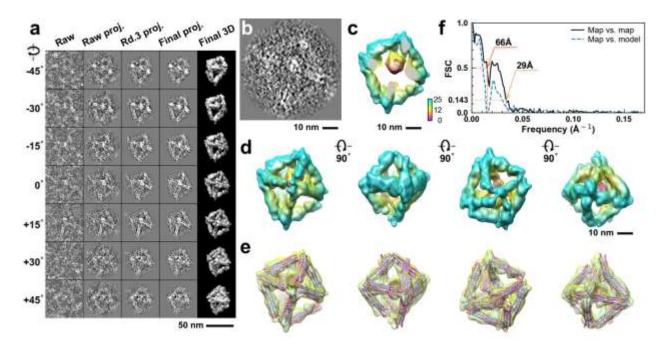

Supplementary Fig. 47: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 039) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

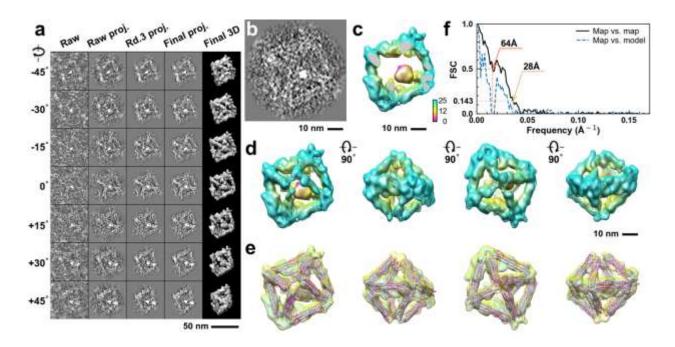

Supplementary Fig. 48: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 040) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

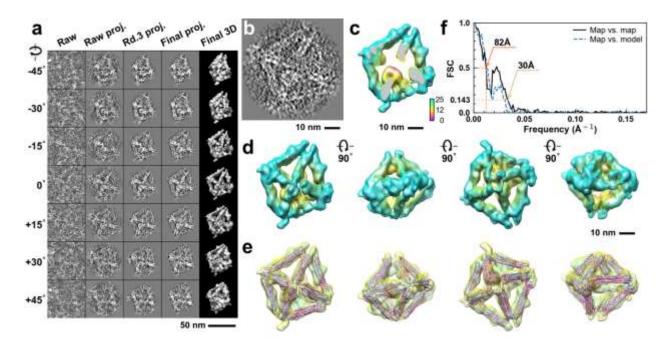

Supplementary Fig. 49: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 041) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

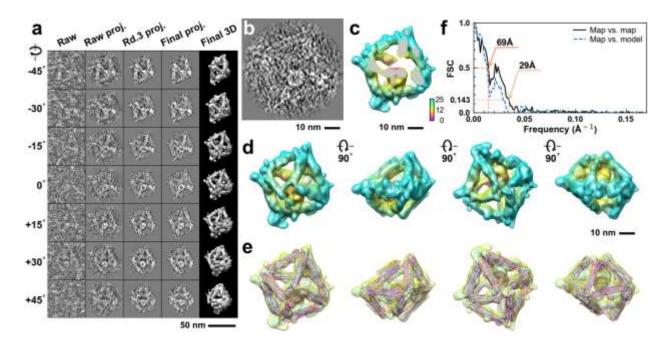

Supplementary Fig. 50: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 042) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

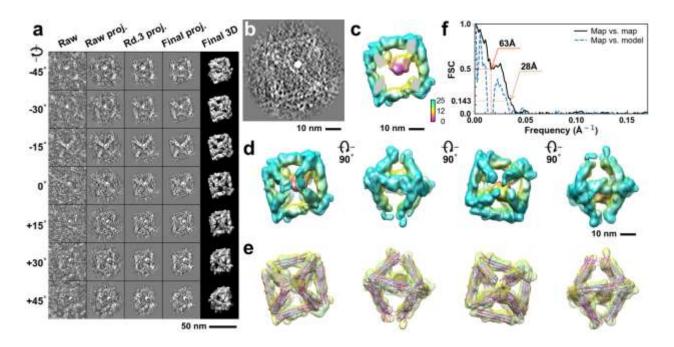

Supplementary Fig. 51: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 043) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

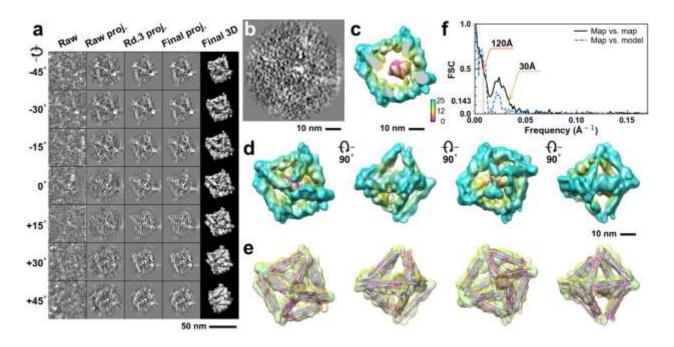

Supplementary Fig. 52: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 044) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 53: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 045) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

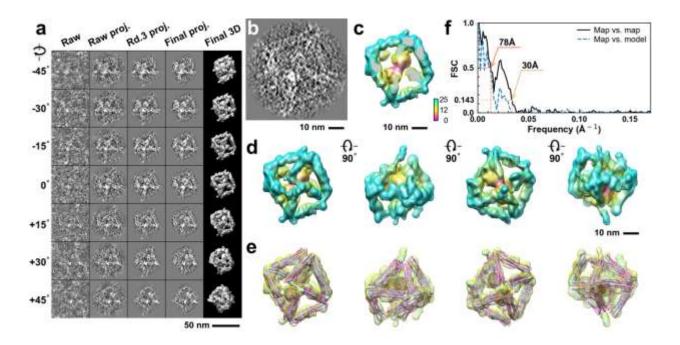

Supplementary Fig. 54: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 046) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

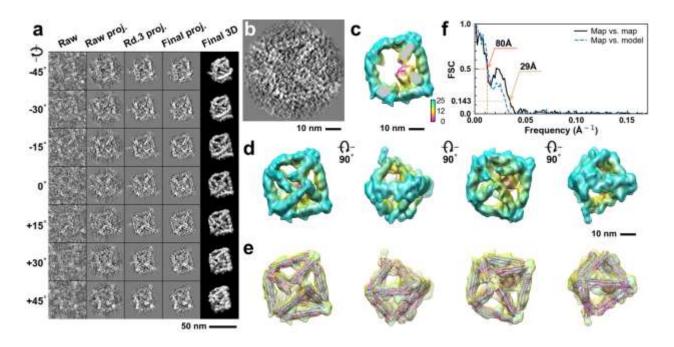

Supplementary Fig. 55: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 047) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

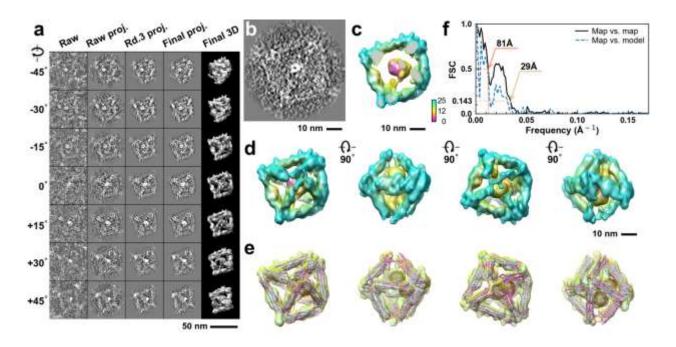

Supplementary Fig. 56: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 048) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

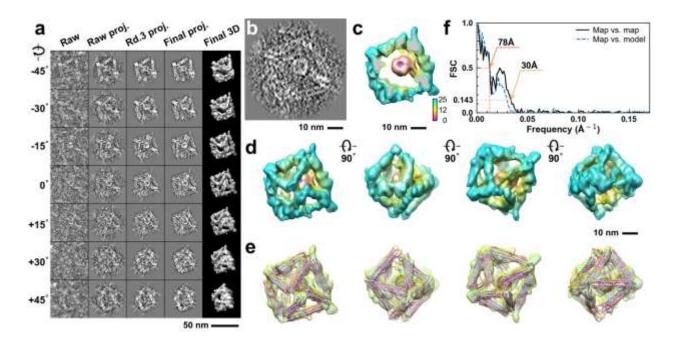

Supplementary Fig. 57: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 049) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

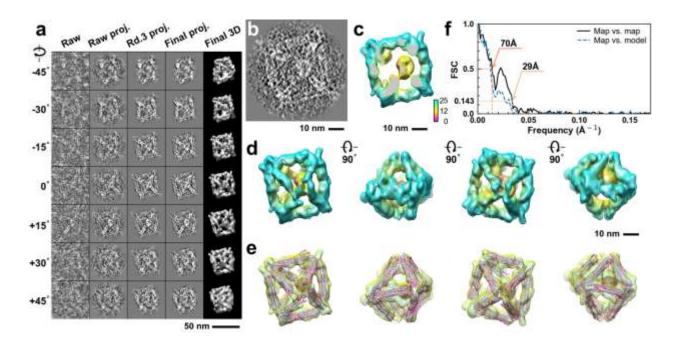
Supplementary Fig. 58: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 050) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

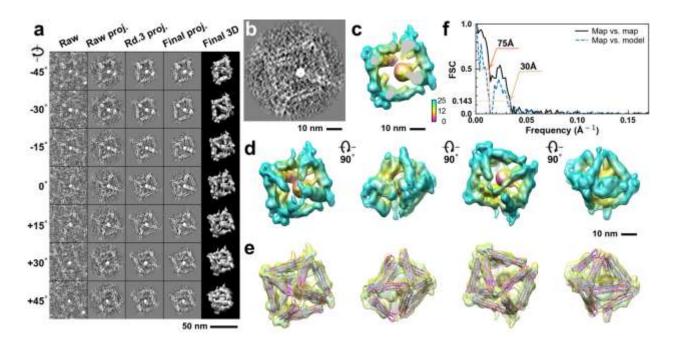

Supplementary Fig. 59: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 051) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

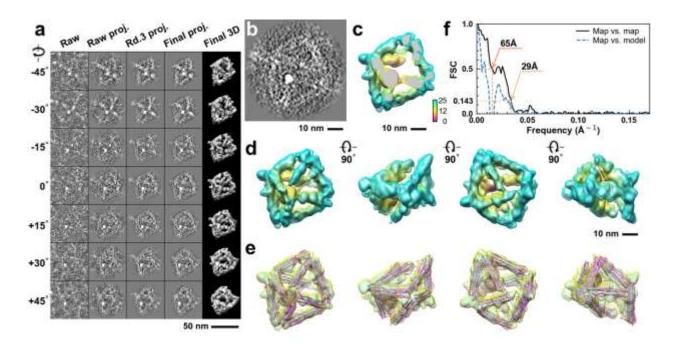

Supplementary Fig. 60: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 052) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

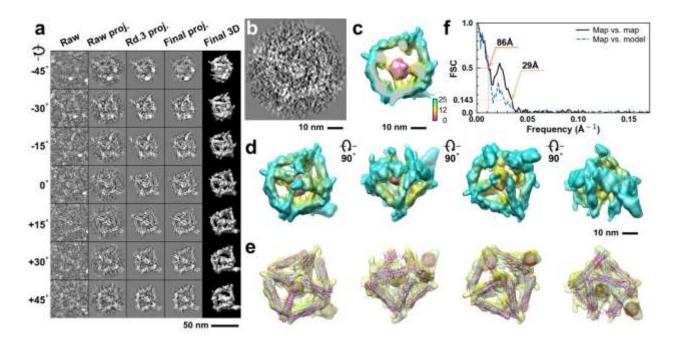

Supplementary Fig. 61: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 053) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

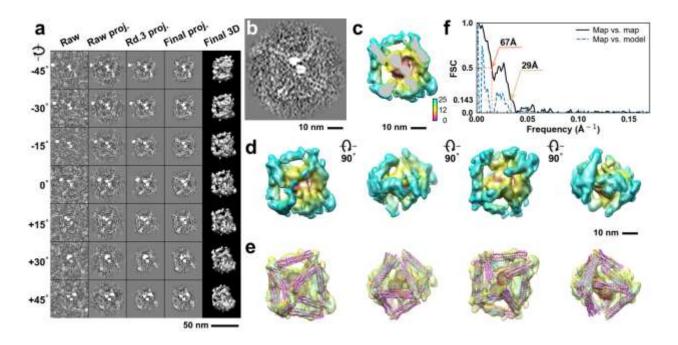

Supplementary Fig. 62: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 054) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

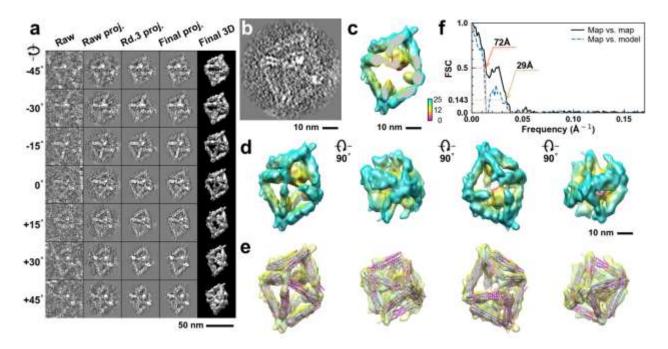

Supplementary Fig. 63: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 055) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

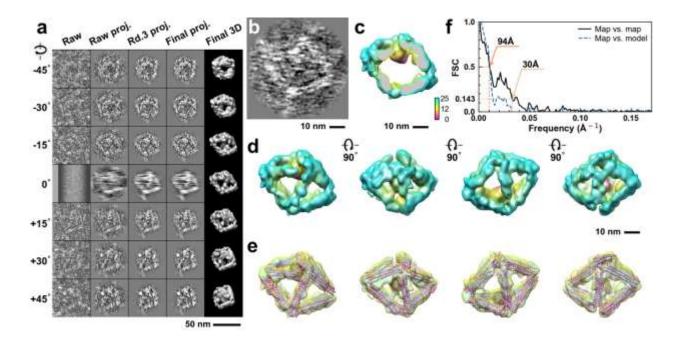

Supplementary Fig. 64: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 056) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

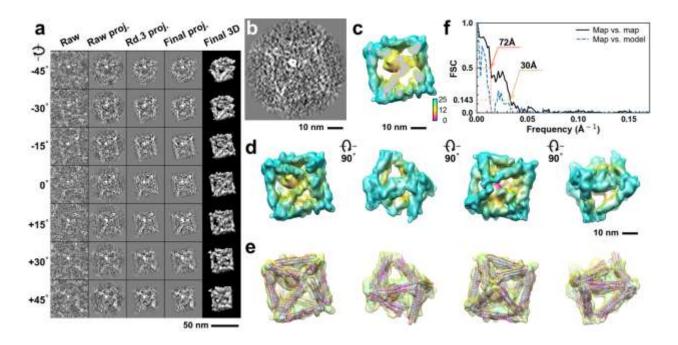

Supplementary Fig. 65: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 057) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

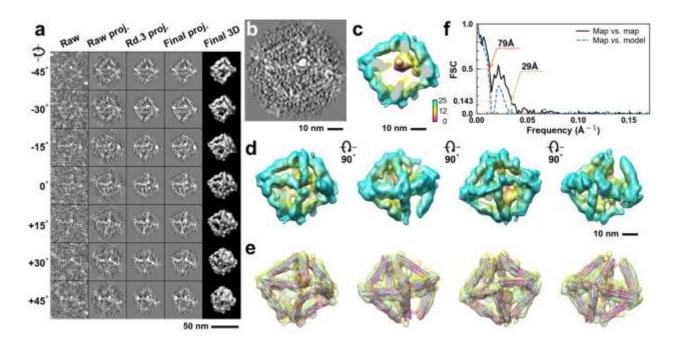

Supplementary Fig. 66: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 058) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

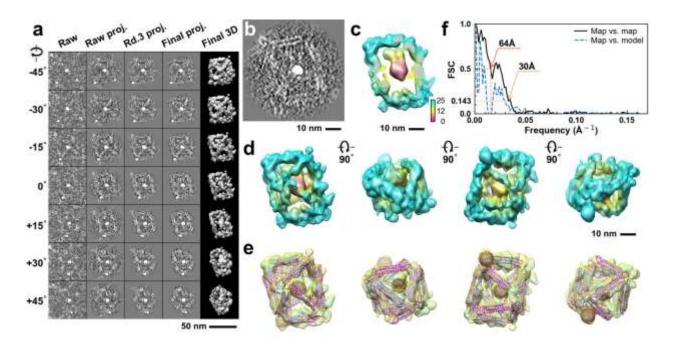

Supplementary Fig. 67: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 059) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 68: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 060) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

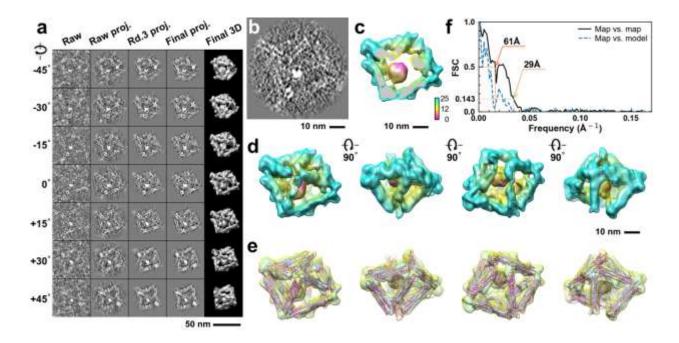

Supplementary Fig. 69: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 061) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

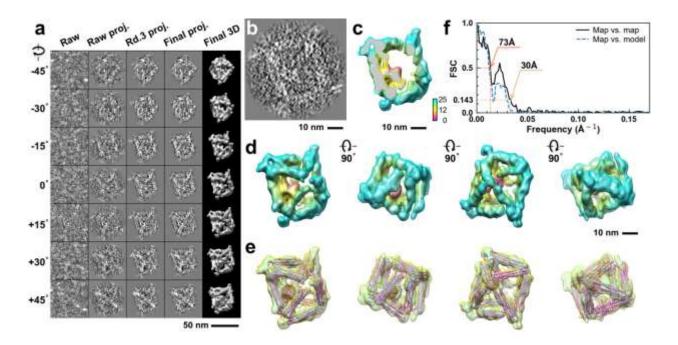

Supplementary Fig. 70: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 062) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

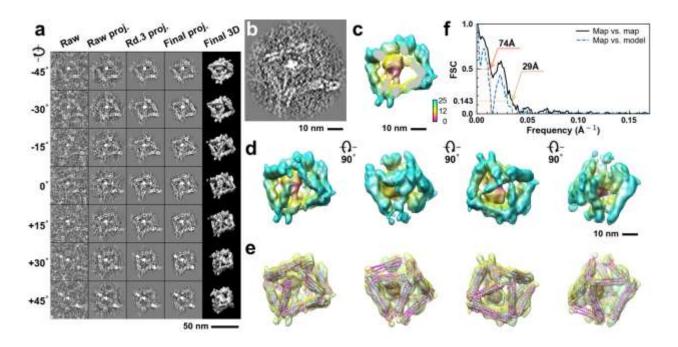

Supplementary Fig. 71: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 063) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 72: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 064) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

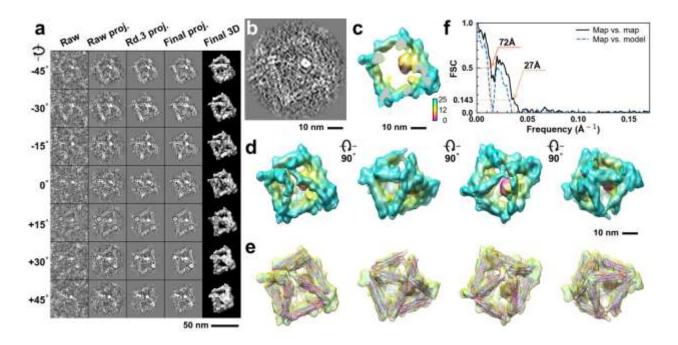

Supplementary Fig. 73: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 065) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

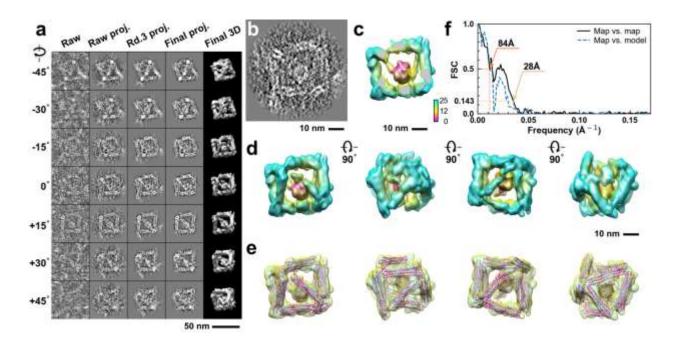

Supplementary Fig. 74: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 066) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 75: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 067) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

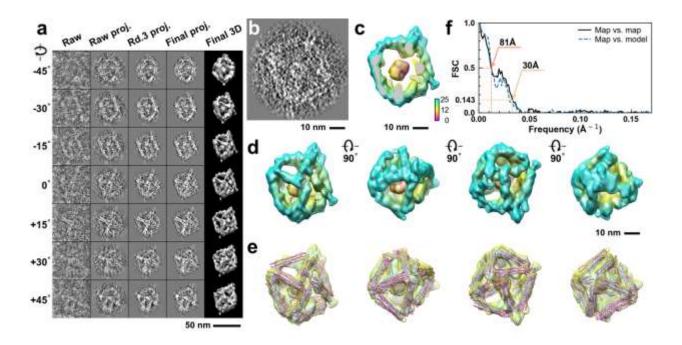

Supplementary Fig. 76: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 068) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 77: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 069) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

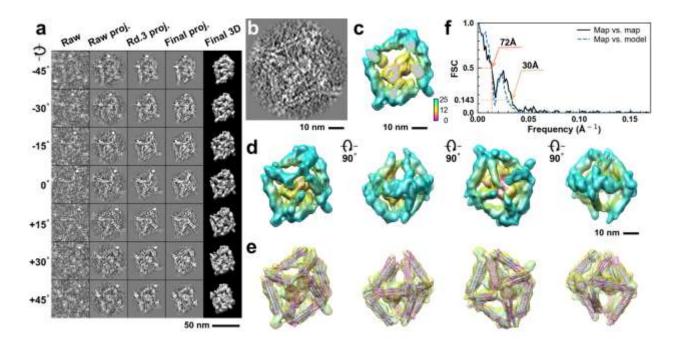

Supplementary Fig. 78: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 070) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

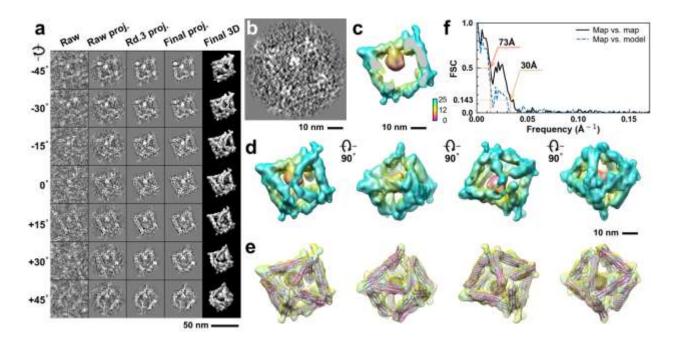

Supplementary Fig. 79: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 071) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

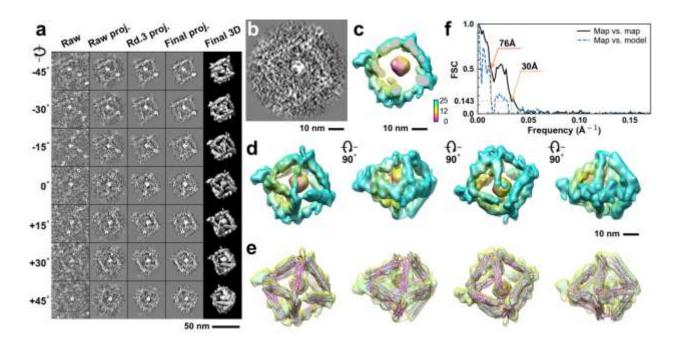
Supplementary Fig. 80: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 072) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

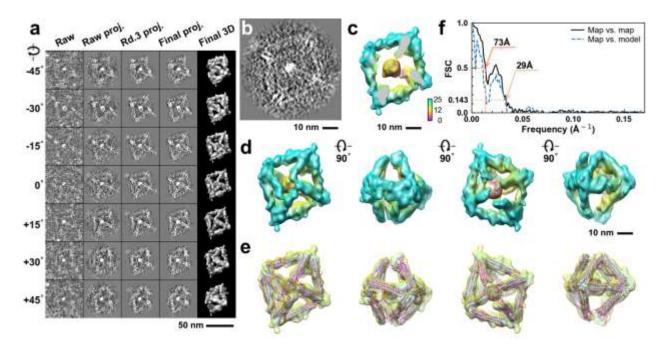

Supplementary Fig. 81: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 073) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

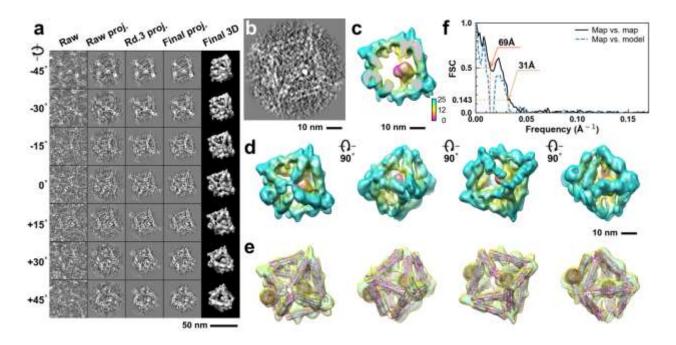
Supplementary Fig. 82: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 074) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

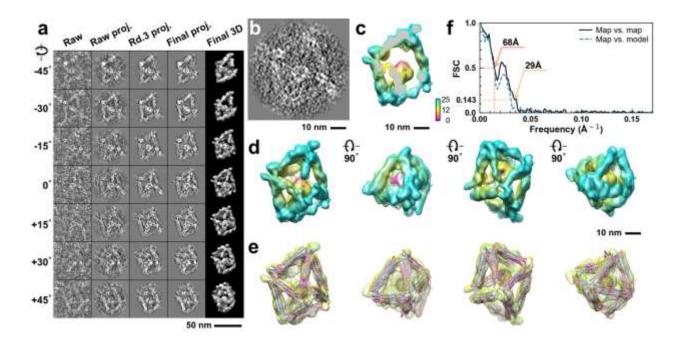

Supplementary Fig. 83: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 075) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

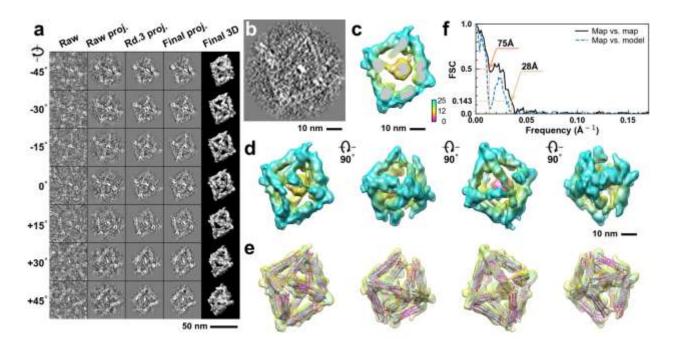

Supplementary Fig. 84: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 076) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

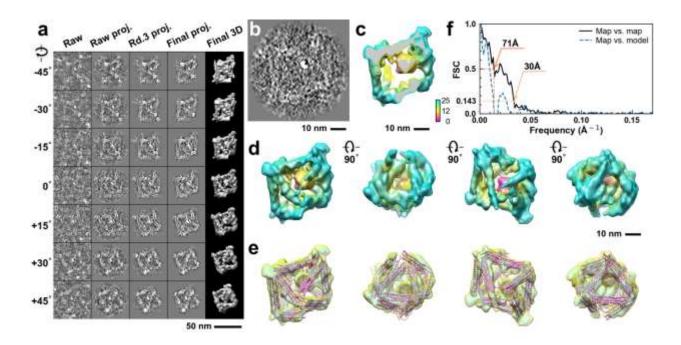

Supplementary Fig. 85: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 077) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

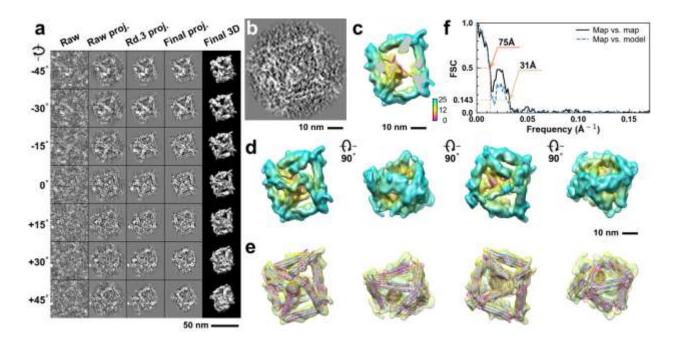

Supplementary Fig. 86: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 078) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

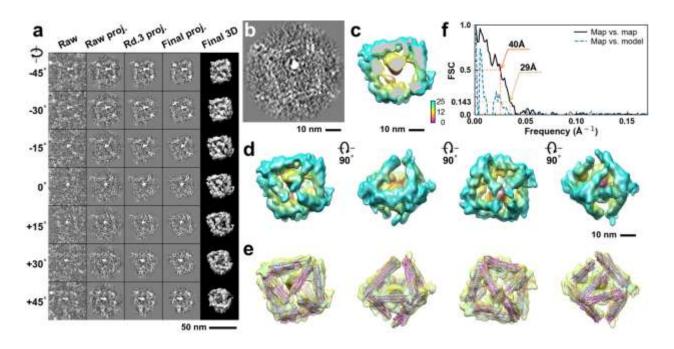

Supplementary Fig. 87: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 079) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

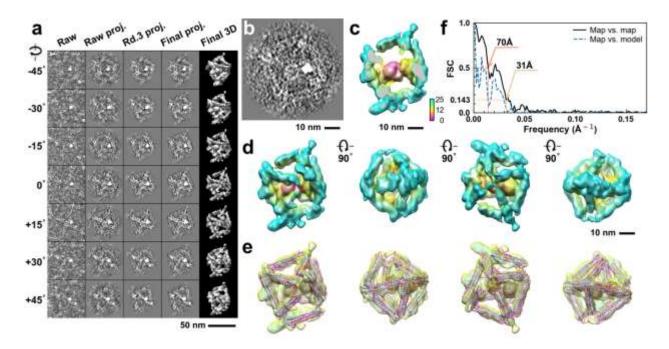

Supplementary Fig. 88: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 080) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

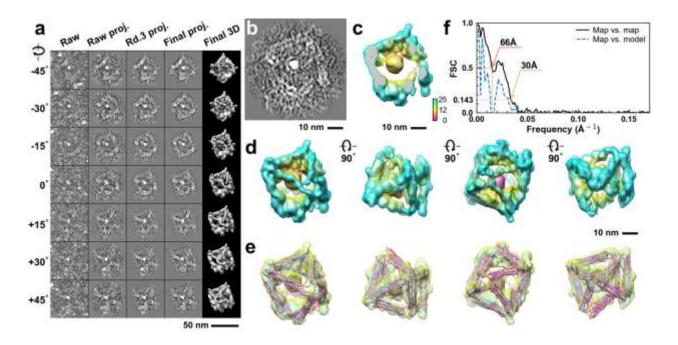

Supplementary Fig. 89: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 081) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

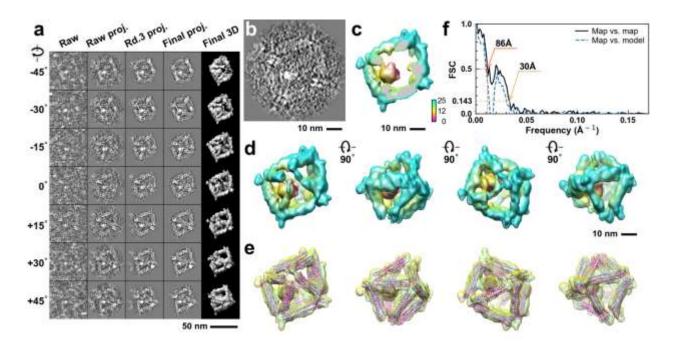

Supplementary Fig. 90: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 082) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

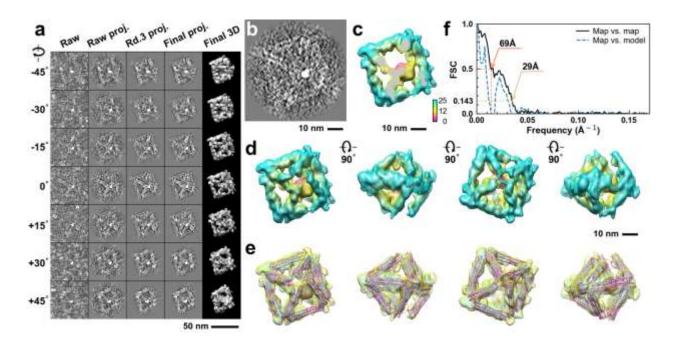

Supplementary Fig. 91: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 083) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

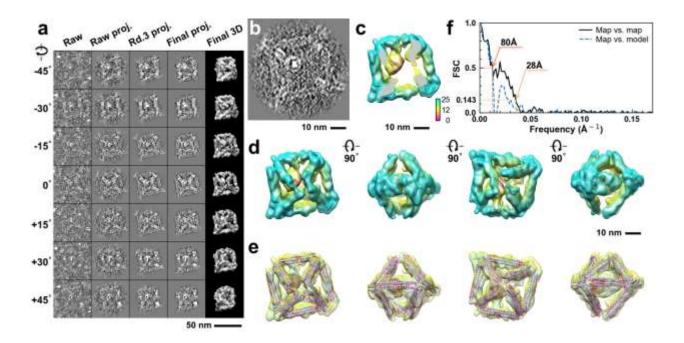

Supplementary Fig. 92: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 084) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

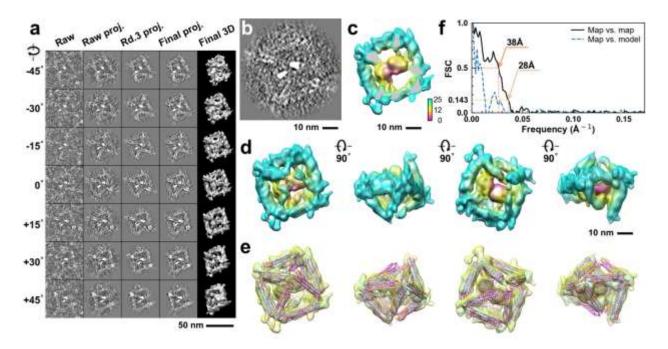

Supplementary Fig. 93: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 085) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

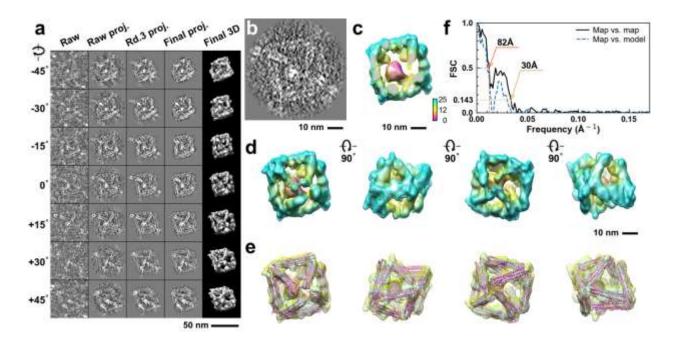

Supplementary Fig. 94: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 086) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

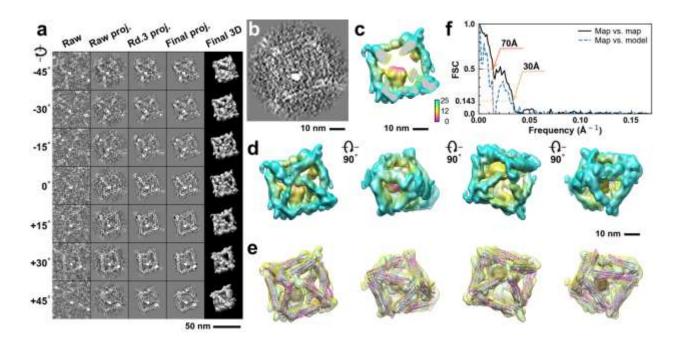

Supplementary Fig. 95: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 087) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

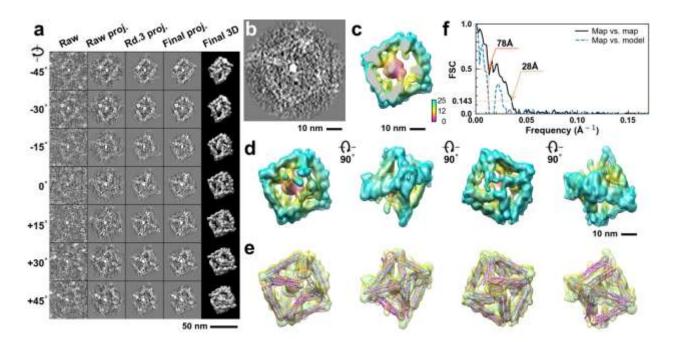

Supplementary Fig. 96: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 088) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

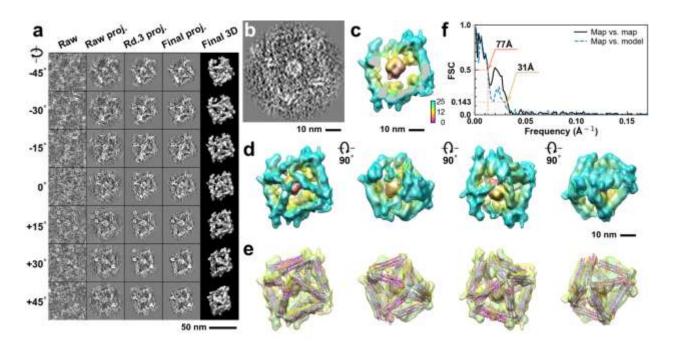

Supplementary Fig. 97: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 089) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

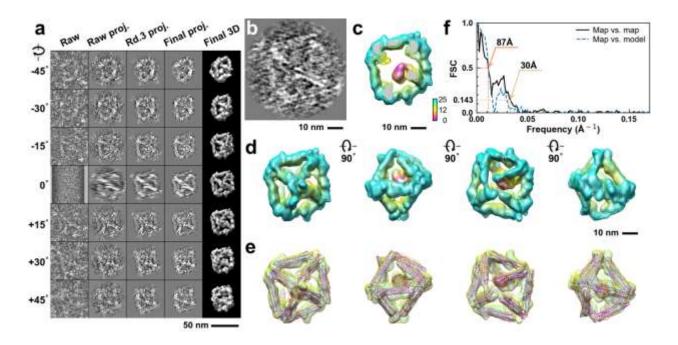

Supplementary Fig. 98: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 090) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

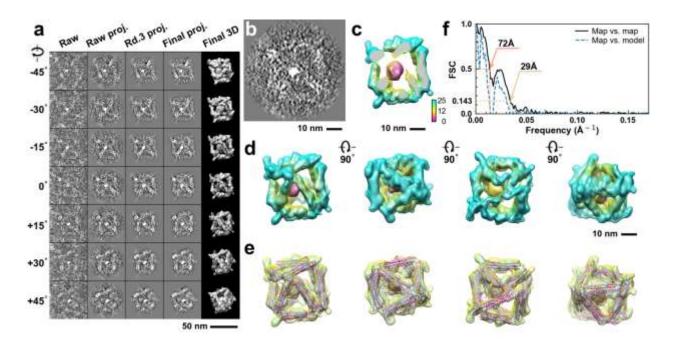

Supplementary Fig. 99: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 091) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

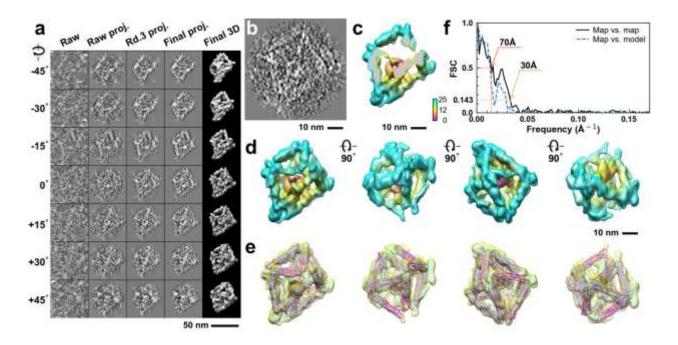

Supplementary Fig. 100: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 092) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

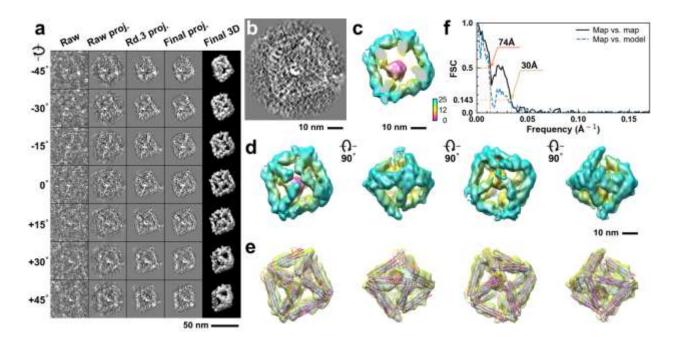

Supplementary Fig. 101: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 093) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

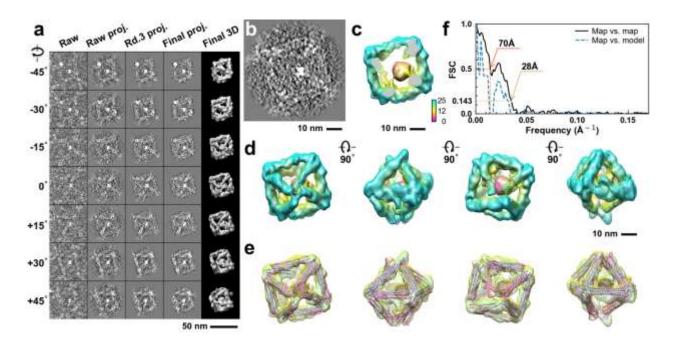

Supplementary Fig. 102: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 094) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

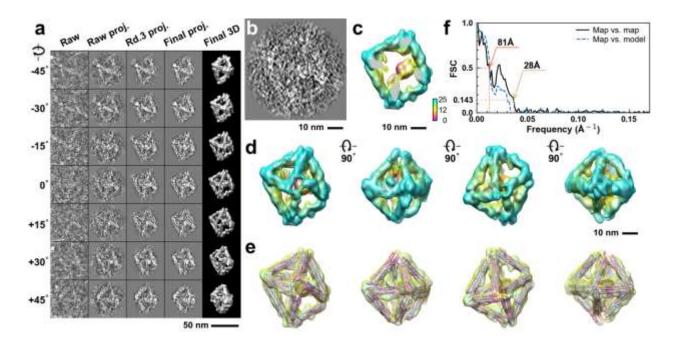

Supplementary Fig. 103: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 095) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

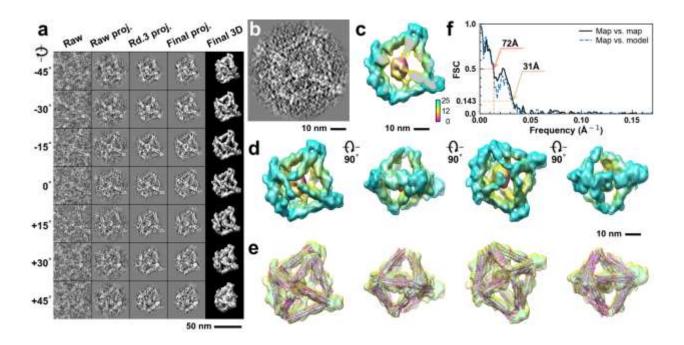

Supplementary Fig. 104: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 096) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

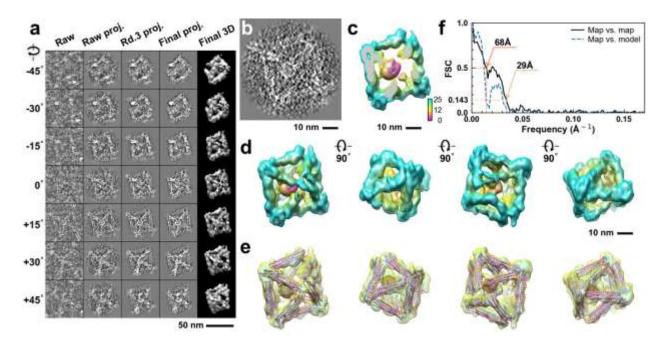

Supplementary Fig. 105: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 097) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

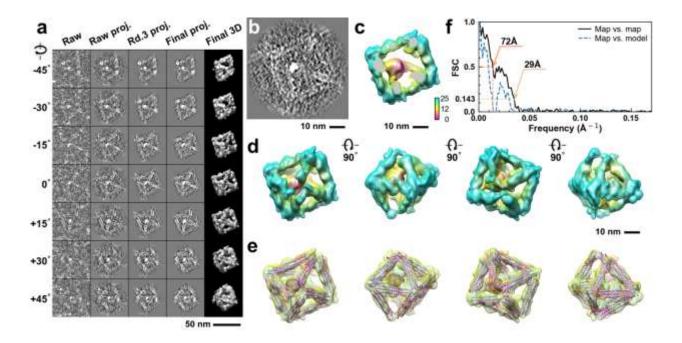

Supplementary Fig. 106: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 098) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

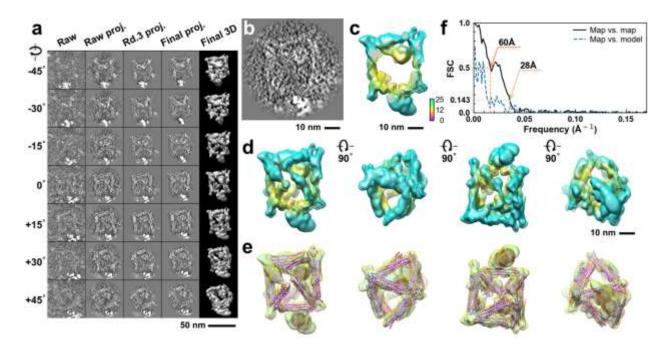

Supplementary Fig. 107: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 099) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

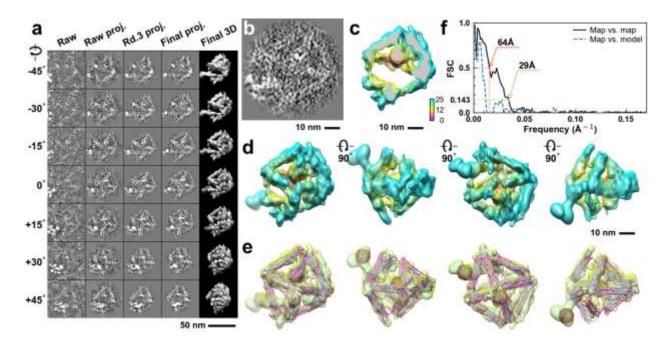

Supplementary Fig. 108: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 100) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

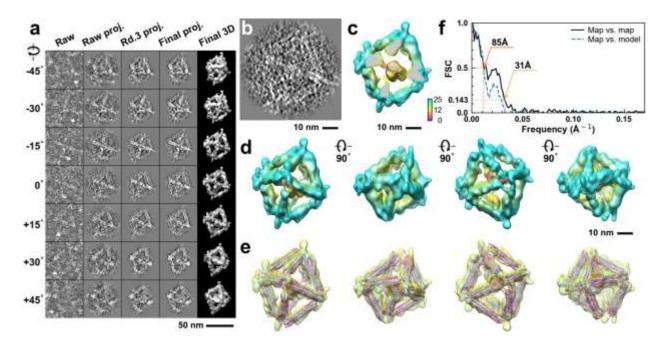

Supplementary Fig. 109: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 101) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

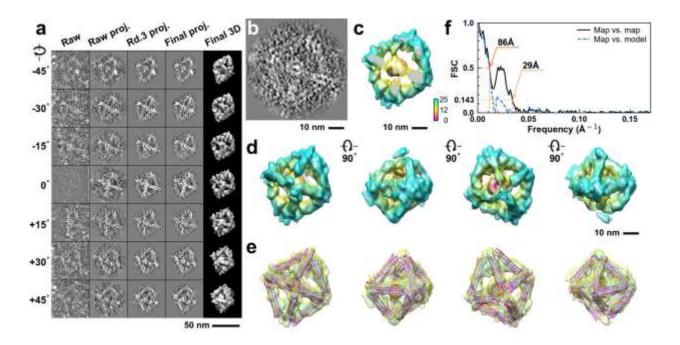

Supplementary Fig. 110: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 102) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

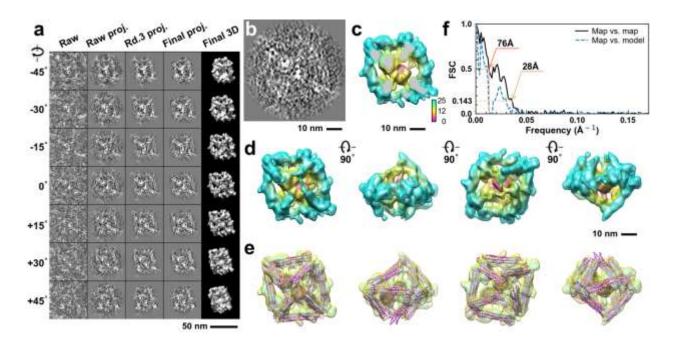

Supplementary Fig. 111: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 103) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

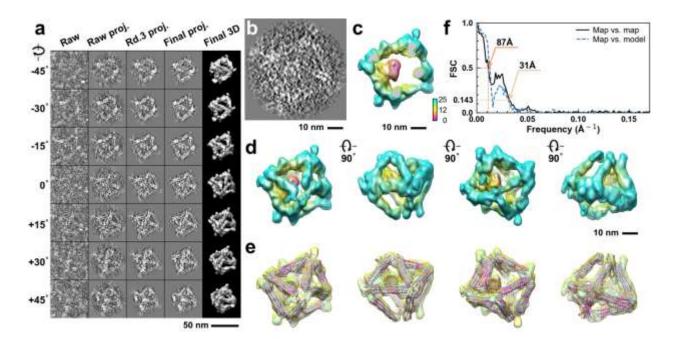

Supplementary Fig. 112: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 104) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

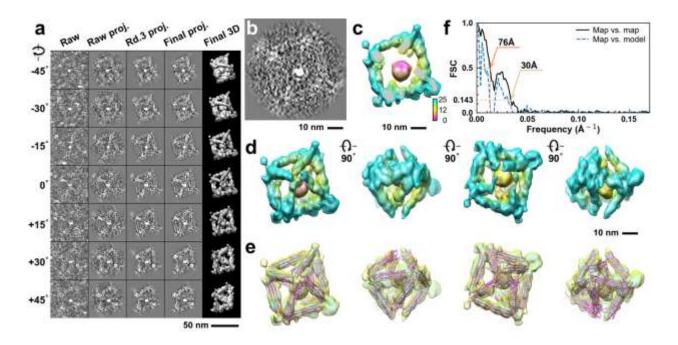

Supplementary Fig. 113: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 105) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

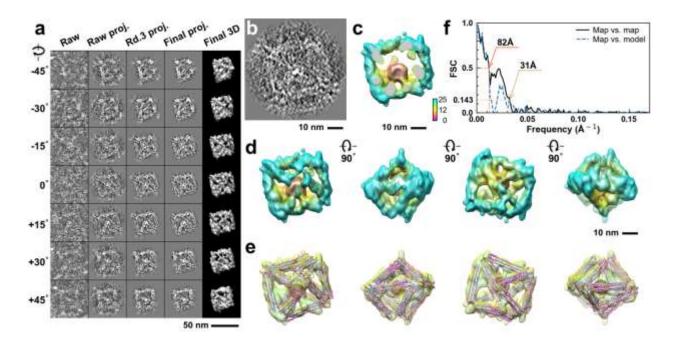

Supplementary Fig. 114: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 106) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

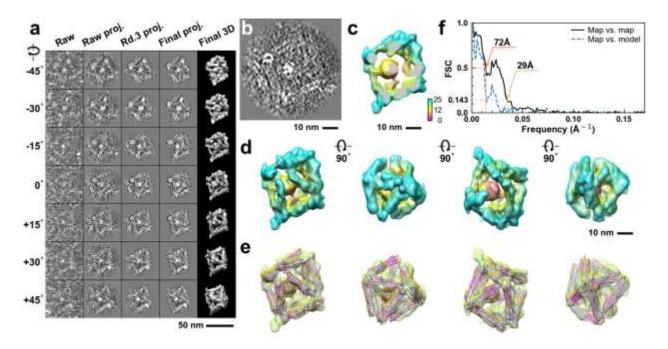

Supplementary Fig. 115: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 107) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

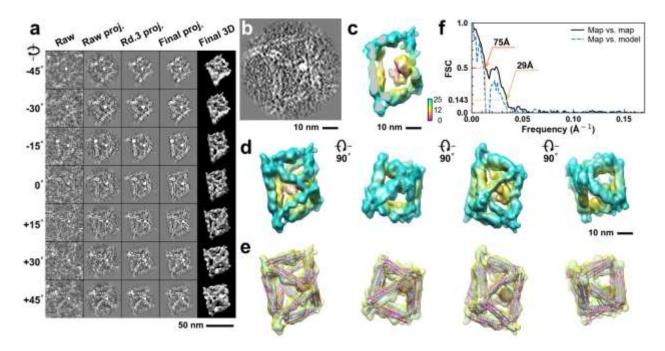

Supplementary Fig. 116: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 108) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

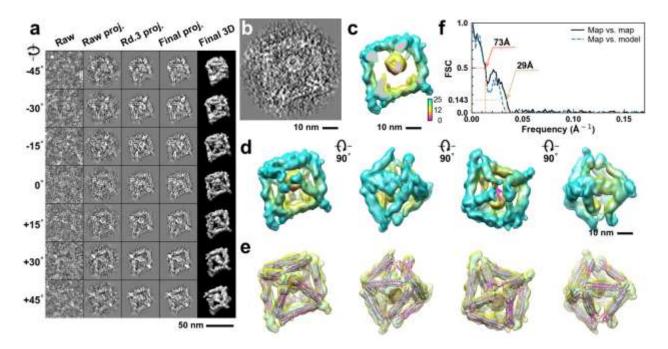

Supplementary Fig. 117: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 109) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

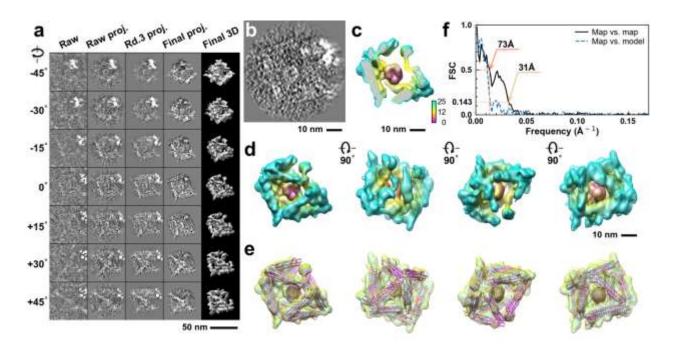

Supplementary Fig. 118: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 110) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

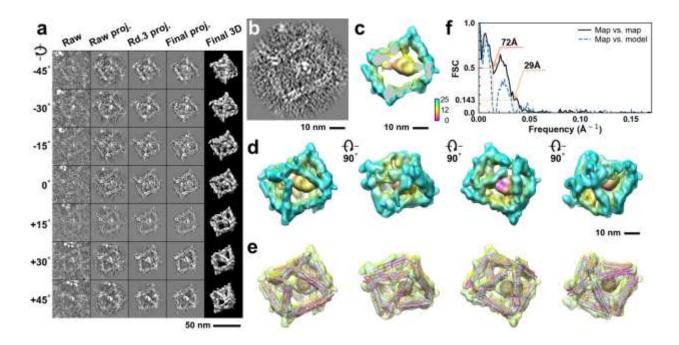

Supplementary Fig. 119: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 111) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

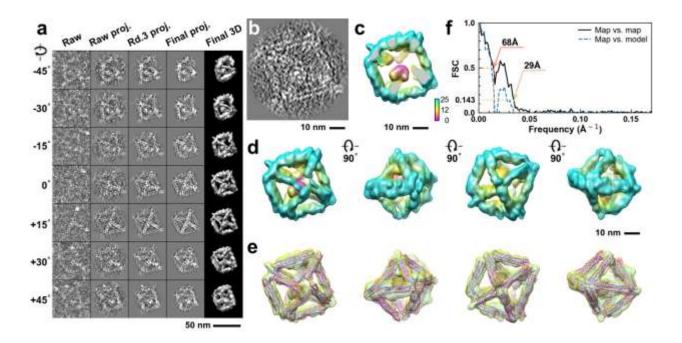

Supplementary Fig. 120: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 112) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

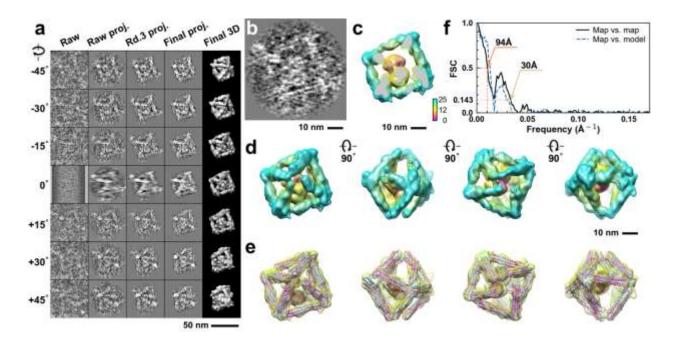

Supplementary Fig. 121: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 113) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

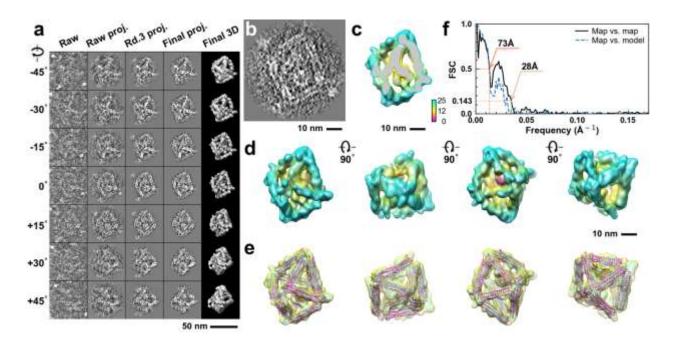

Supplementary Fig. 122: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 114) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

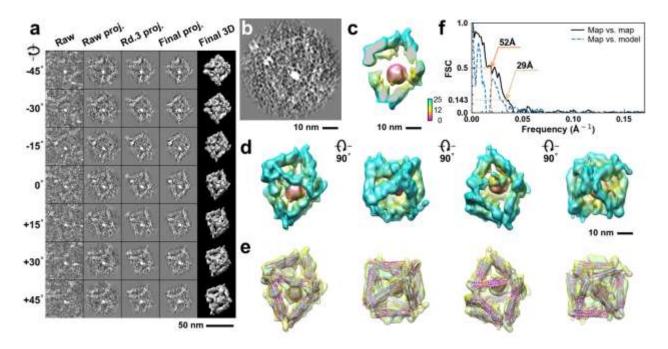

Supplementary Fig. 123: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 115) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

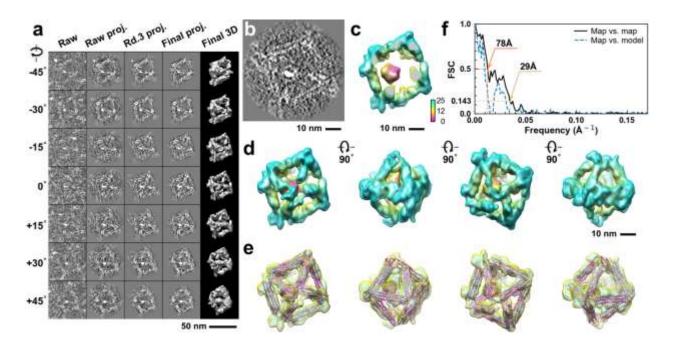

Supplementary Fig. 124: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 116) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

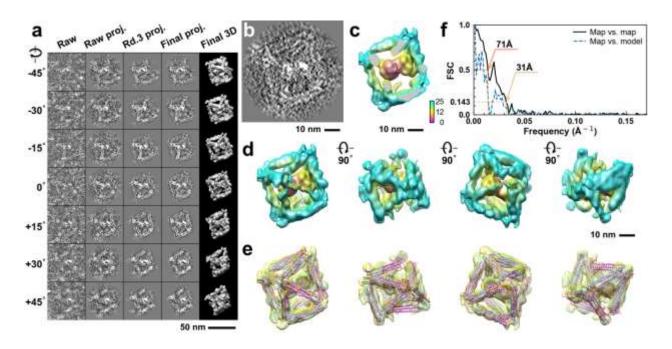

Supplementary Fig. 125: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 117) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

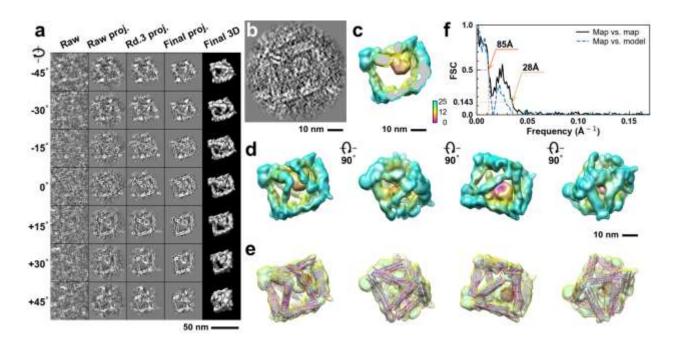

Supplementary Fig. 126: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 118) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

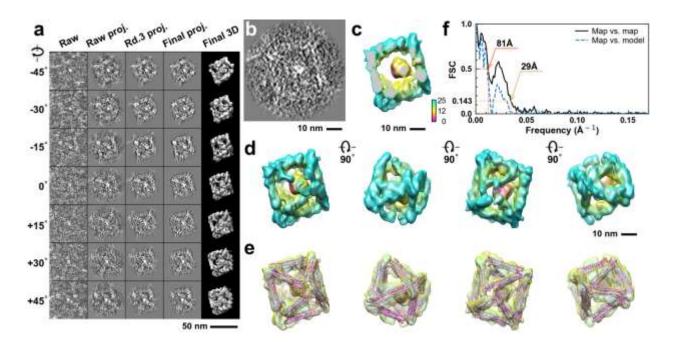

Supplementary Fig. 127: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 119) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

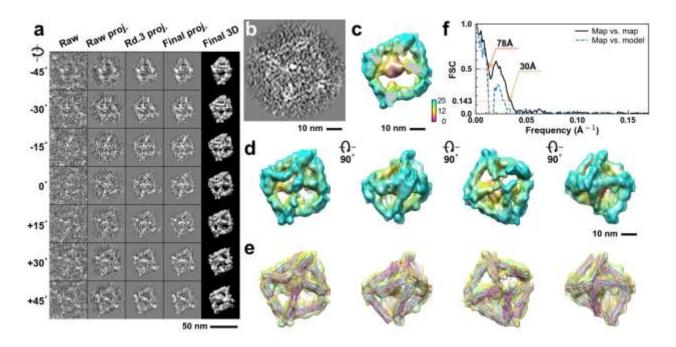

Supplementary Fig. 128: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 120) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

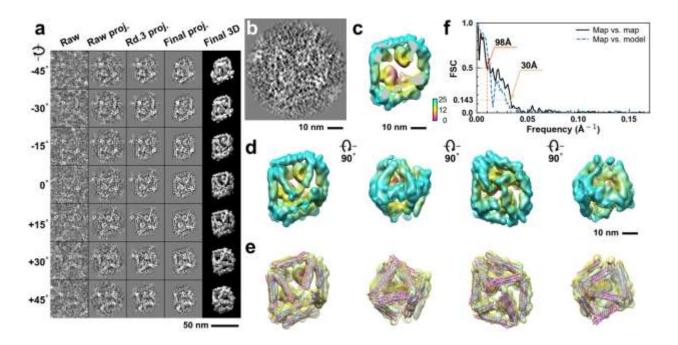

Supplementary Fig. 129: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 121) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

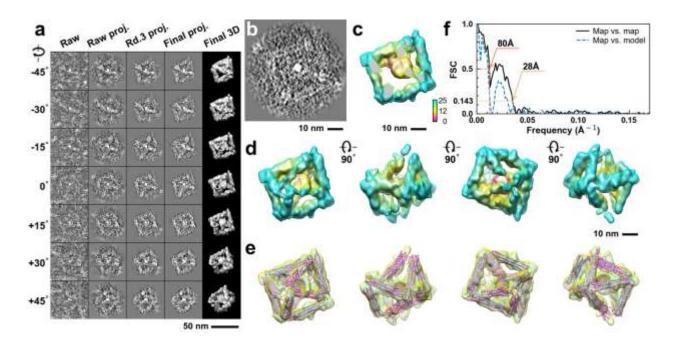

Supplementary Fig. 130: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 122) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

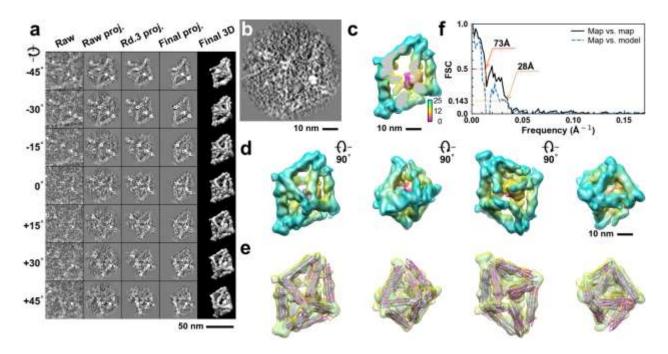

Supplementary Fig. 131: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 123) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

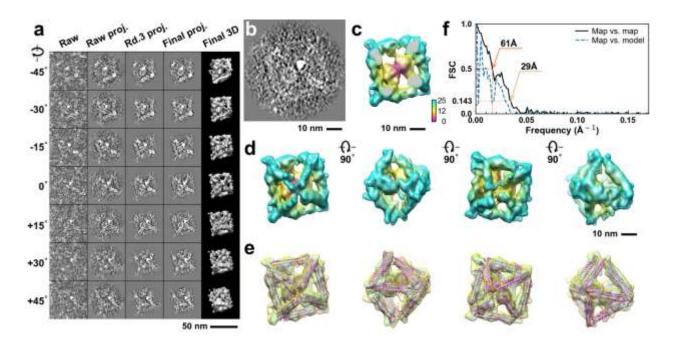

Supplementary Fig. 132: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 124) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

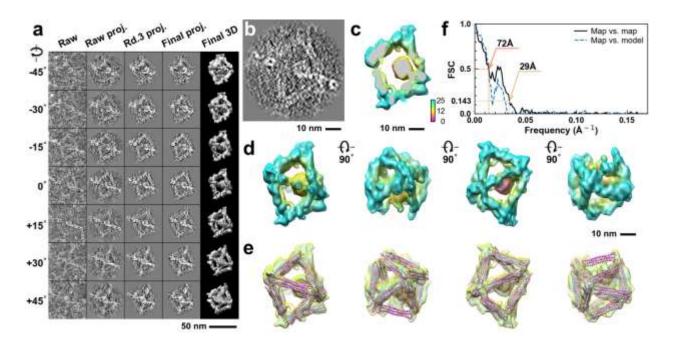

Supplementary Fig. 133: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 125) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

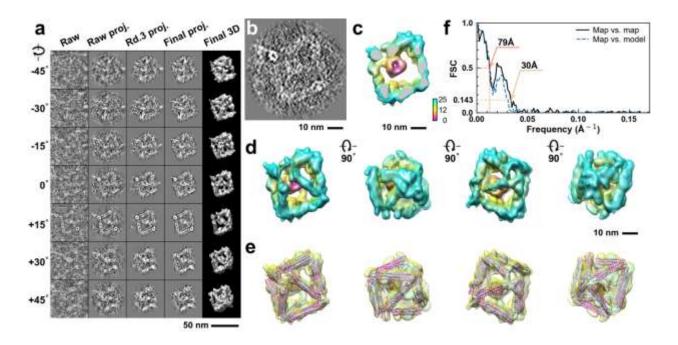

Supplementary Fig. 134: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 126) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

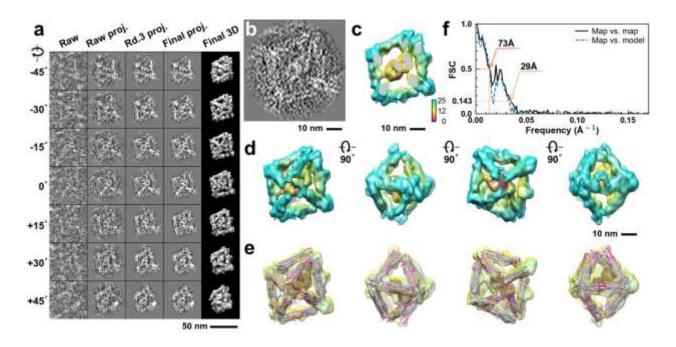

Supplementary Fig. 135: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 127) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

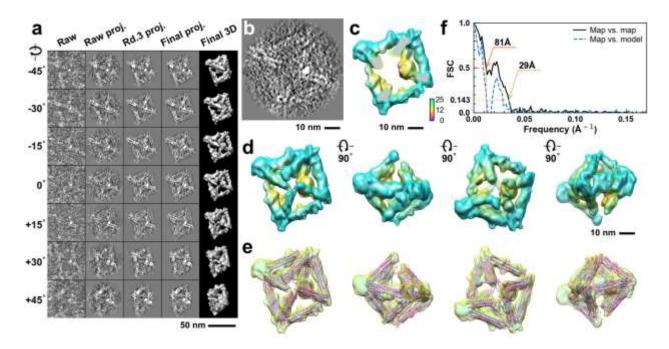

Supplementary Fig. 136: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 128) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

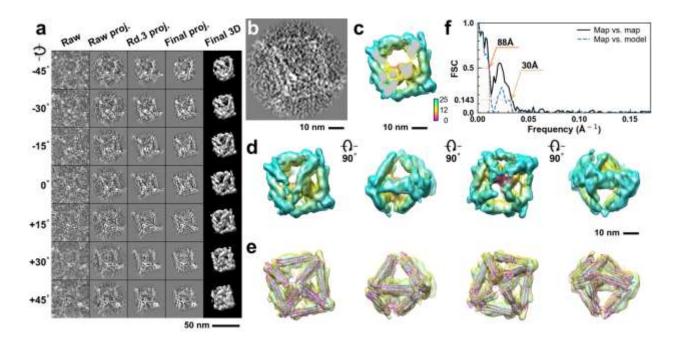

Supplementary Fig. 137: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 129) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

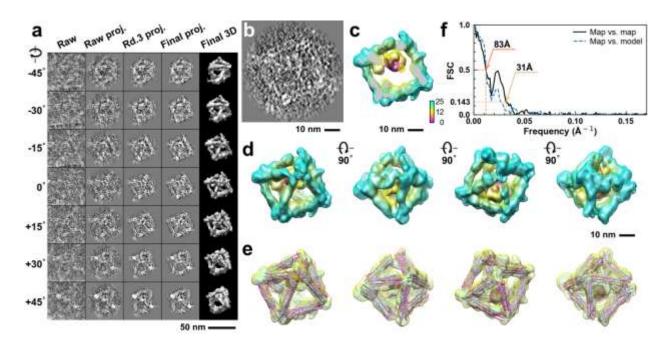

Supplementary Fig. 138: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 130) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

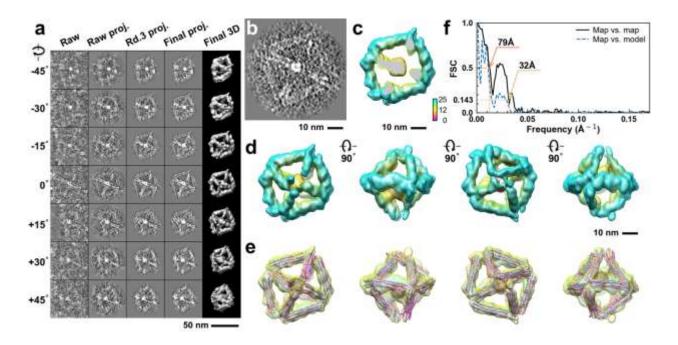

Supplementary Fig. 139: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 131) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

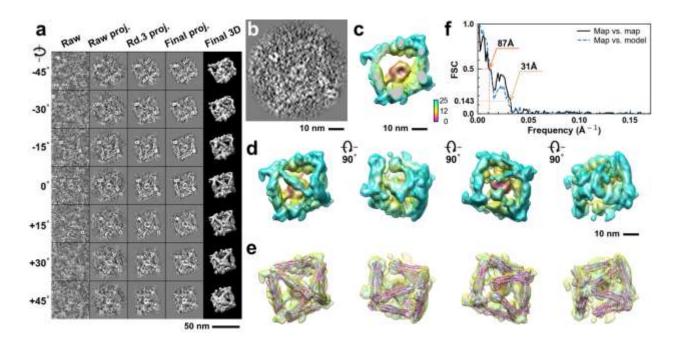

Supplementary Fig. 140: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 132) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

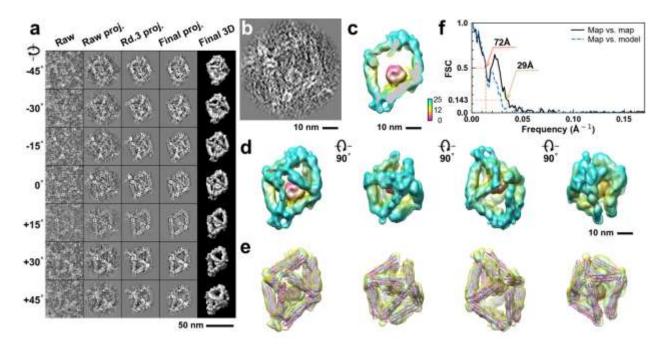

Supplementary Fig. 141: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 133) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

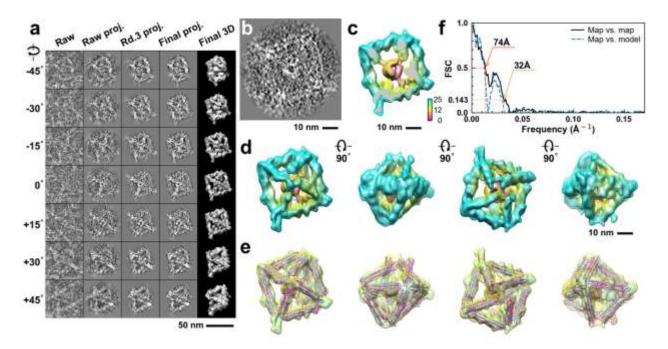

Supplementary Fig. 142: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 134) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

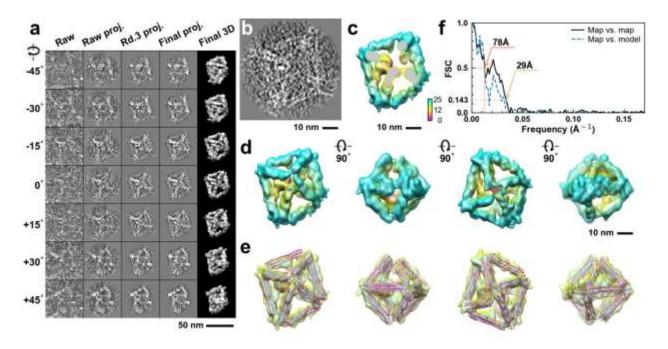

Supplementary Fig. 143: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 135) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

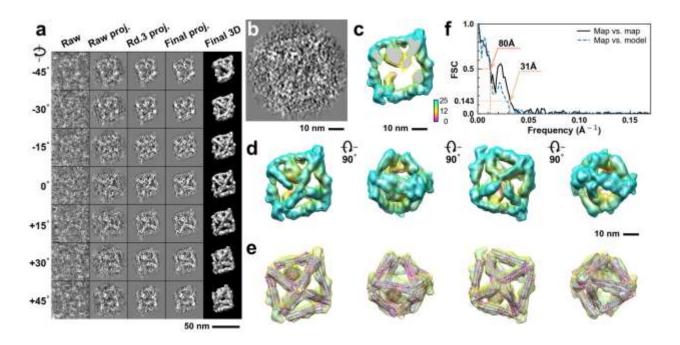

Supplementary Fig. 144: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 136) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

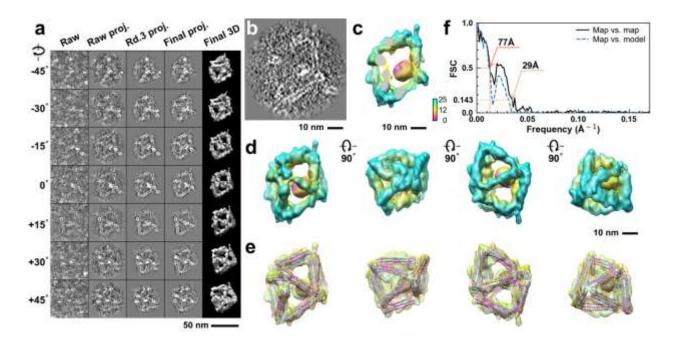

Supplementary Fig. 145: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 137) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

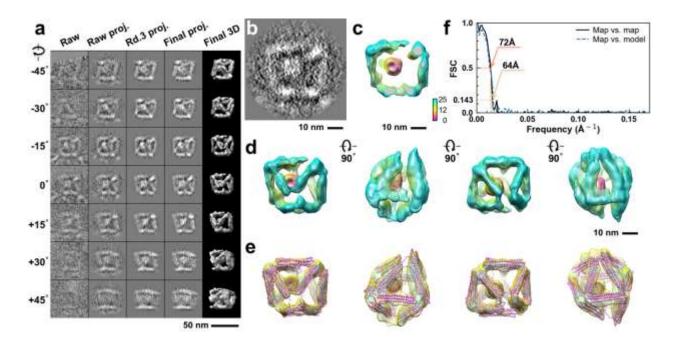

Supplementary Fig. 146: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 138) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

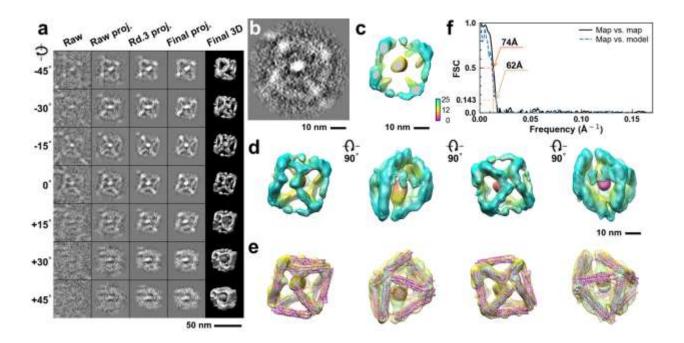

Supplementary Fig. 147: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 139) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

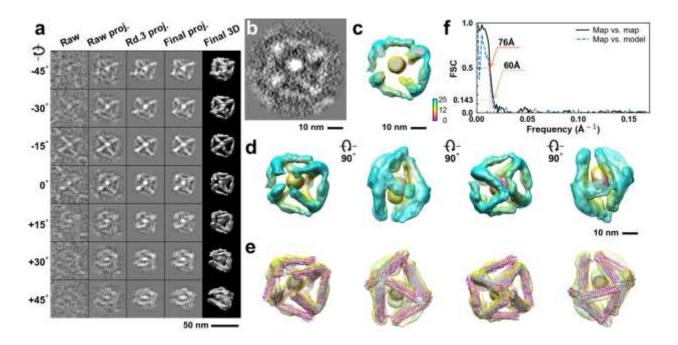

Supplementary Fig. 148: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 140) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

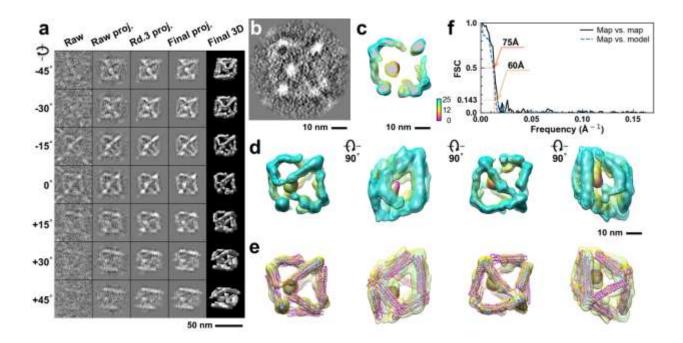

Supplementary Fig. 149: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 141) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

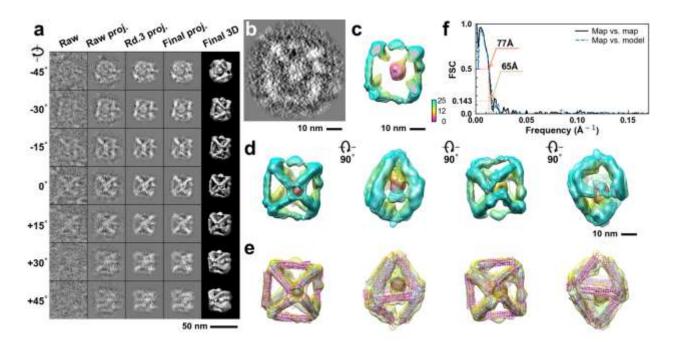

Supplementary Fig. 150: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 142) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

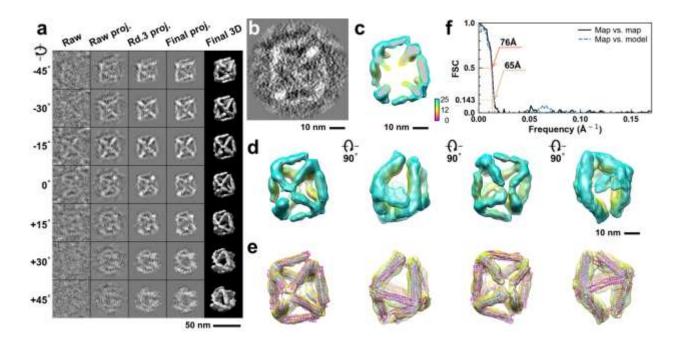

Supplementary Fig. 151: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 143) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

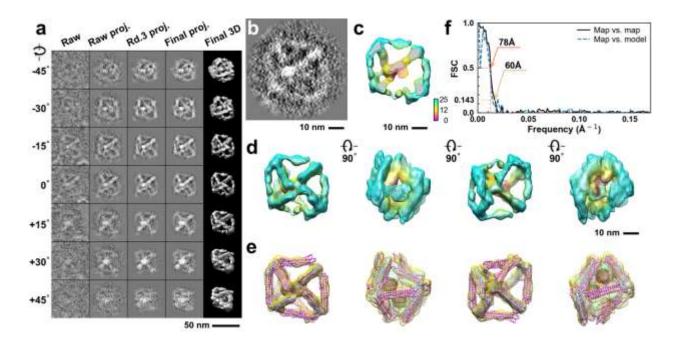

Supplementary Fig. 152: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 144) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

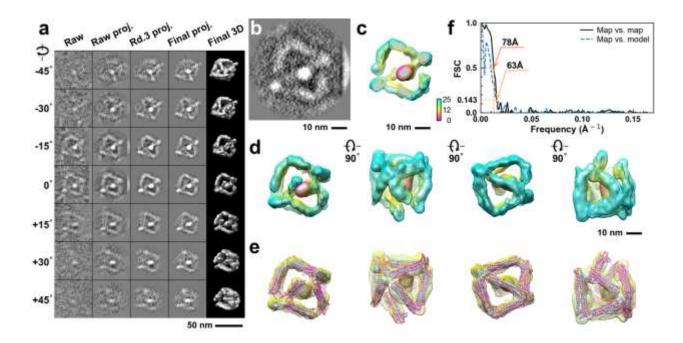

Supplementary Fig. 153: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 145) within a 2D lattice with 100% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

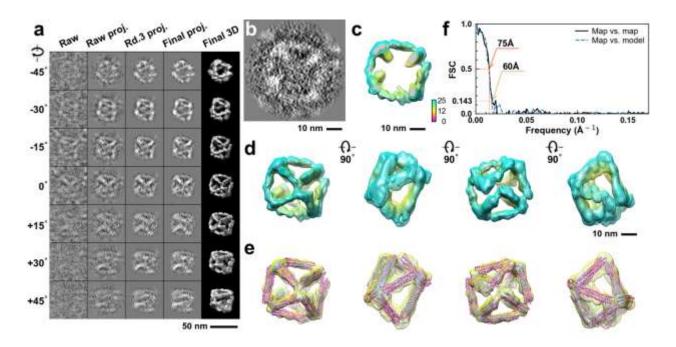

Supplementary Fig. 154: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 146) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

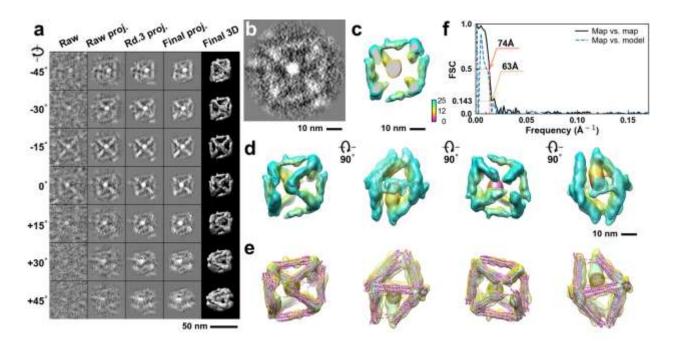

Supplementary Fig. 155: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 147) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

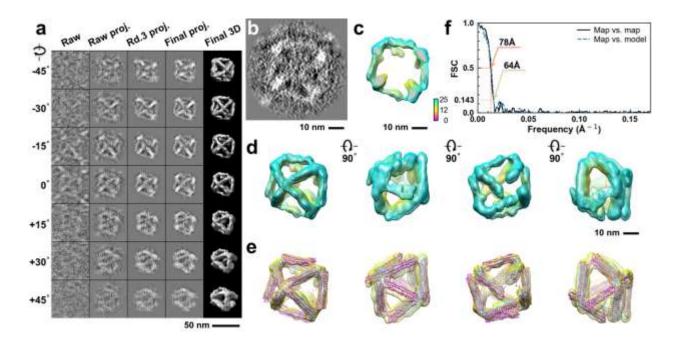

Supplementary Fig. 156: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 148) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

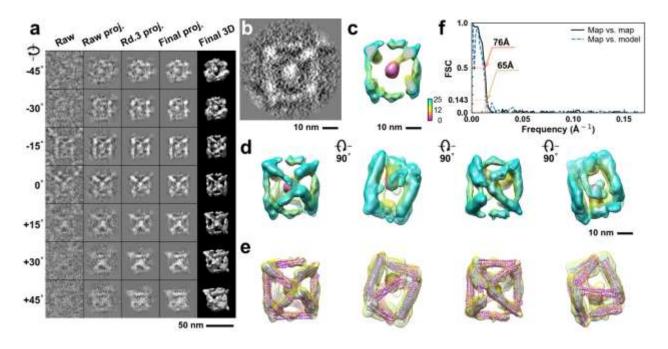

Supplementary Fig. 157: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 149) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

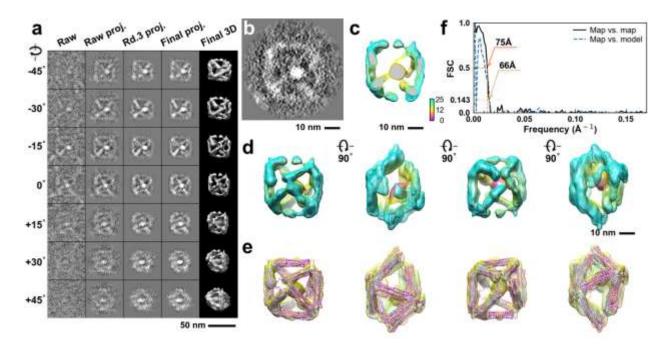

Supplementary Fig. 158: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 150) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

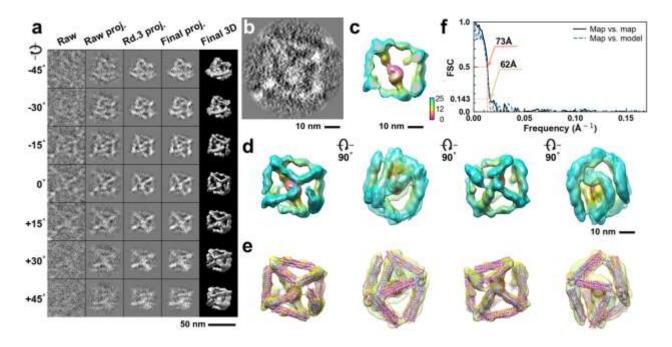

Supplementary Fig. 159: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 151) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

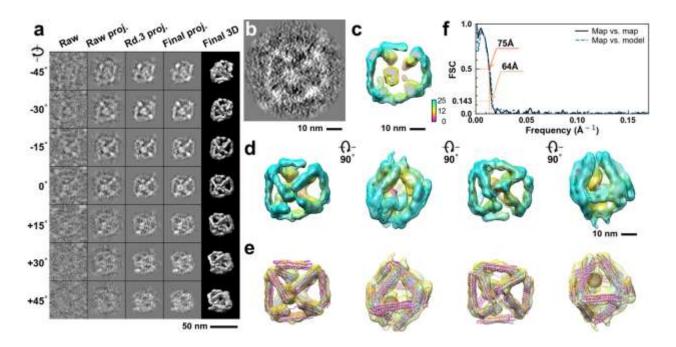

Supplementary Fig. 160: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 152) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

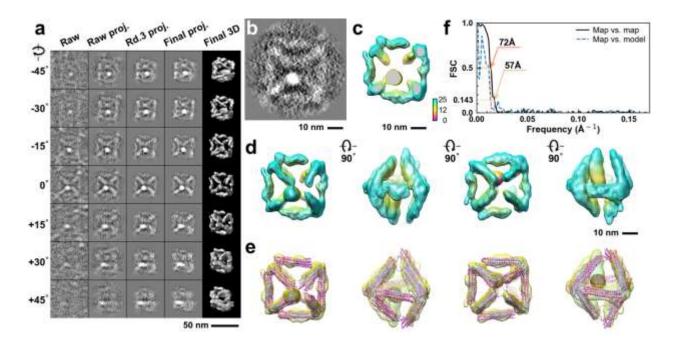

Supplementary Fig. 161: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 153) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

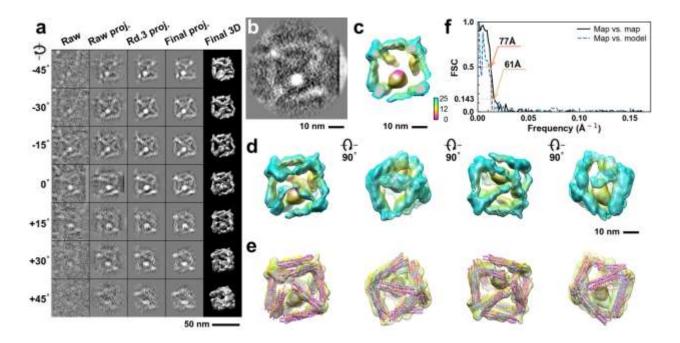

Supplementary Fig. 162: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 154) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

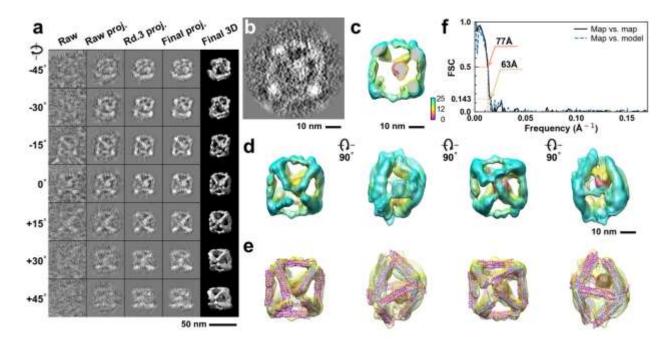

Supplementary Fig. 163: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 155) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 164: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 156) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

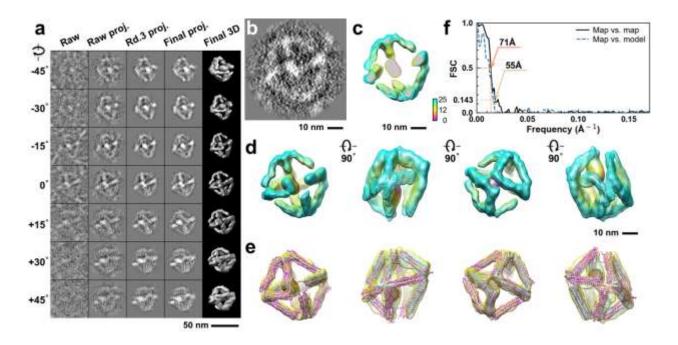

Supplementary Fig. 165: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 157) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

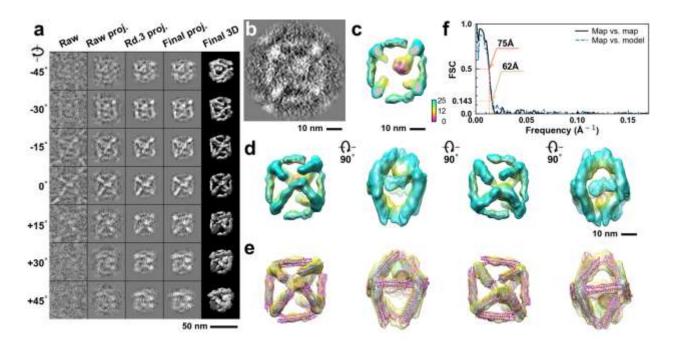

Supplementary Fig. 166: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 158) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

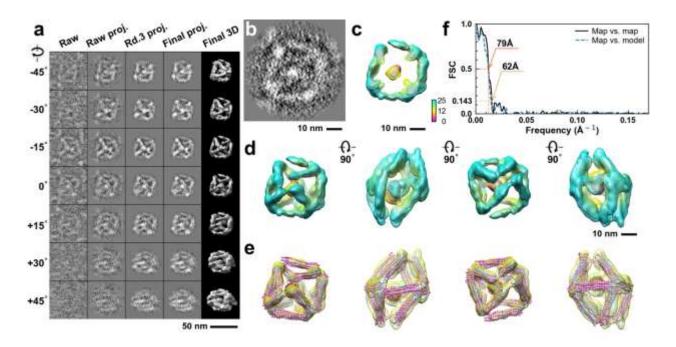

Supplementary Fig. 167: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 159) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

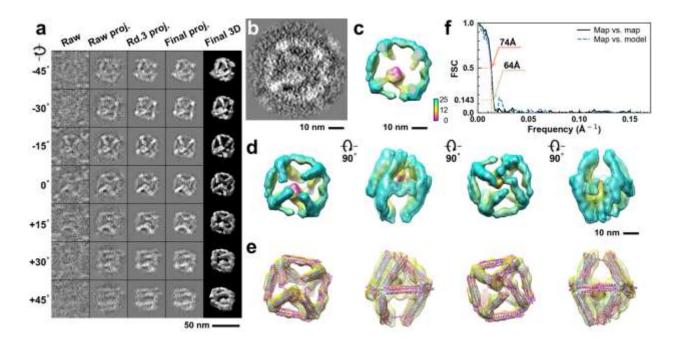

Supplementary Fig. 168: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 160) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

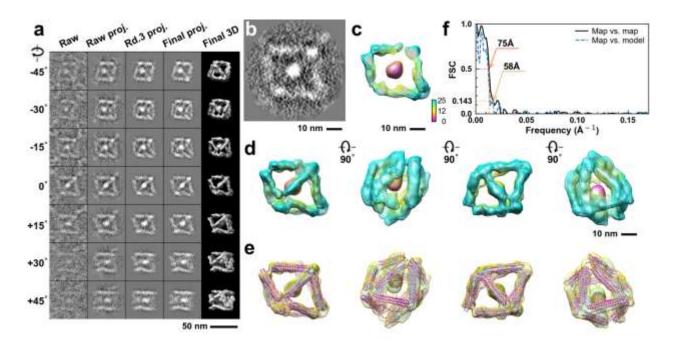
Supplementary Fig. 169: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 161) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

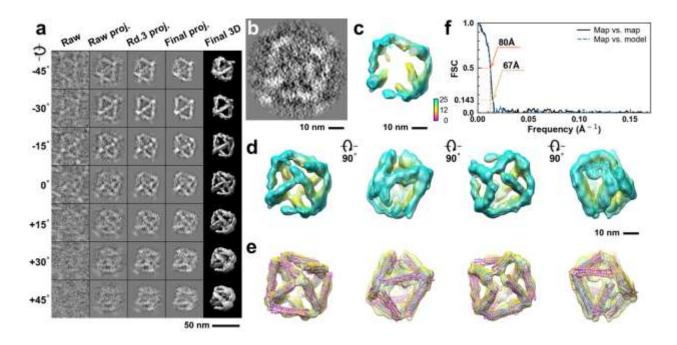

Supplementary Fig. 170: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 162) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

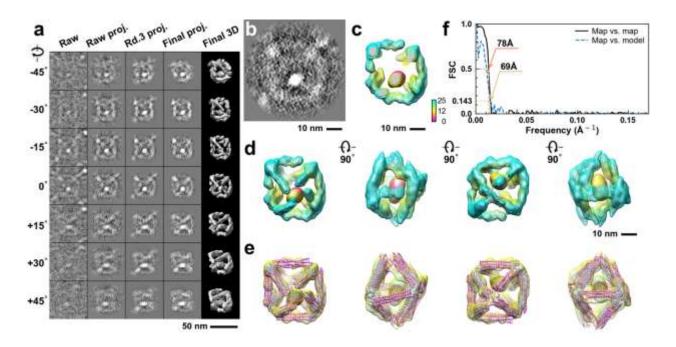

Supplementary Fig. 171: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 163) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

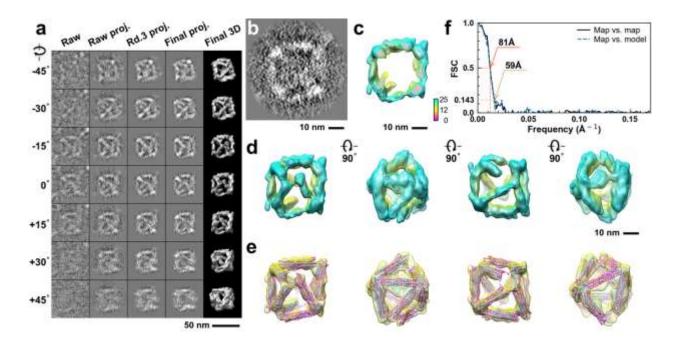

Supplementary Fig. 172: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 164) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

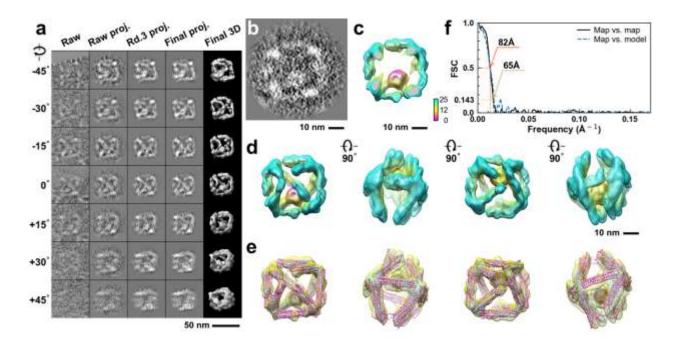

Supplementary Fig. 173: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 165) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

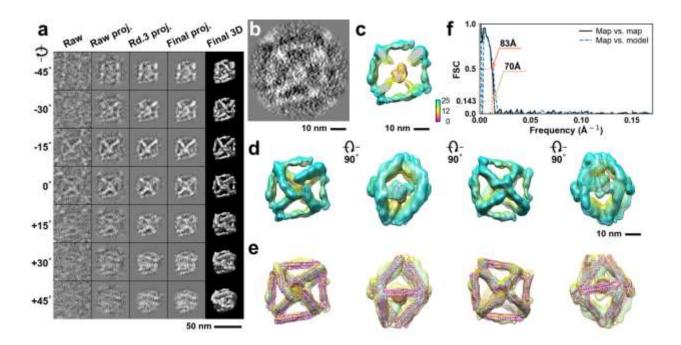

Supplementary Fig. 174: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 166) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

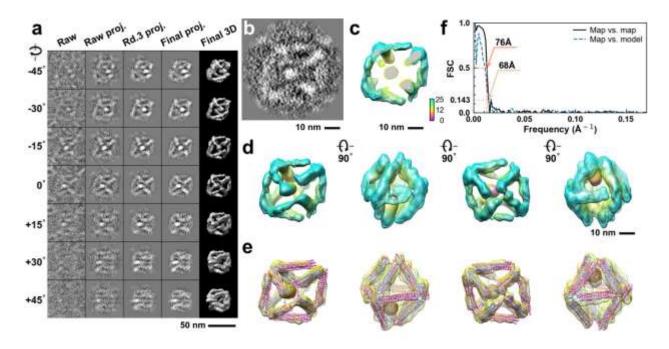

Supplementary Fig. 175: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 167) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

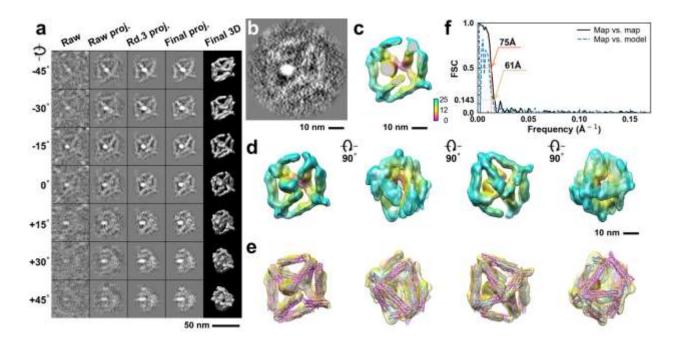

Supplementary Fig. 176: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 168) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

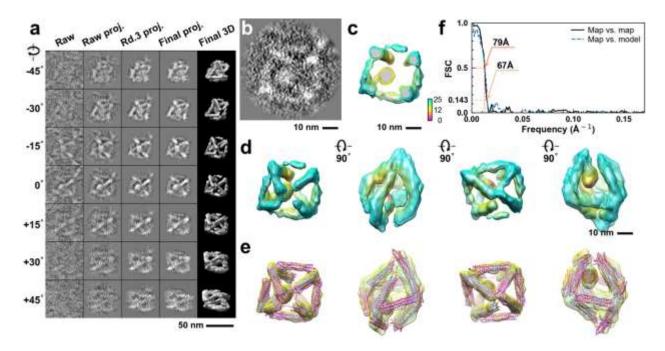

Supplementary Fig. 177: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 169) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

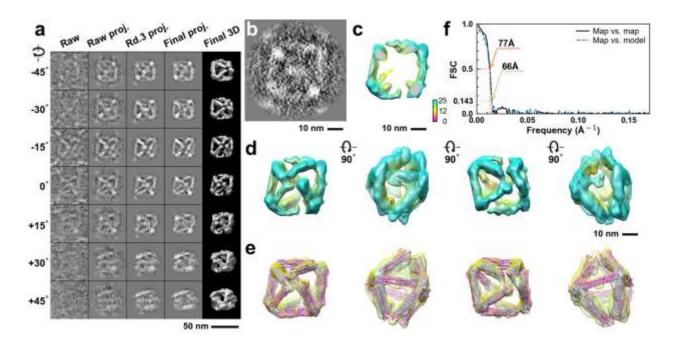

Supplementary Fig. 178: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 170) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

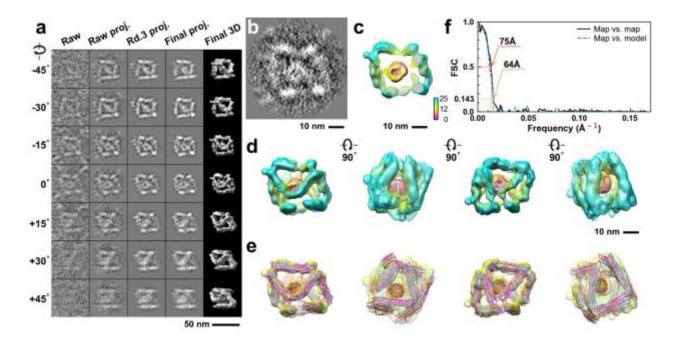

Supplementary Fig. 179: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 171) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

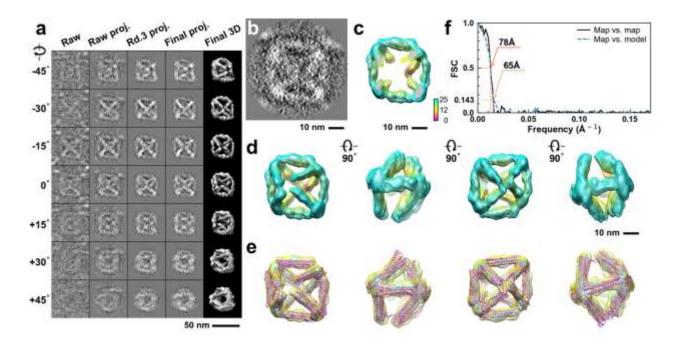

Supplementary Fig. 180: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 172) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

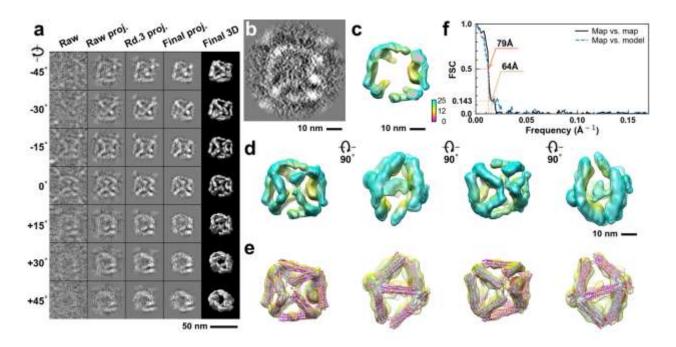

Supplementary Fig. 181: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 173) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

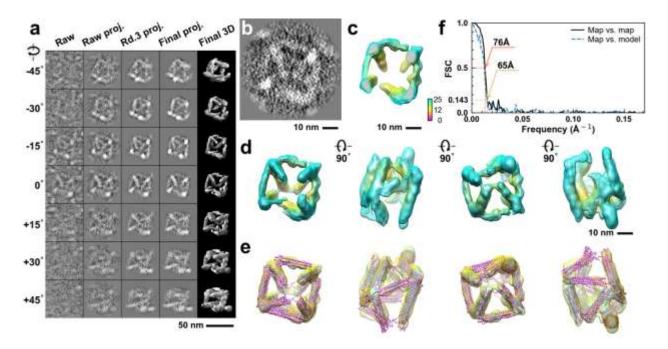

Supplementary Fig. 182: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 174) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

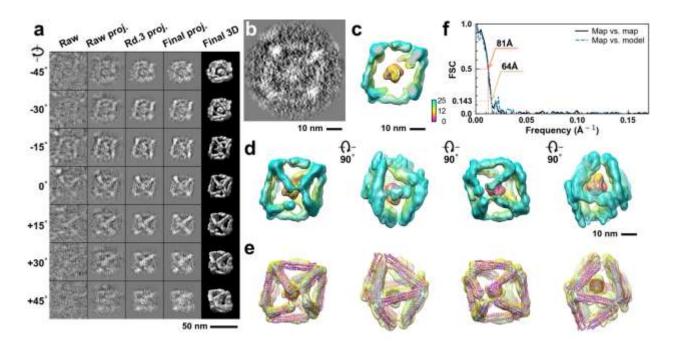

Supplementary Fig. 183: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 175) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

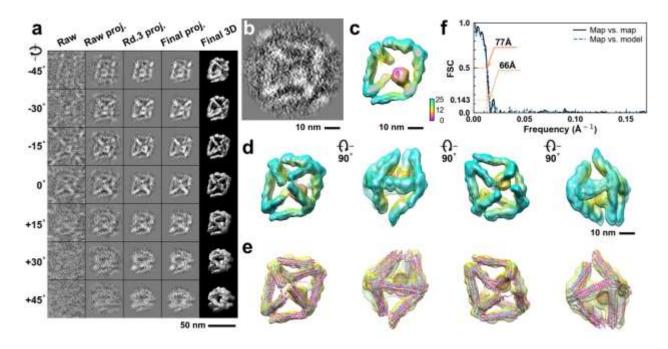

Supplementary Fig. 184: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 176) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

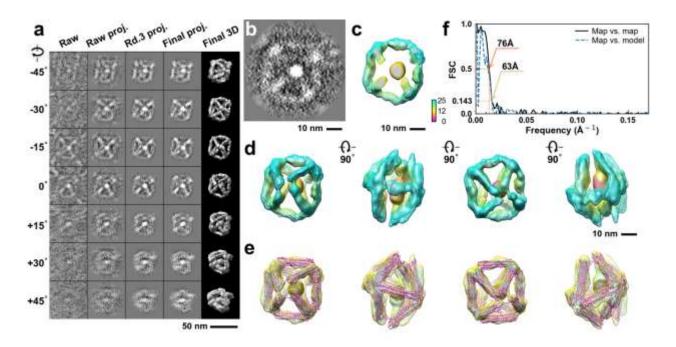

Supplementary Fig. 185: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 177) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

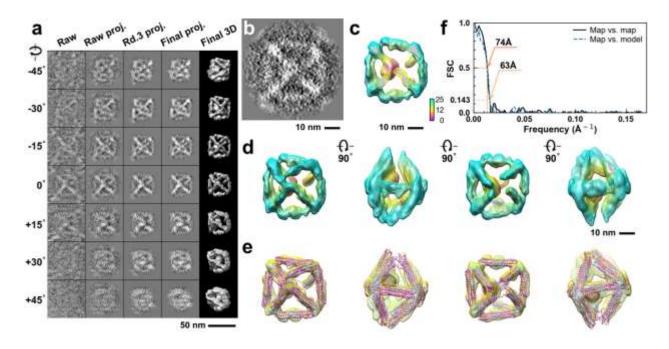

Supplementary Fig. 186: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 178) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

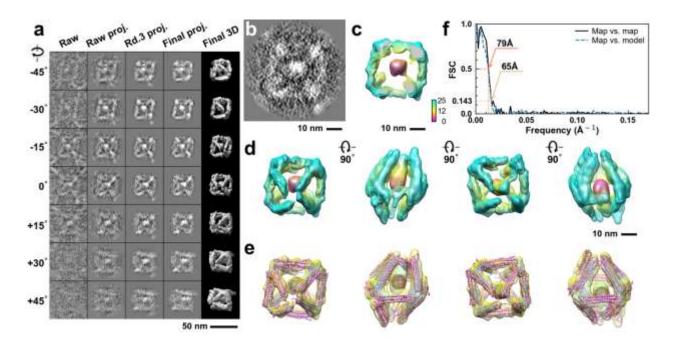

Supplementary Fig. 187: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 179) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

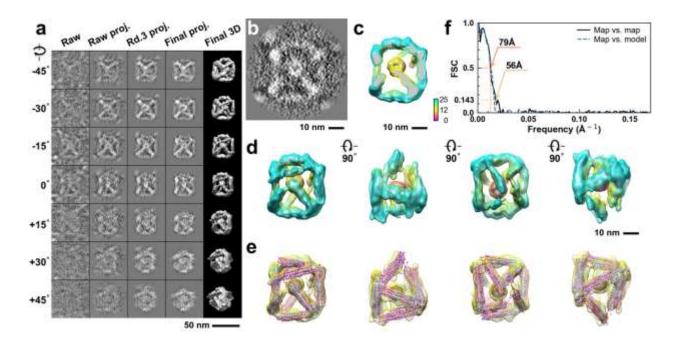

Supplementary Fig. 188: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 180) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

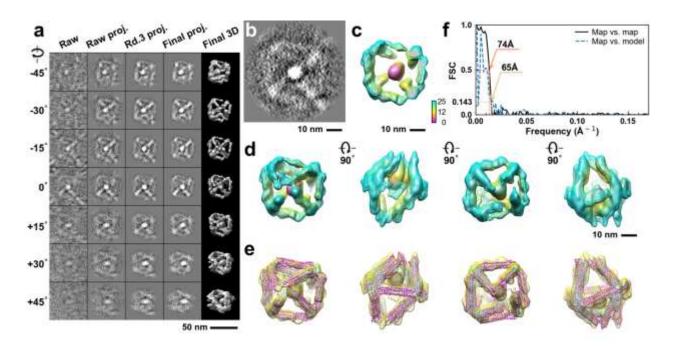

Supplementary Fig. 189: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 181) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

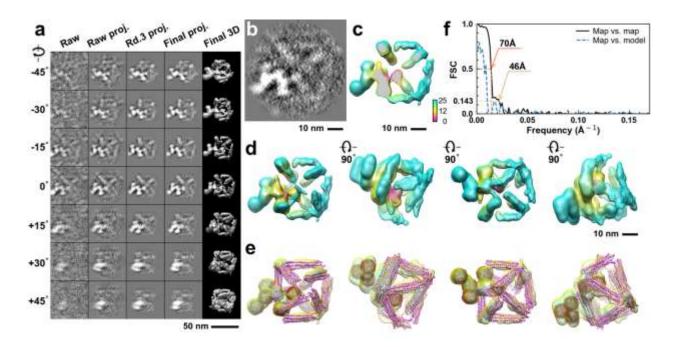

Supplementary Fig. 190: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 182) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

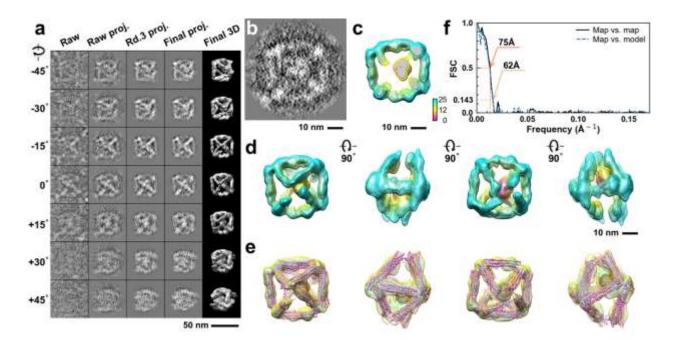

Supplementary Fig. 191: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 183) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

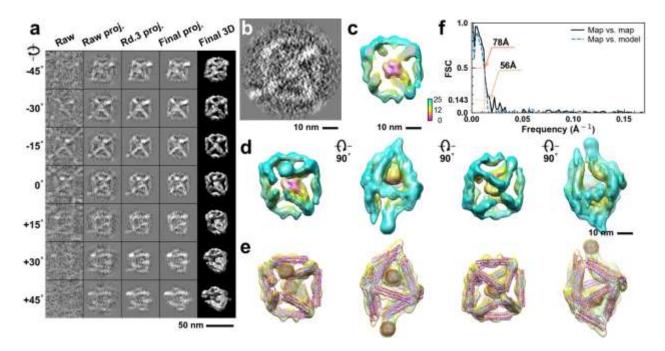

Supplementary Fig. 192: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 184) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

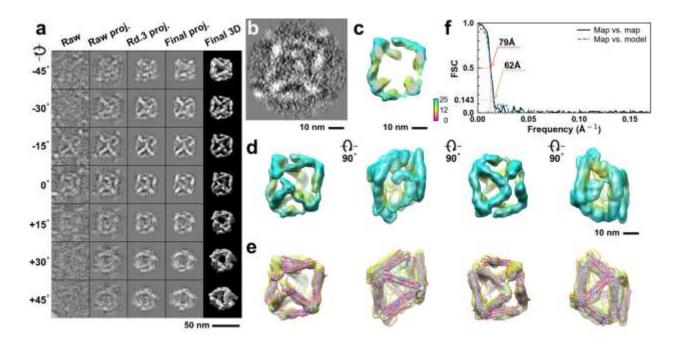

Supplementary Fig. 193: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 185) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

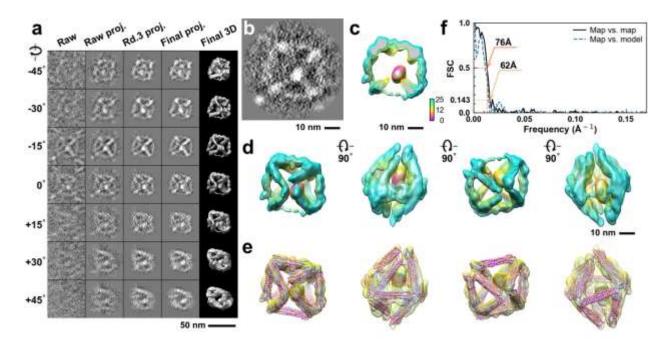

Supplementary Fig. 194: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 186) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

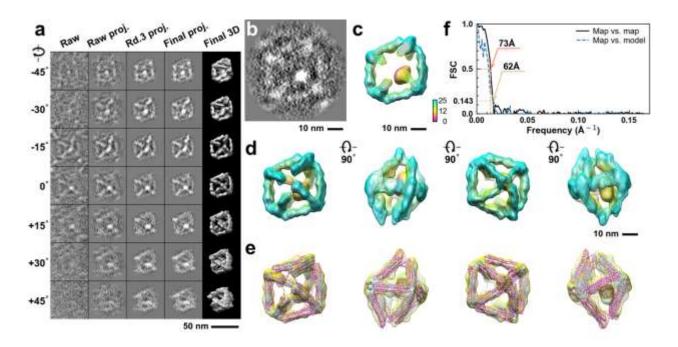

Supplementary Fig. 195: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 187) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

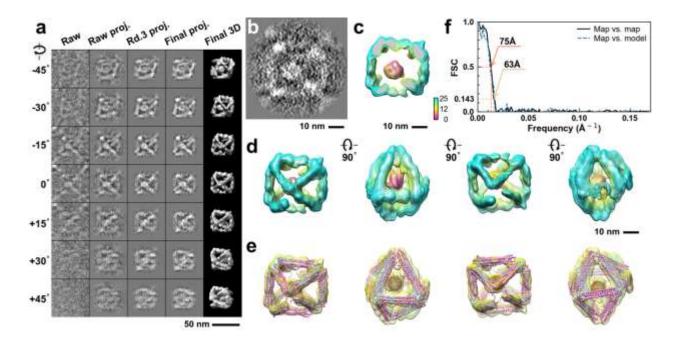

Supplementary Fig. 196: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 188) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

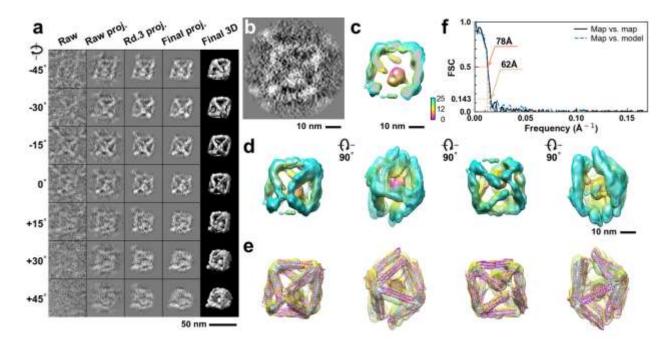

Supplementary Fig. 197: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 189) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

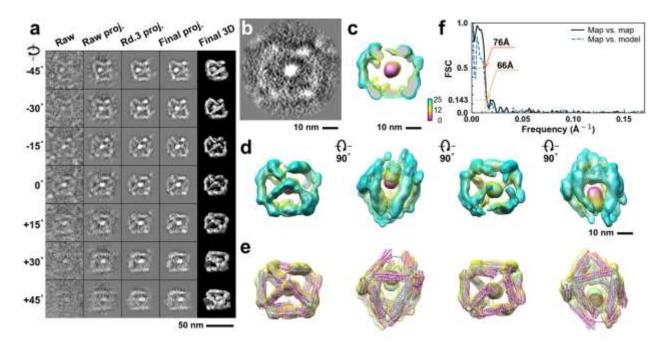

Supplementary Fig. 198: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 190) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

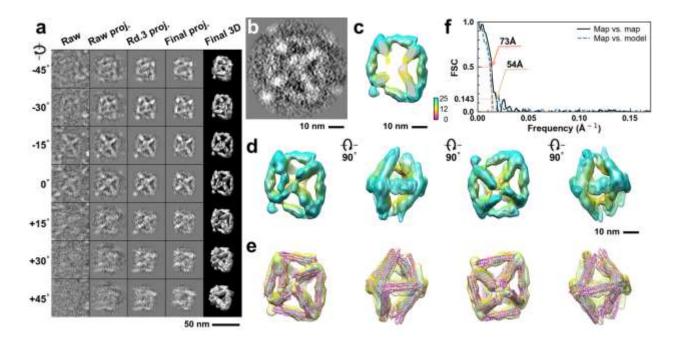

Supplementary Fig. 199: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 191) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

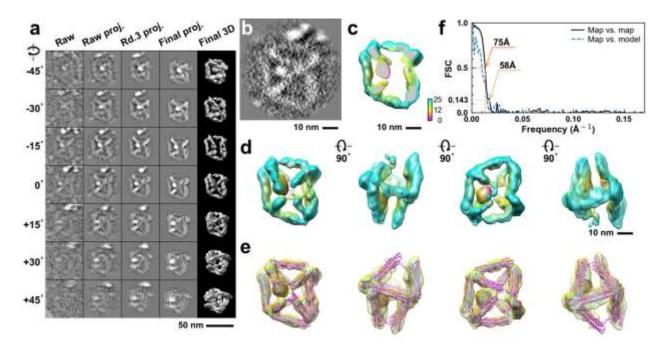

Supplementary Fig. 200: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 192) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

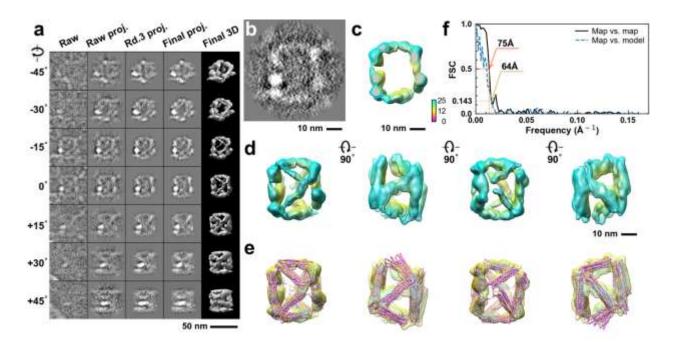

Supplementary Fig. 201: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 193) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

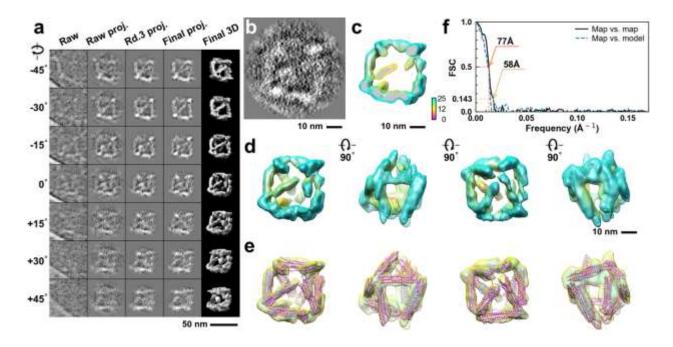

Supplementary Fig. 202: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 194) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

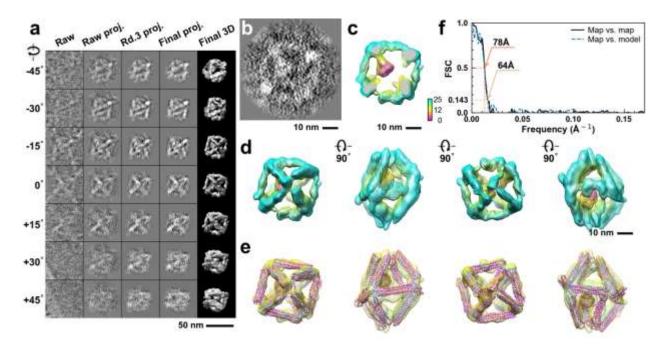

Supplementary Fig. 203: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 195) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

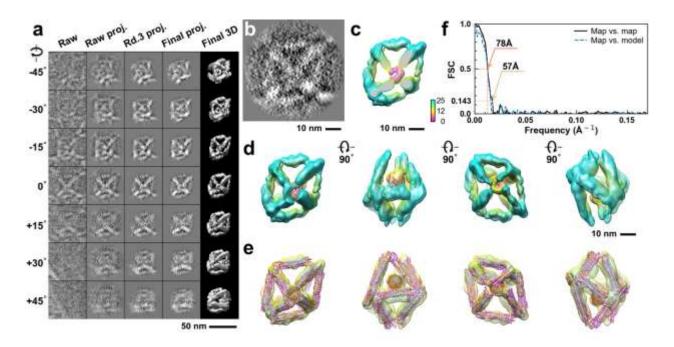

Supplementary Fig. 204: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 196) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

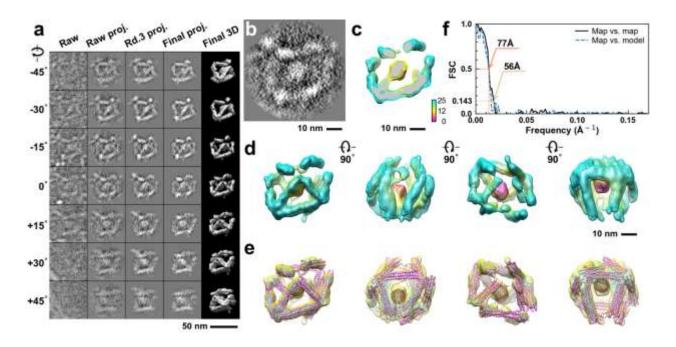

Supplementary Fig. 205: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 197) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

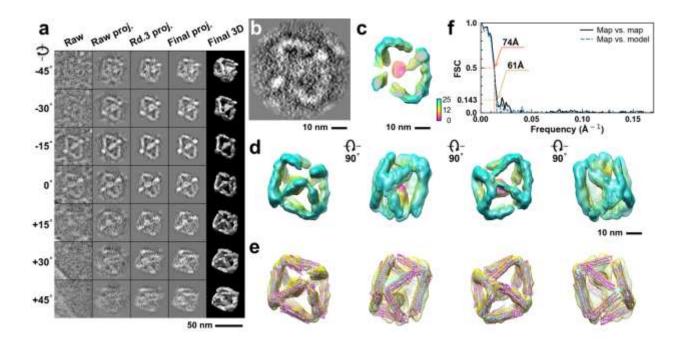

Supplementary Fig. 206: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 198) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

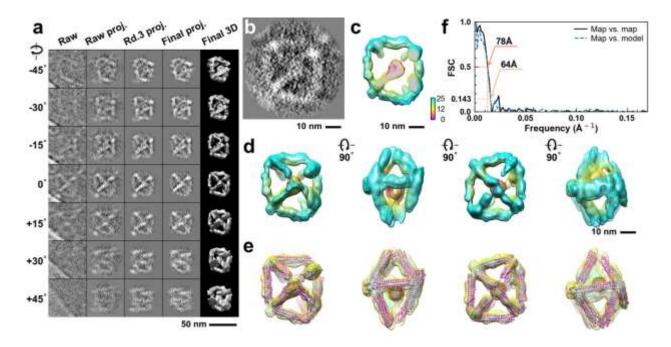

Supplementary Fig. 207: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 199) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

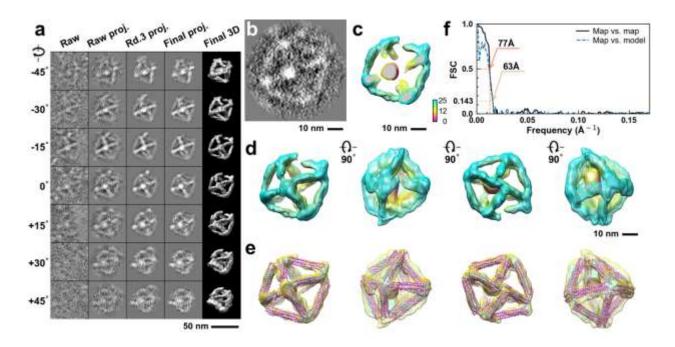

Supplementary Fig. 208: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 200) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

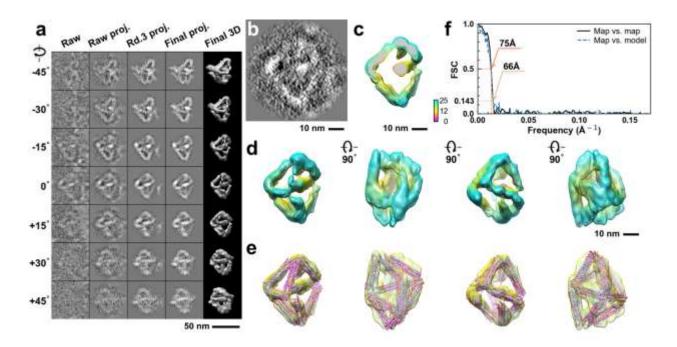

Supplementary Fig. 209: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 201) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

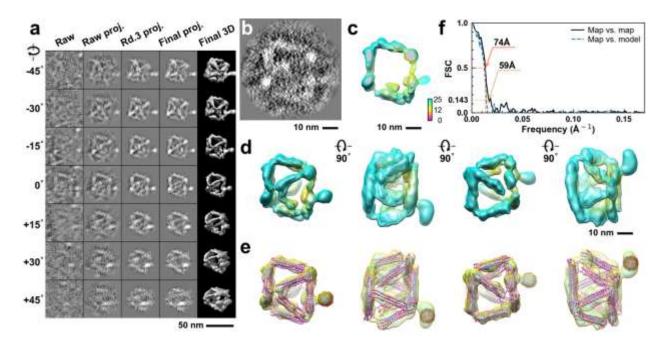

Supplementary Fig. 210: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 202) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

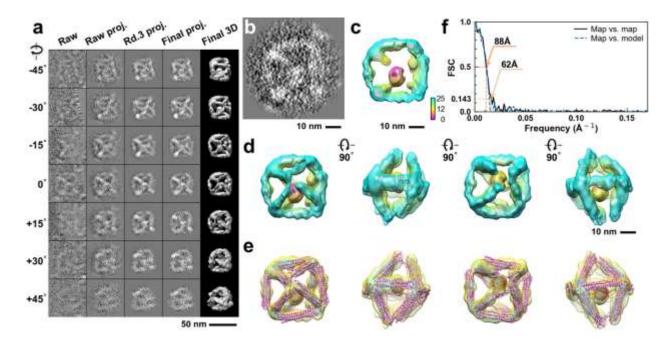

Supplementary Fig. 211: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 203) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

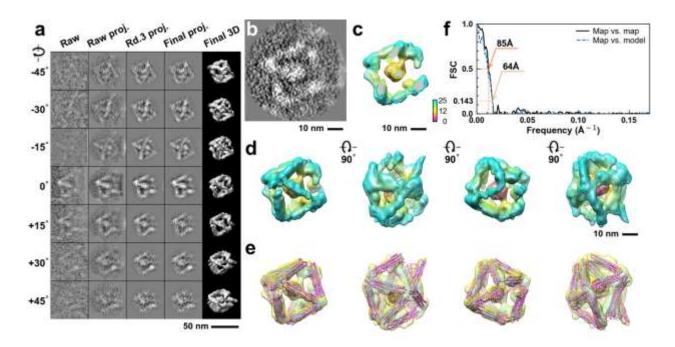

Supplementary Fig. 212: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 204) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

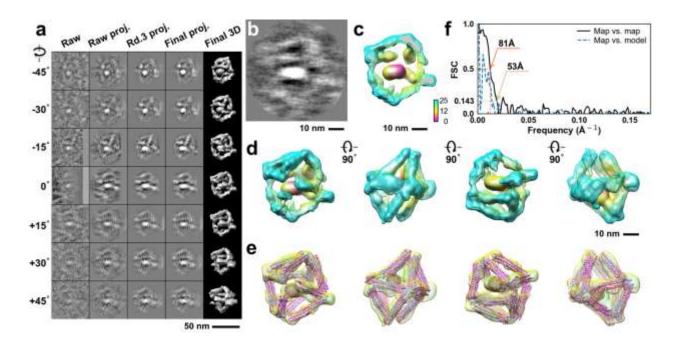

Supplementary Fig. 213: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 205) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

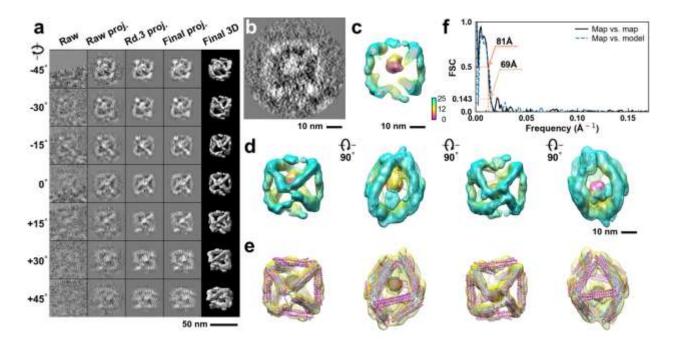

Supplementary Fig. 214: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 206) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

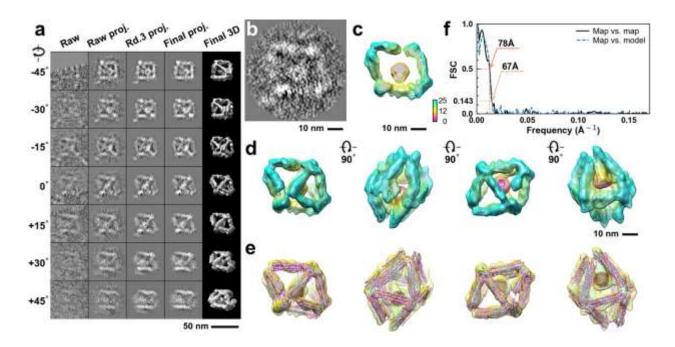

Supplementary Fig. 215: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 207) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

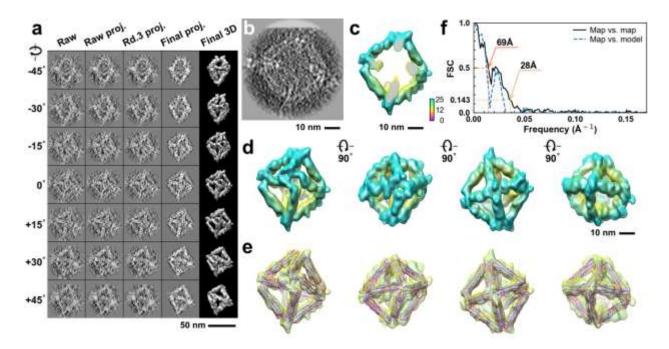

Supplementary Fig. 216: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 208) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

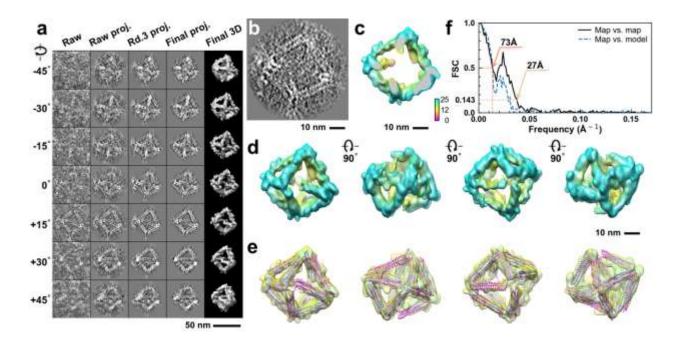

Supplementary Fig. 217: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 209) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

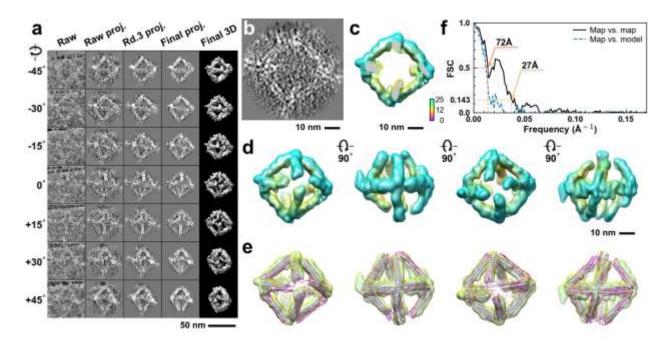

Supplementary Fig. 218: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 210) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

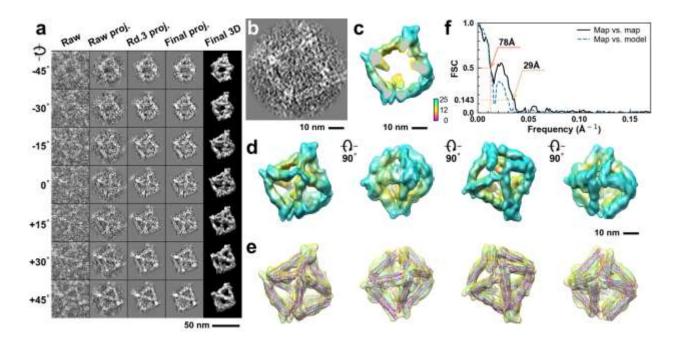

Supplementary Fig. 219: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 211) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

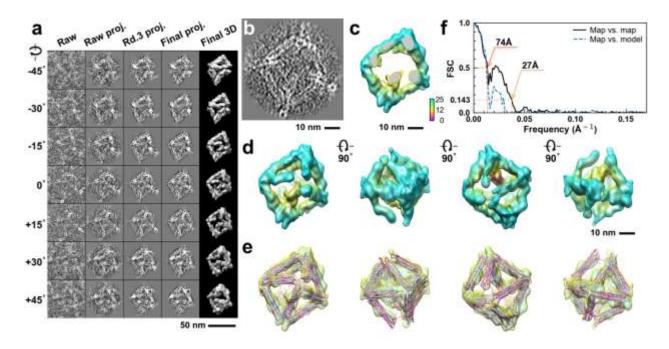

Supplementary Fig. 220: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 212) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

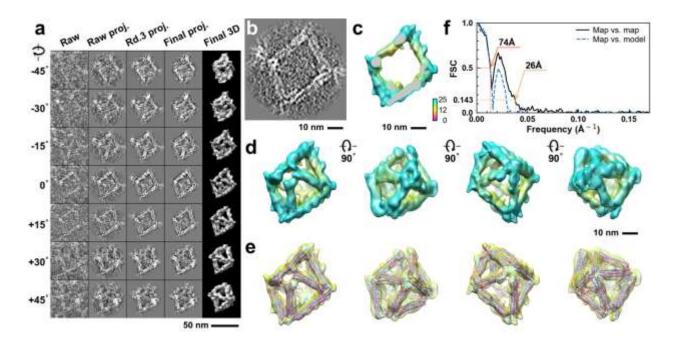

Supplementary Fig. 221: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 213) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

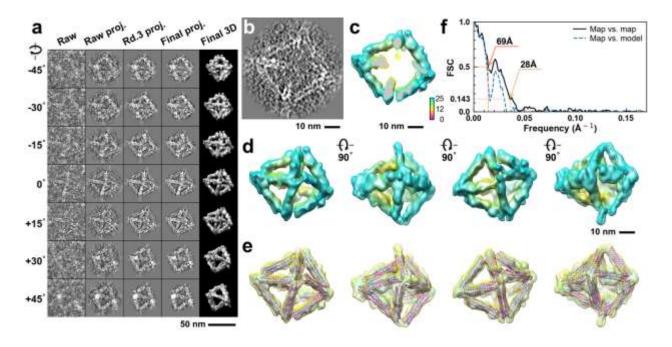

Supplementary Fig. 222: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 214) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

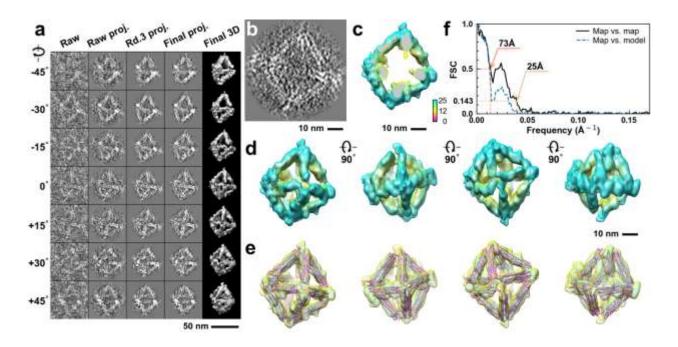

Supplementary Fig. 223: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 215) within a 2D lattice with 70% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

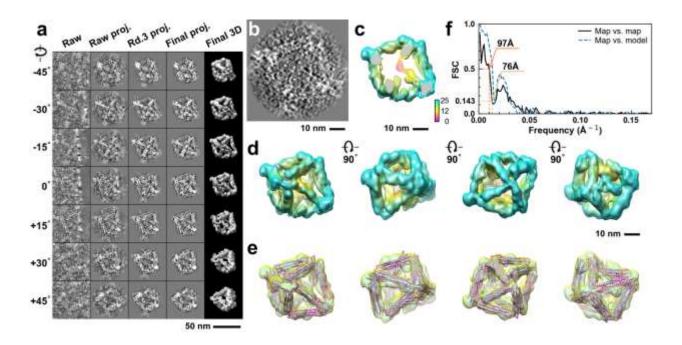

Supplementary Fig. 224: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 216) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

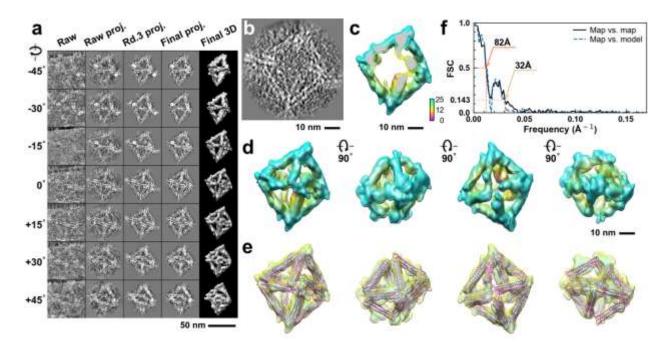

Supplementary Fig. 225: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 217) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

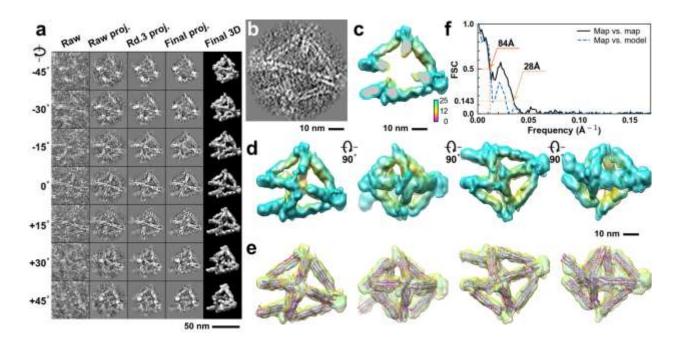

Supplementary Fig. 226: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 218) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

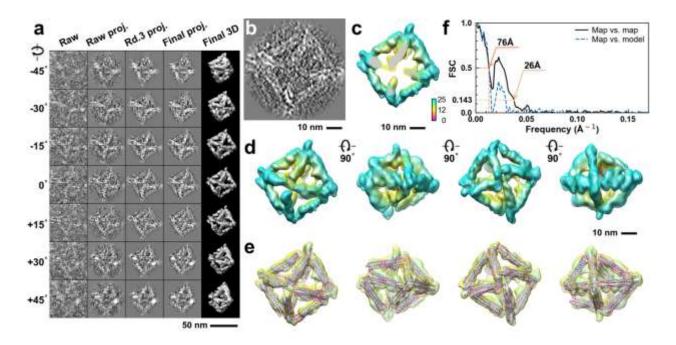

Supplementary Fig. 227: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 219) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

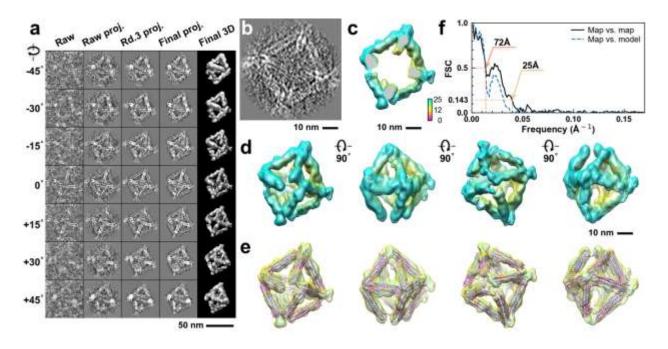

Supplementary Fig. 228: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 220) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

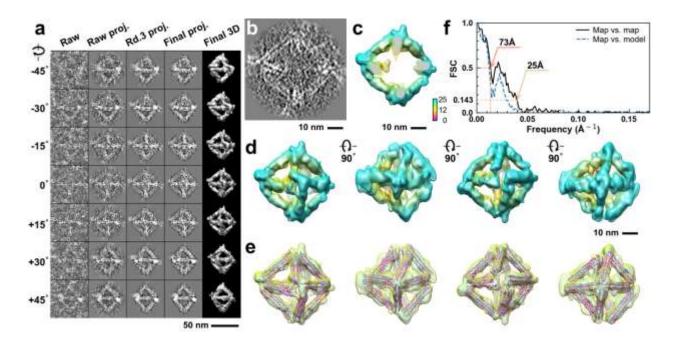

Supplementary Fig. 229: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 221) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

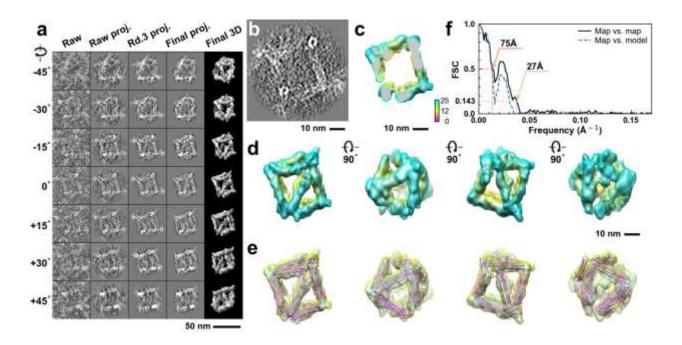

Supplementary Fig. 230: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 222) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

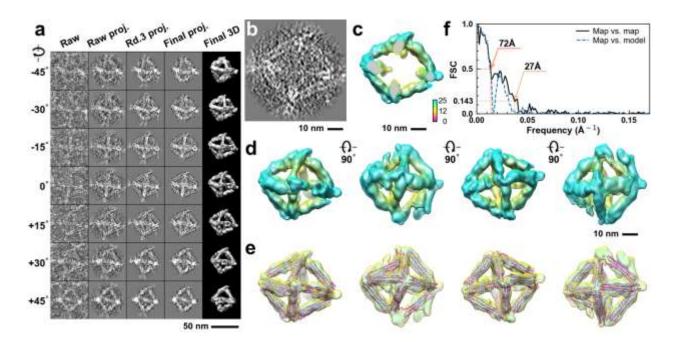

Supplementary Fig. 231: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 223) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

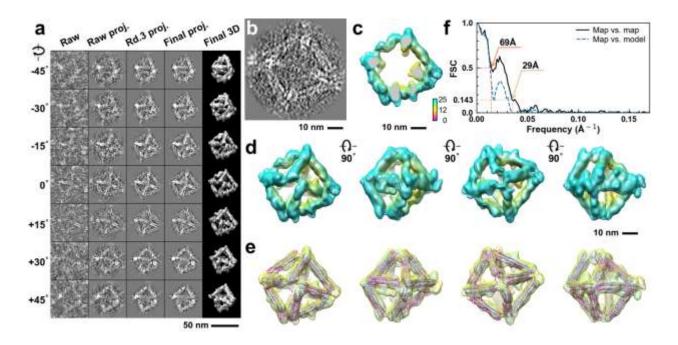

Supplementary Fig. 232: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 224) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

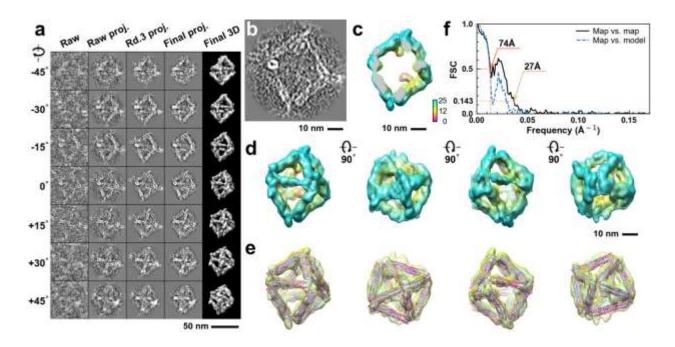

Supplementary Fig. 233: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 225) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

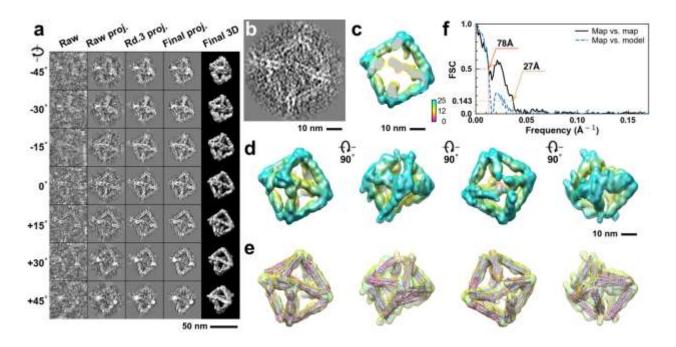

Supplementary Fig. 234: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 226) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

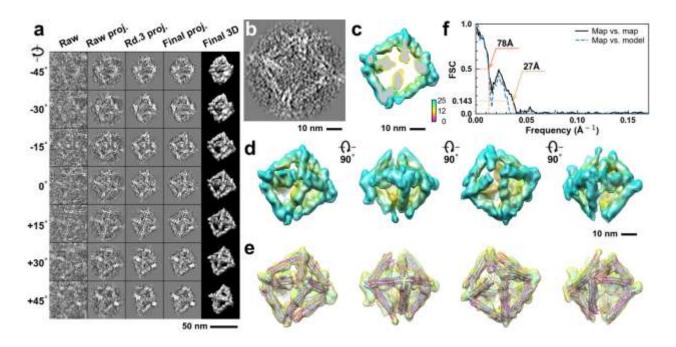

Supplementary Fig. 235: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 227) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

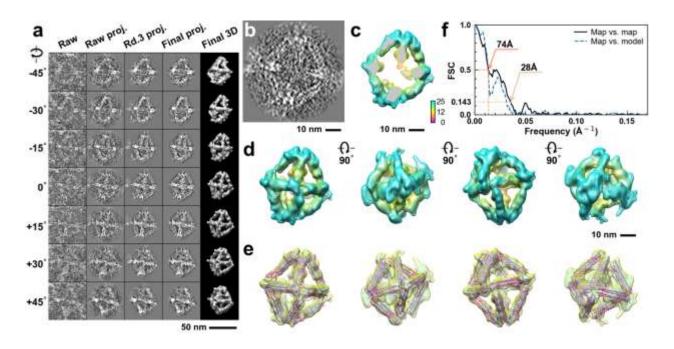

Supplementary Fig. 236: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 228) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

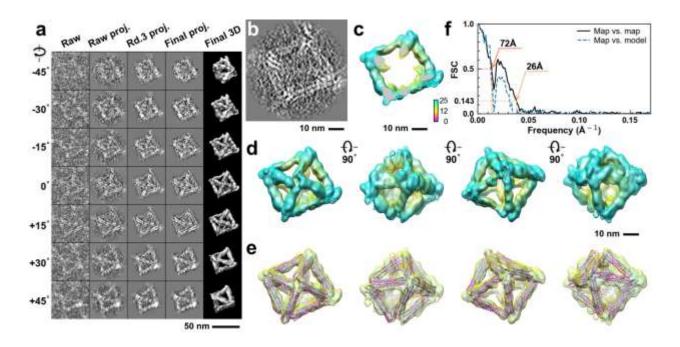

Supplementary Fig. 237: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 229) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

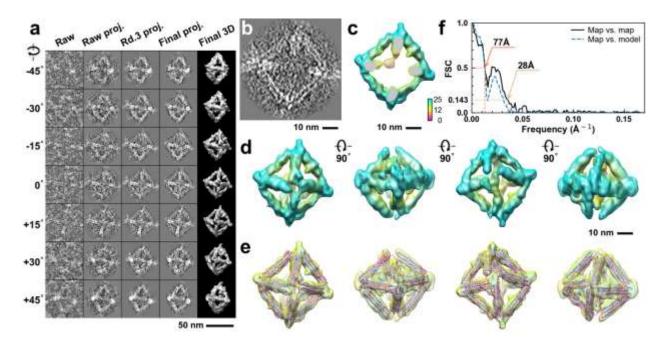

Supplementary Fig. 238: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 230) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

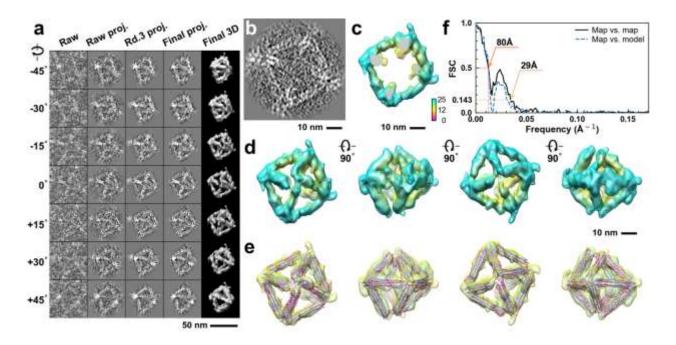

Supplementary Fig. 239: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 231) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

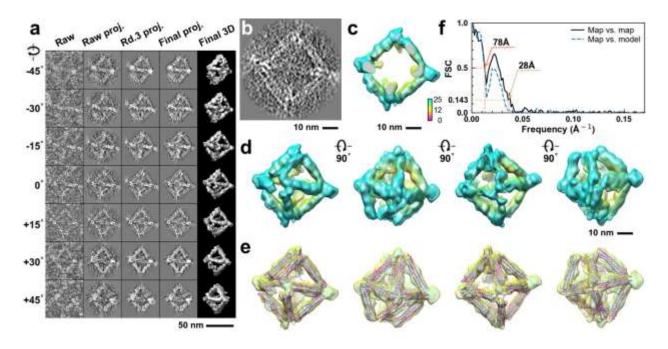

Supplementary Fig. 240: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 232) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

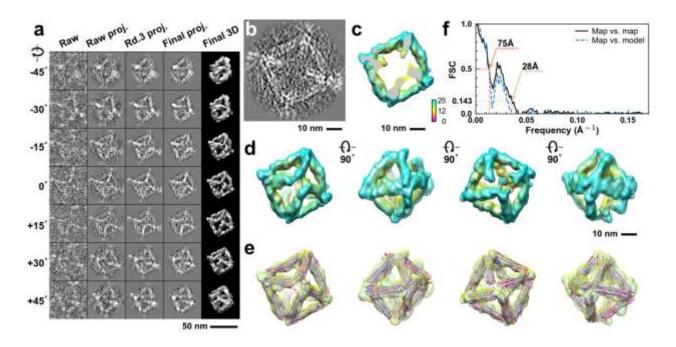

Supplementary Fig. 241: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 233) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

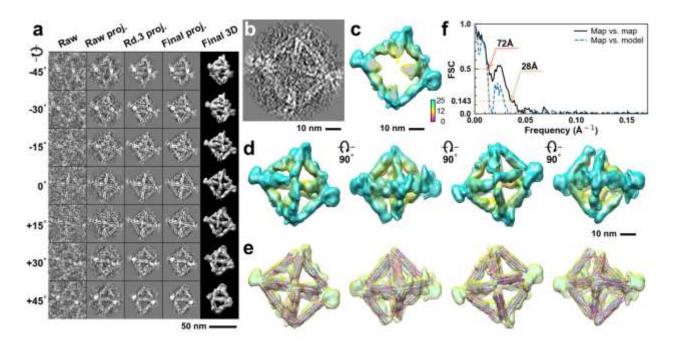

Supplementary Fig. 242: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 234) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

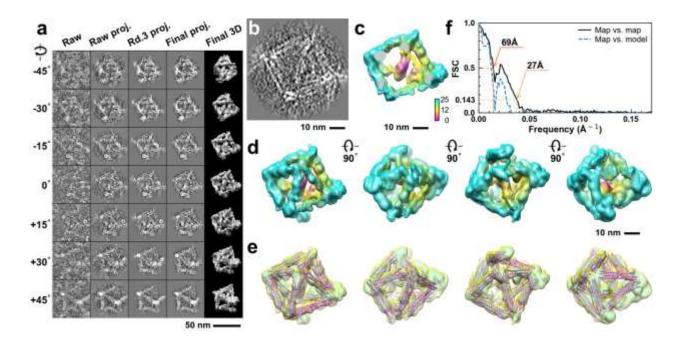

Supplementary Fig. 243: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 235) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

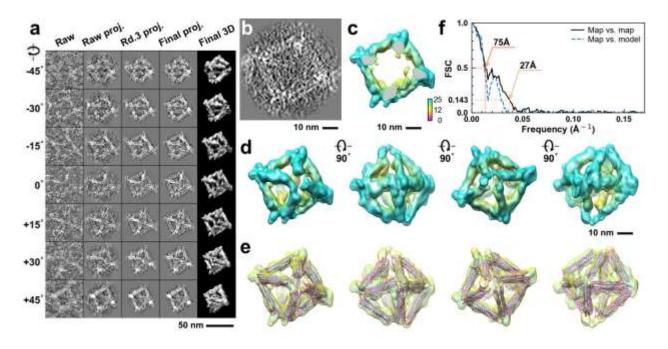

Supplementary Fig. 244: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 236) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

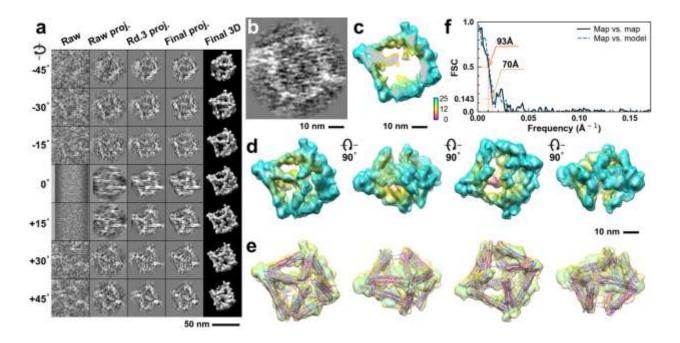

Supplementary Fig. 245: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 237) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

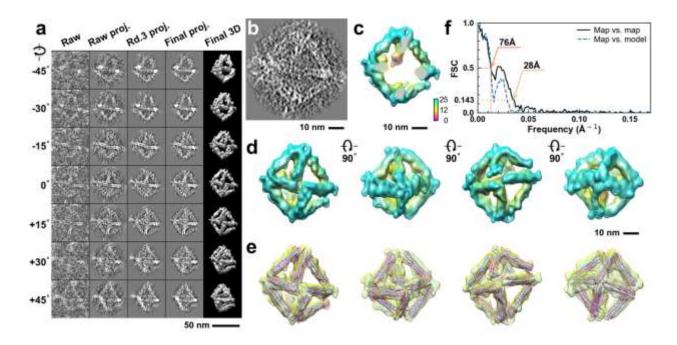

Supplementary Fig. 246: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 238) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

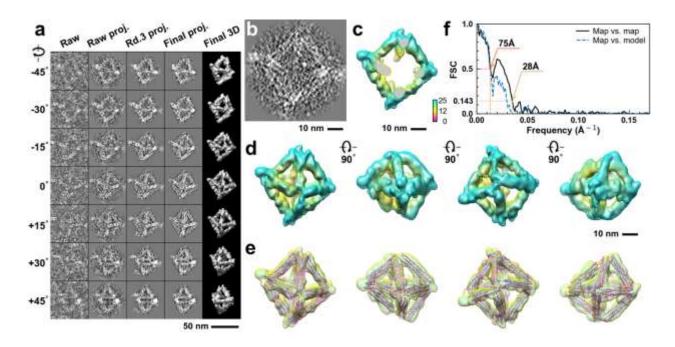

Supplementary Fig. 247: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 239) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 248: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 240) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

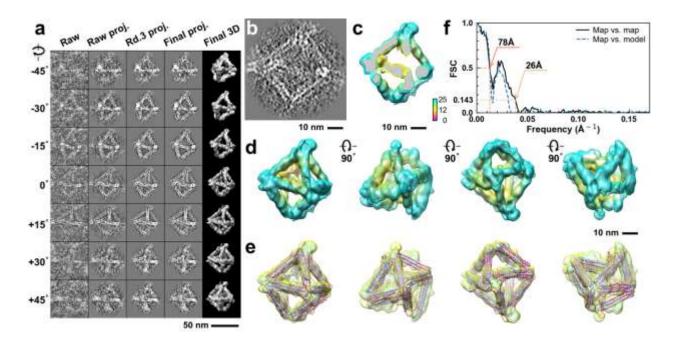

Supplementary Fig. 249: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 241) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

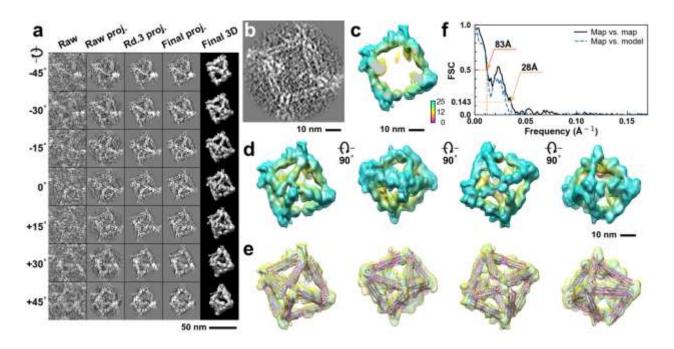

Supplementary Fig. 250: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 242) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

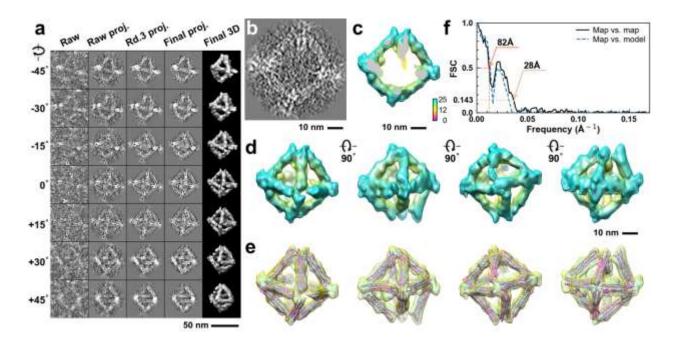

Supplementary Fig. 251: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 243) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

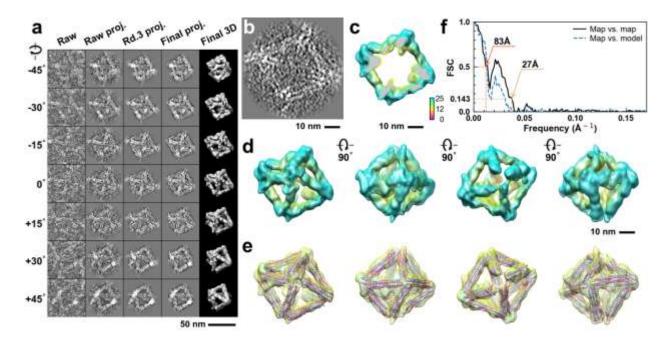

Supplementary Fig. 252: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 244) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

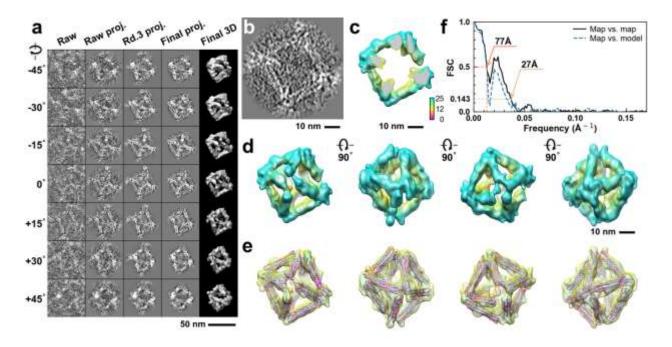

Supplementary Fig. 253: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 245) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

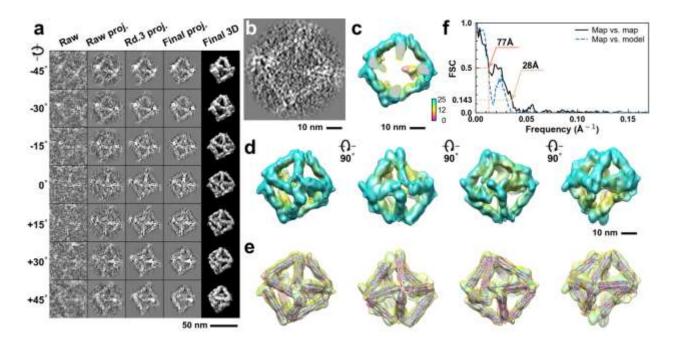

Supplementary Fig. 254: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 246) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

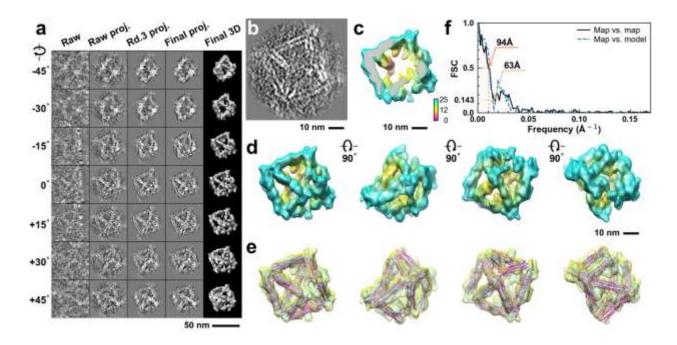

Supplementary Fig. 255: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 247) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

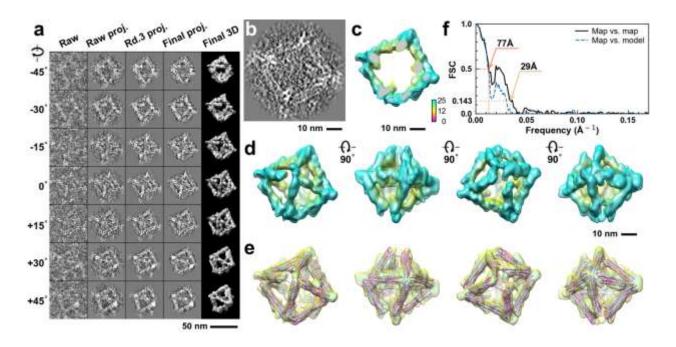

Supplementary Fig. 256: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 248) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

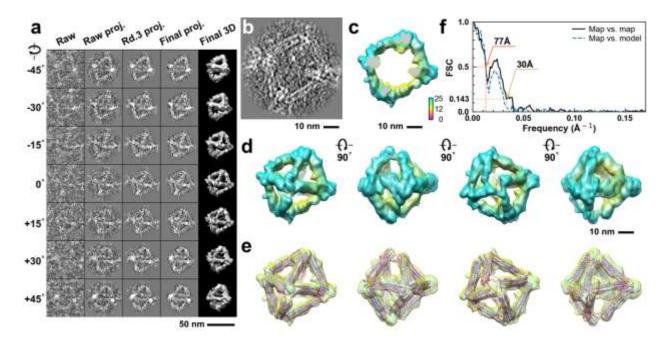

Supplementary Fig. 257: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 249) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

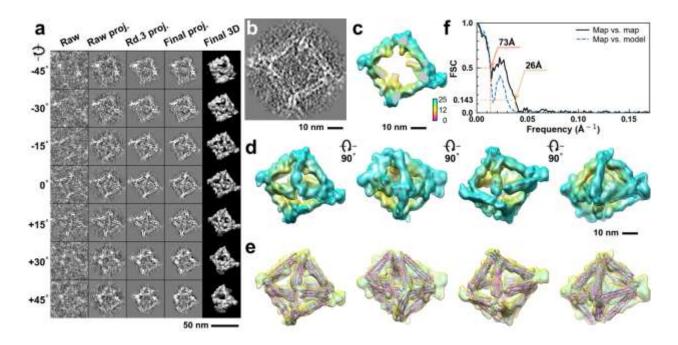

Supplementary Fig. 258: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 250) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

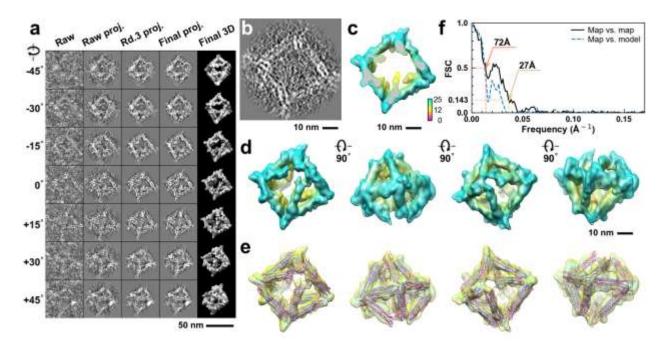

Supplementary Fig. 259: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 251) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

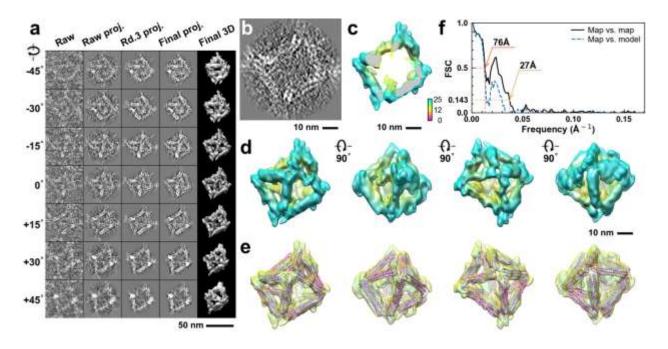

Supplementary Fig. 260: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 252) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

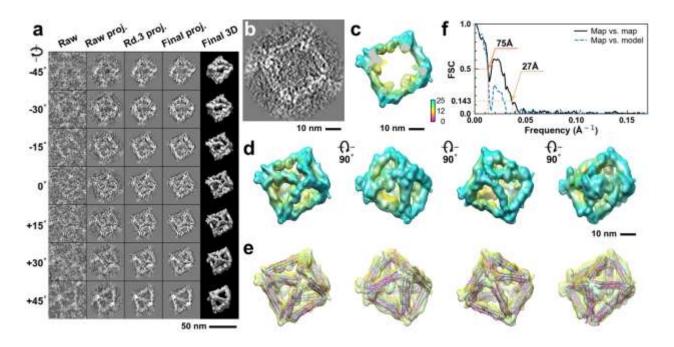

Supplementary Fig. 261: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 253) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

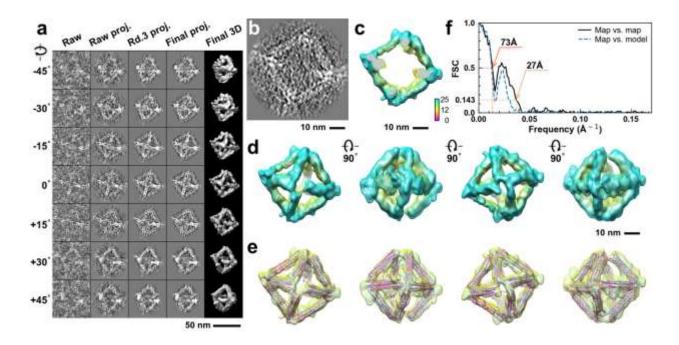

Supplementary Fig. 262: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 254) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

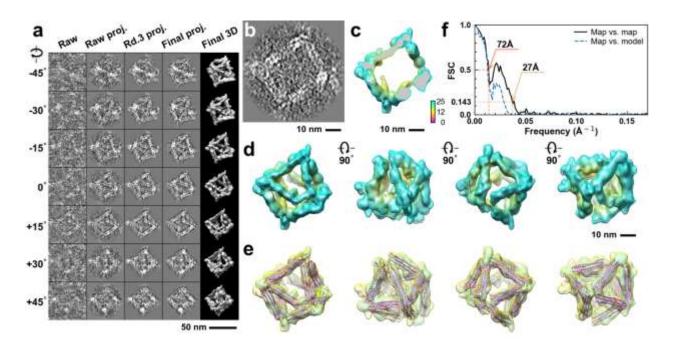

Supplementary Fig. 263: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 255) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

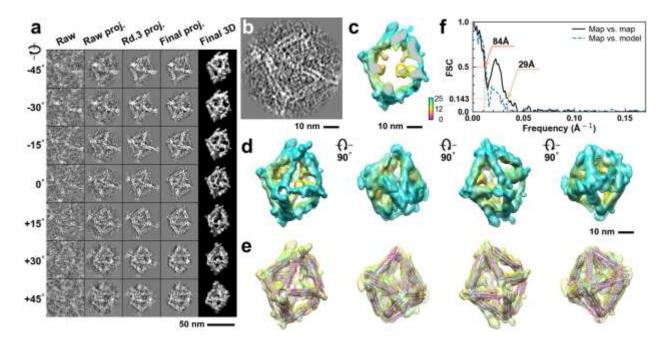

Supplementary Fig. 264: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 256) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

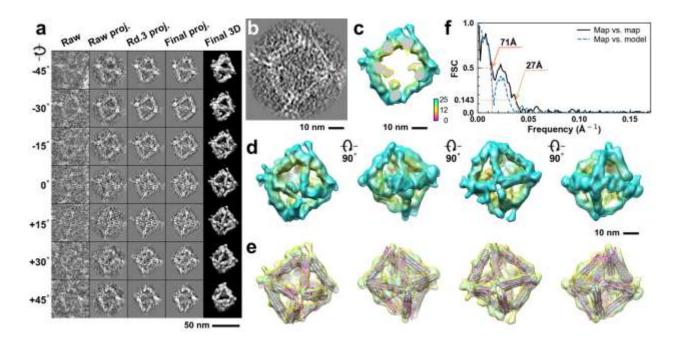

Supplementary Fig. 265: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 257) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

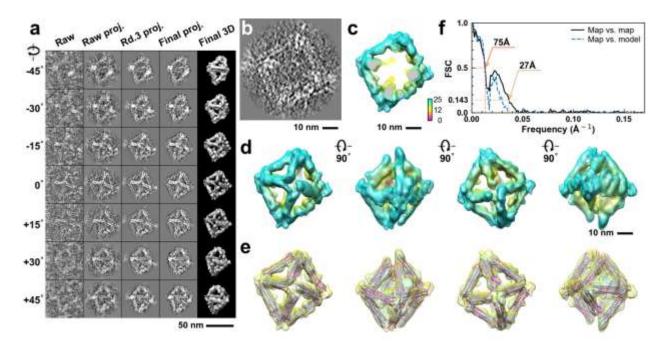

Supplementary Fig. 266: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 258) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

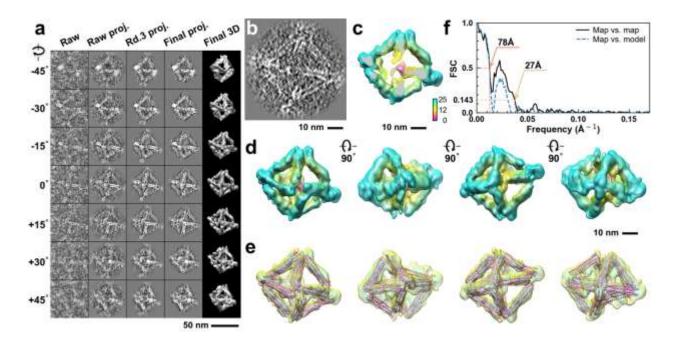

Supplementary Fig. 267: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 259) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

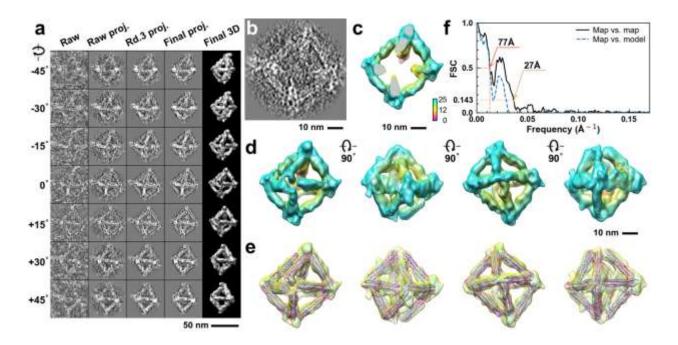

Supplementary Fig. 268: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 260) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

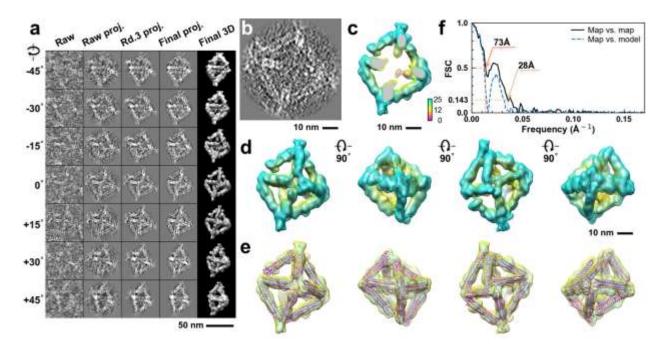

Supplementary Fig. 269: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 261) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

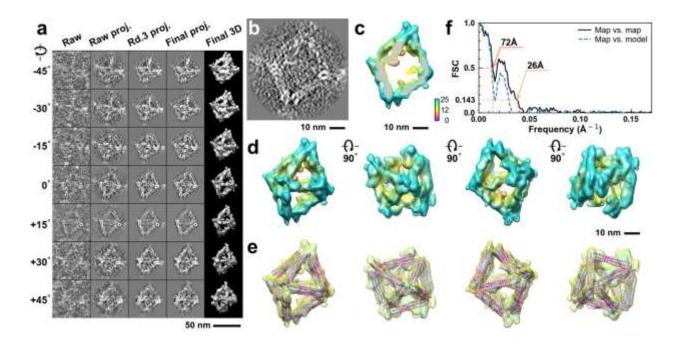

Supplementary Fig. 270: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 262) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

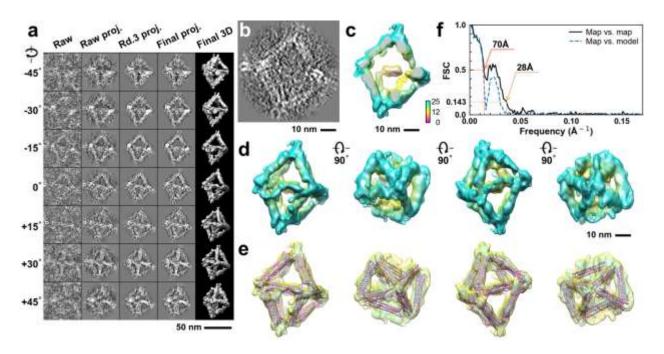

Supplementary Fig. 271: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 263) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

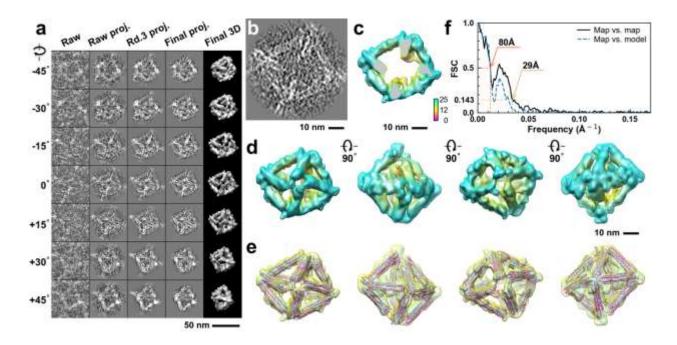

Supplementary Fig. 272: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 264) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

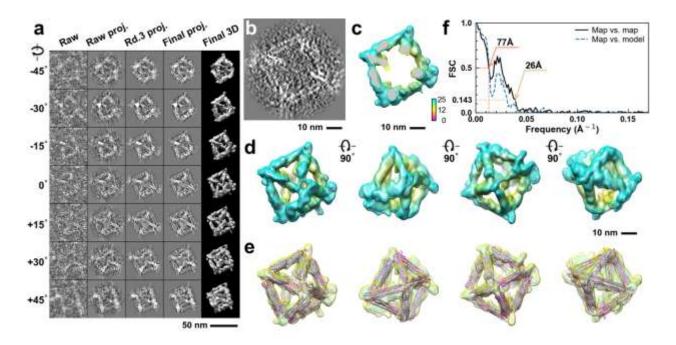

Supplementary Fig. 273: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 265) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

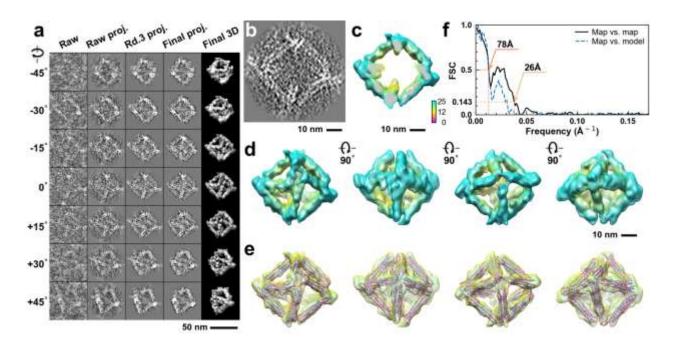

Supplementary Fig. 274: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 266) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

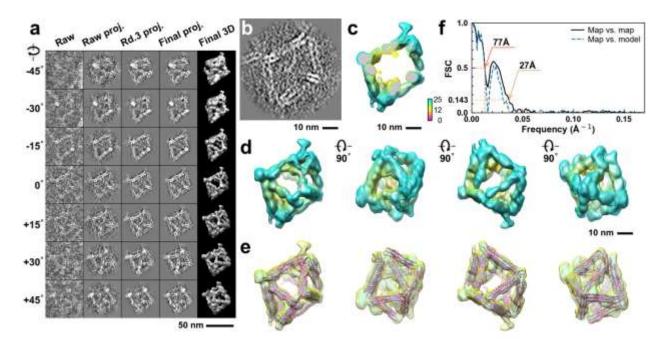

Supplementary Fig. 275: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 267) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

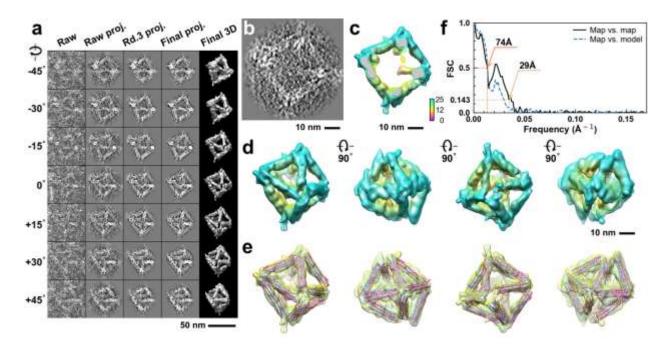

Supplementary Fig. 276: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 268) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

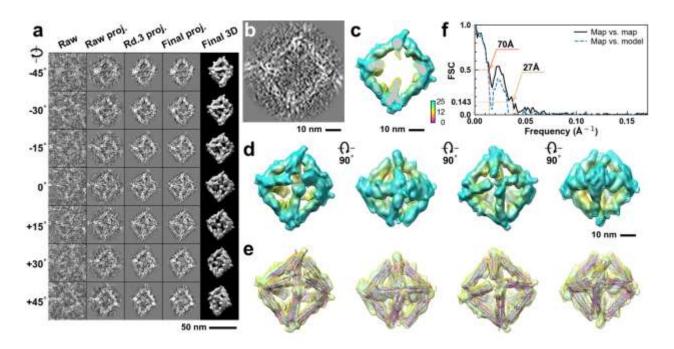

Supplementary Fig. 277: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 269) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

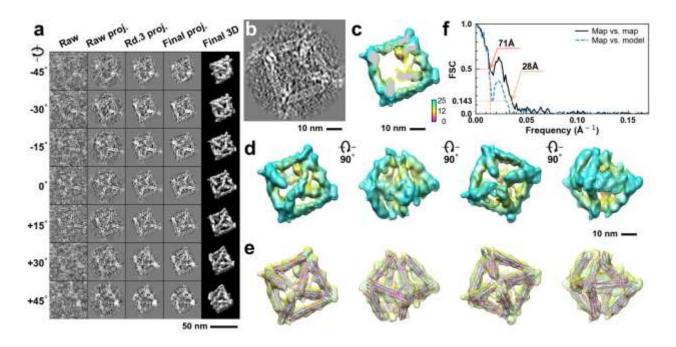

Supplementary Fig. 278: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 270) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

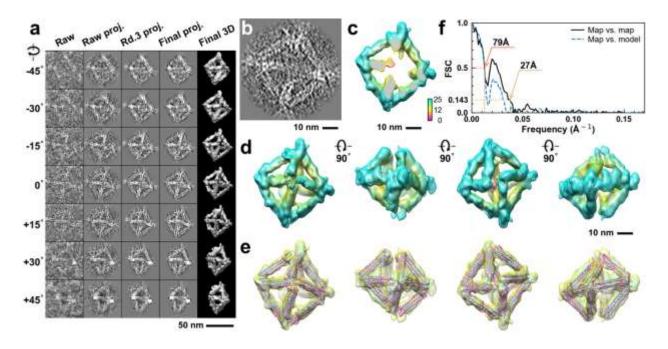

Supplementary Fig. 279: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 271) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

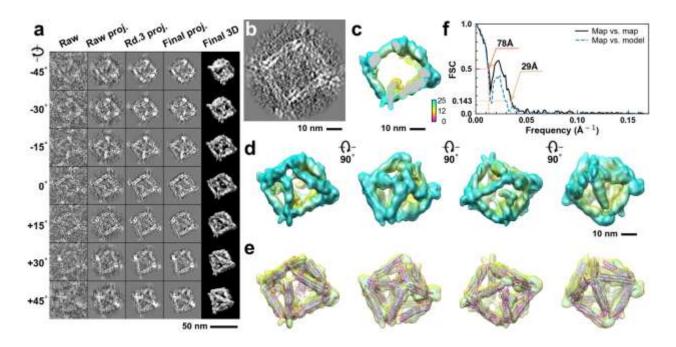

Supplementary Fig. 280: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 272) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

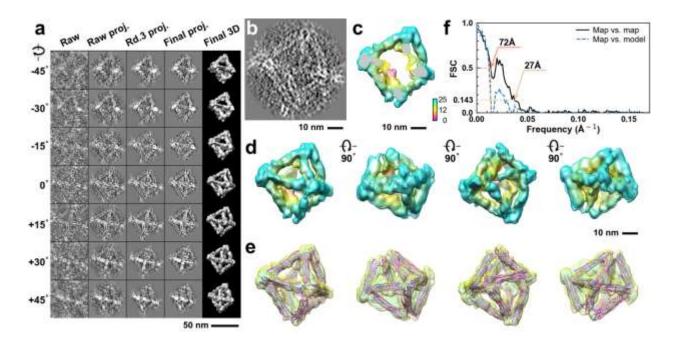

Supplementary Fig. 281: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 273) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

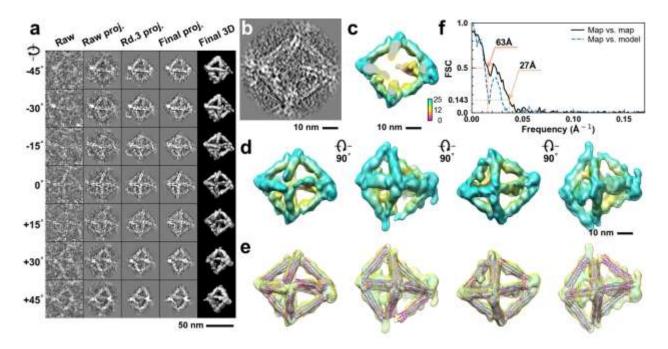

Supplementary Fig. 282: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 274) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

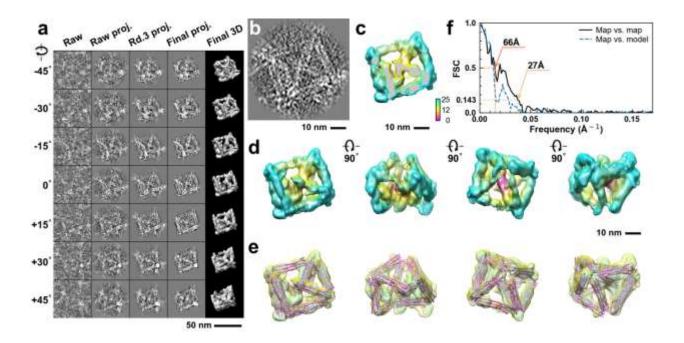

Supplementary Fig. 283: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 275) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

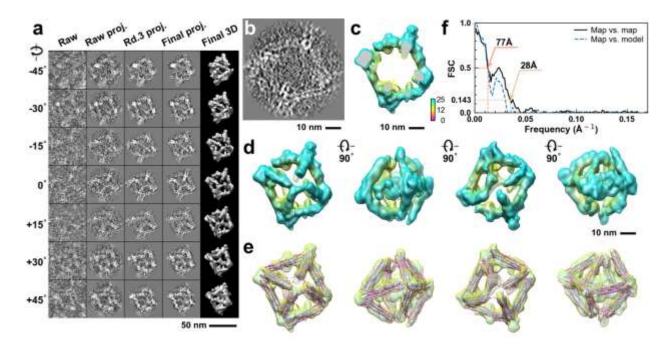

Supplementary Fig. 284: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 276) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

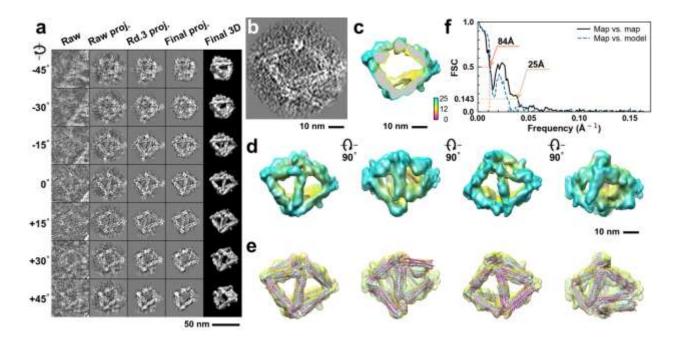

Supplementary Fig. 285: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 277) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

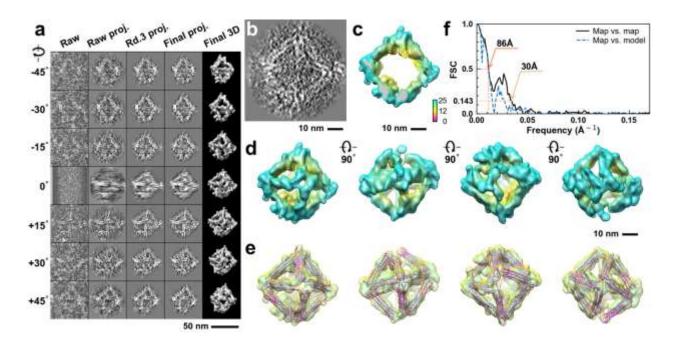

Supplementary Fig. 286: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 278) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

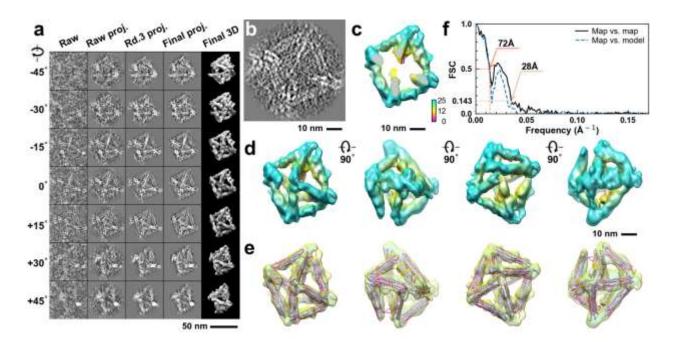

Supplementary Fig. 287: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 279) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

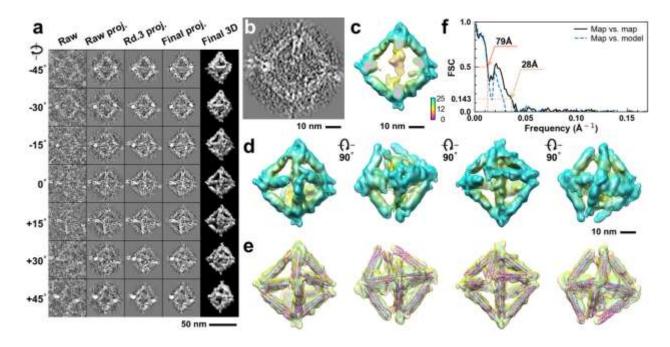

Supplementary Fig. 288: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 280) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

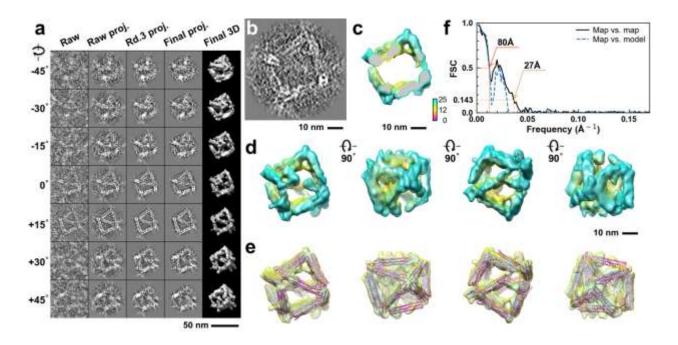

Supplementary Fig. 289: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 281) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

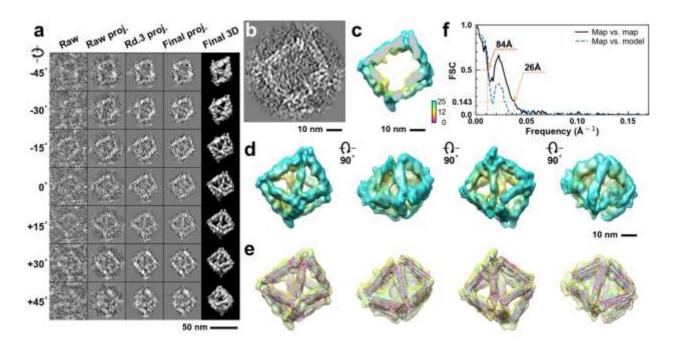

Supplementary Fig. 290: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 282) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

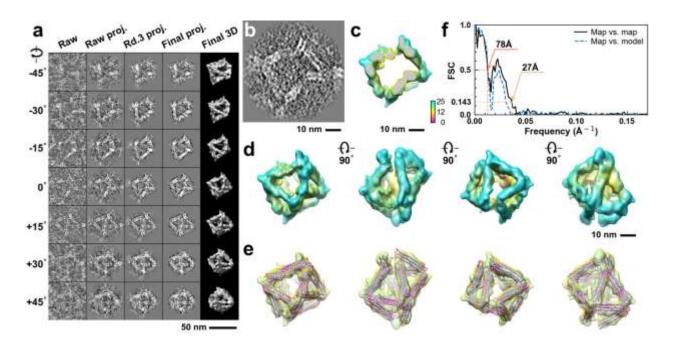

Supplementary Fig. 291: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 283) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

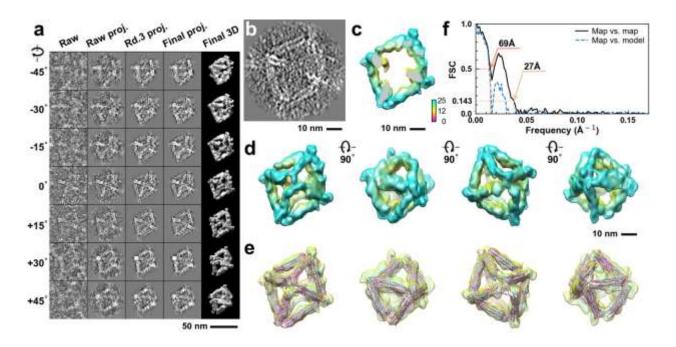

Supplementary Fig. 292: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 284) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

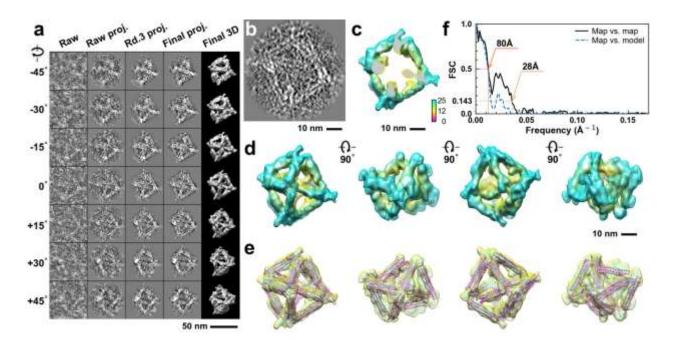

Supplementary Fig. 293: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 285) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

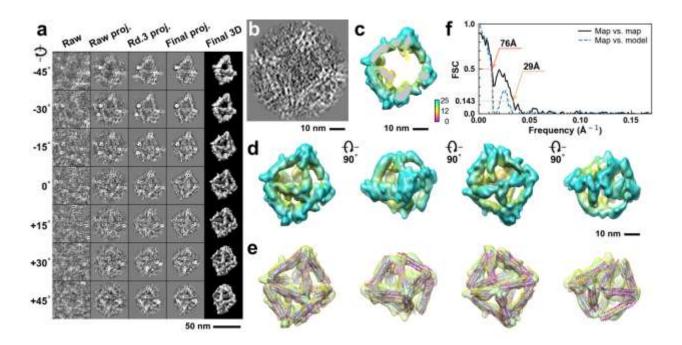

Supplementary Fig. 294: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 286) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

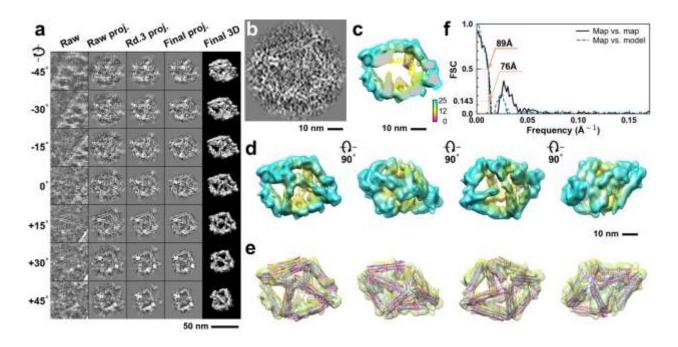

Supplementary Fig. 295: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 287) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

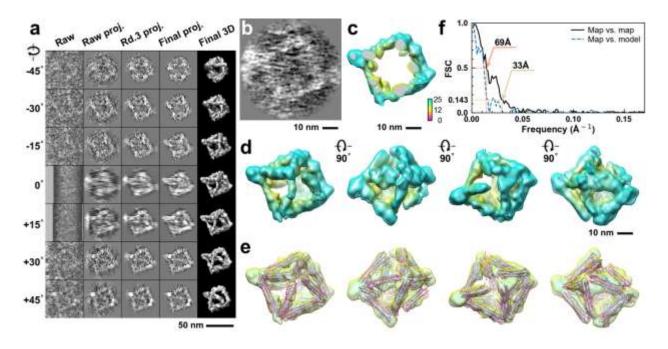

Supplementary Fig. 296: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 288) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

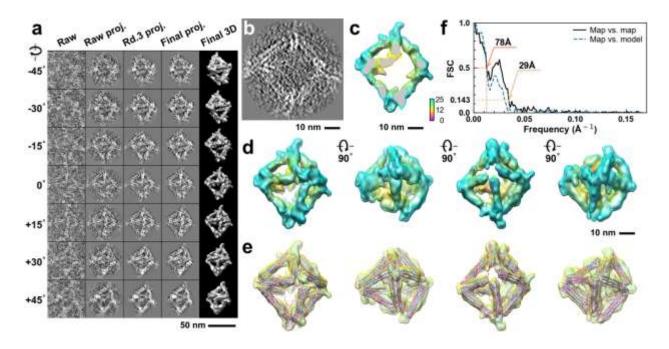

Supplementary Fig. 297: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 289) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

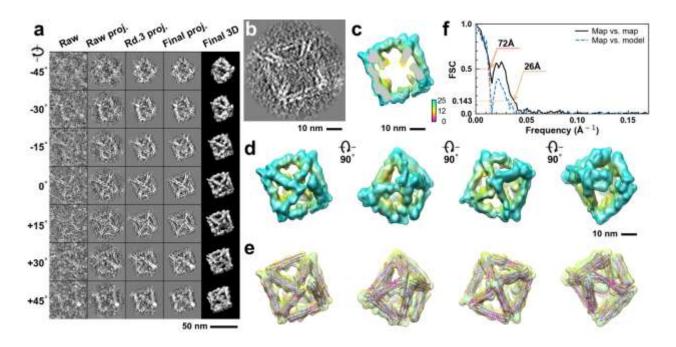

Supplementary Fig. 298: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 290) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

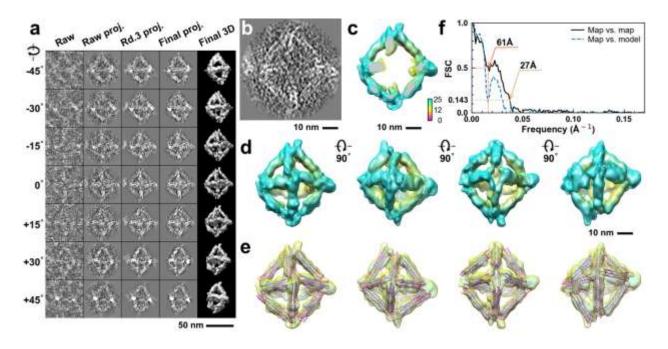

Supplementary Fig. 299: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 291) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

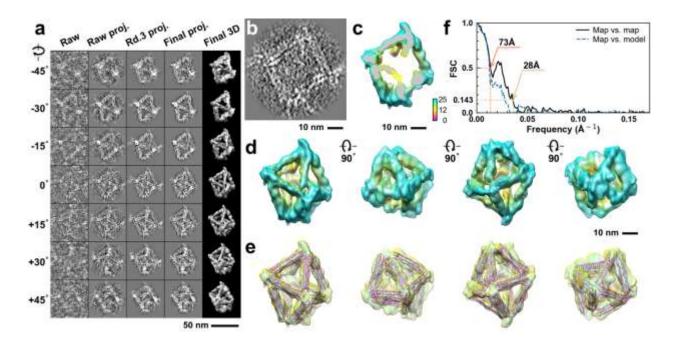

Supplementary Fig. 300: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 292) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

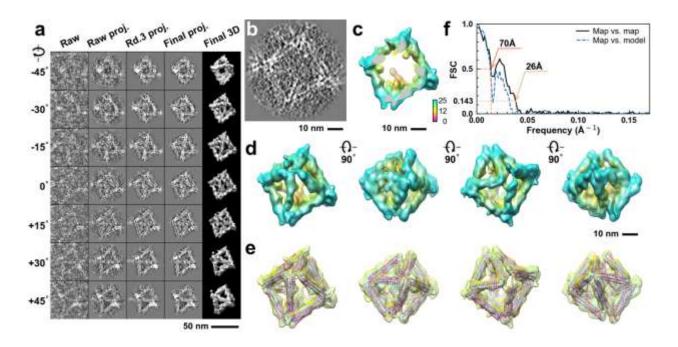

Supplementary Fig. 301: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 293) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

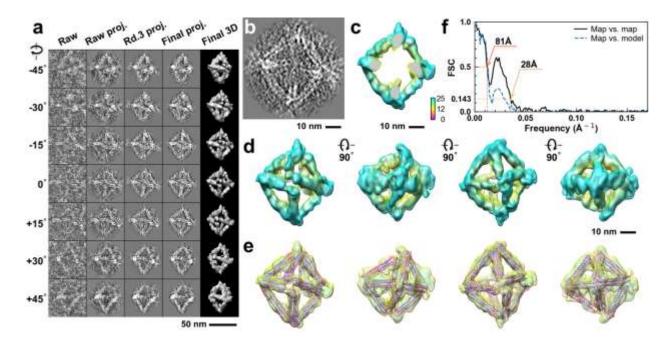

Supplementary Fig. 302: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 294) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

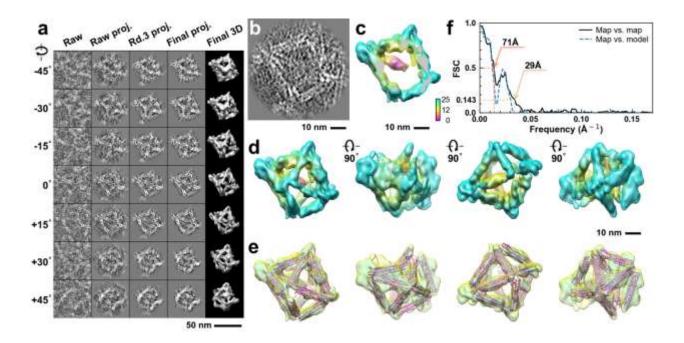

Supplementary Fig. 303: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 295) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

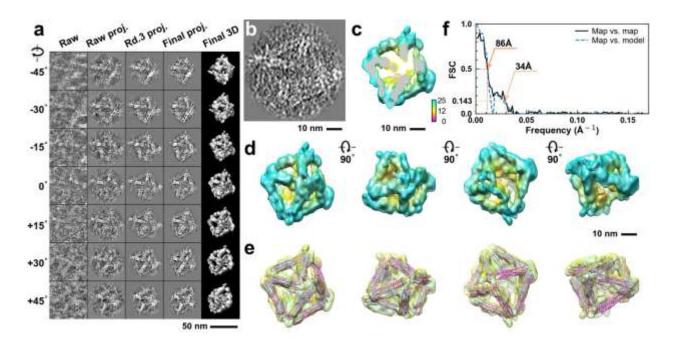

Supplementary Fig. 304: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 296) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

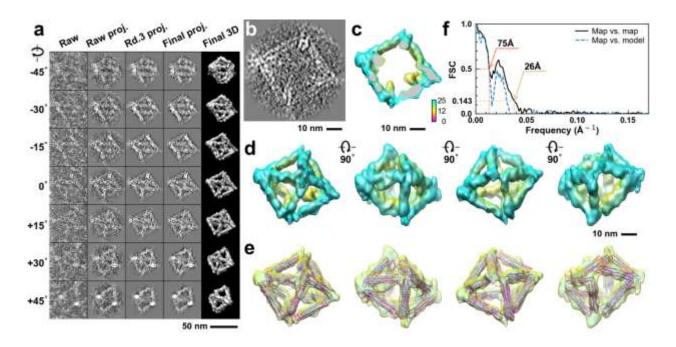

Supplementary Fig. 305: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 297) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

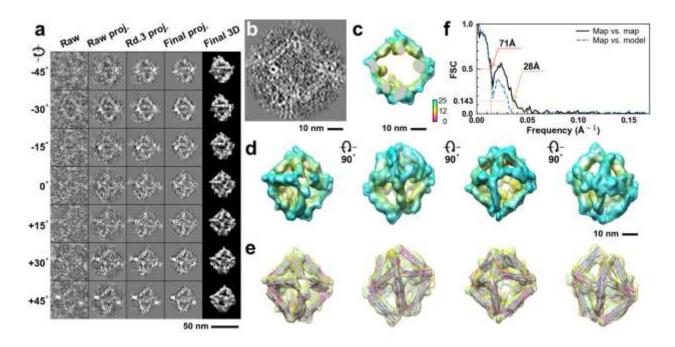

Supplementary Fig. 306: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 298) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

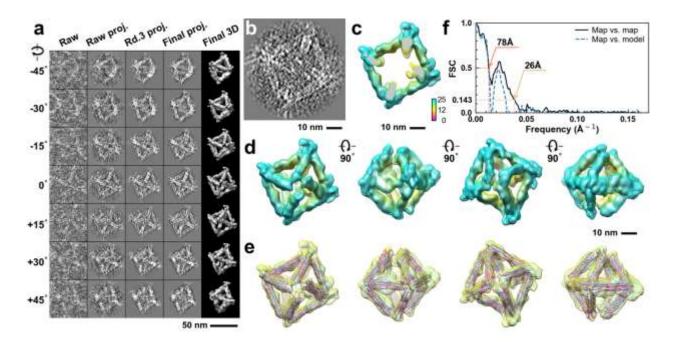

Supplementary Fig. 307: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 299) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

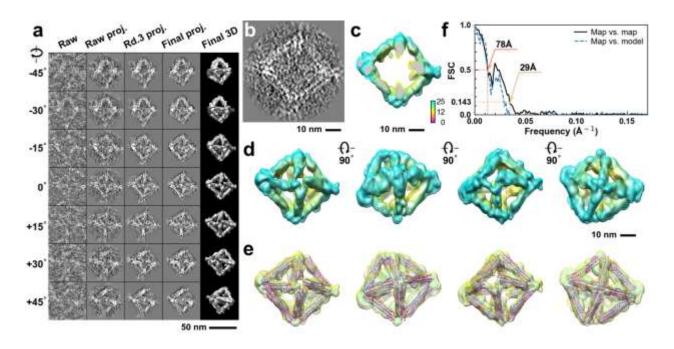

Supplementary Fig. 308: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 300) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

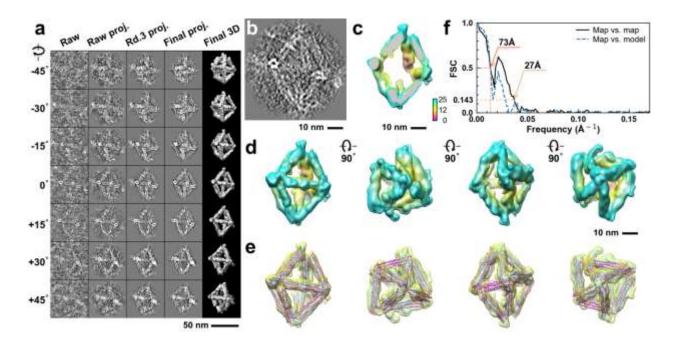

Supplementary Fig. 309: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 301) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

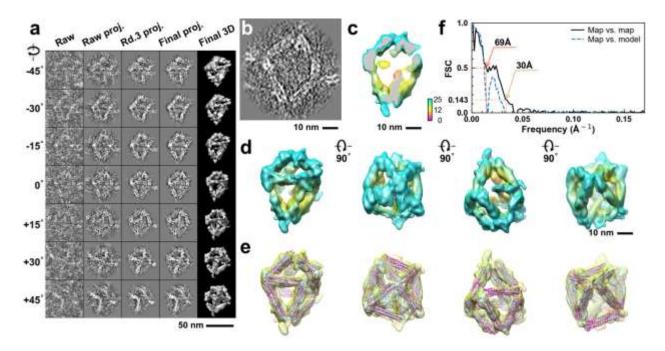

Supplementary Fig. 310: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 302) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

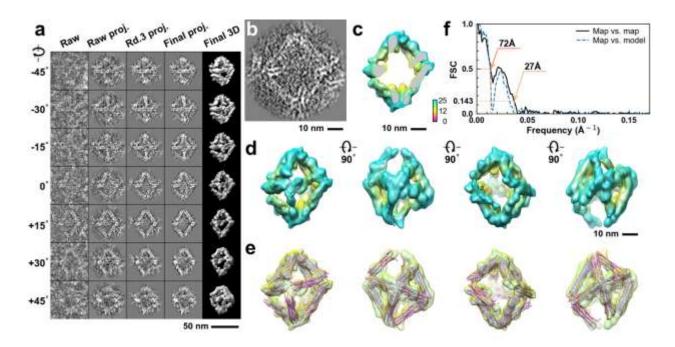

Supplementary Fig. 311: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 303) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

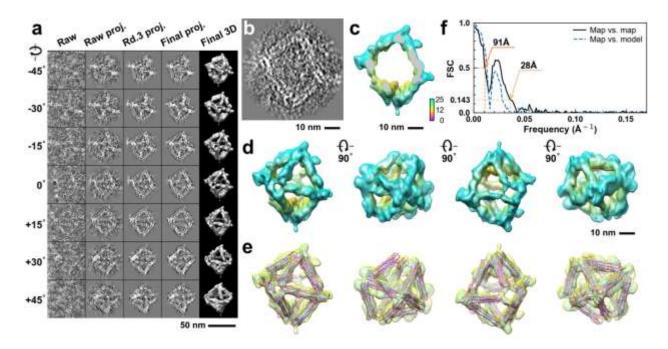

Supplementary Fig. 312: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 304) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

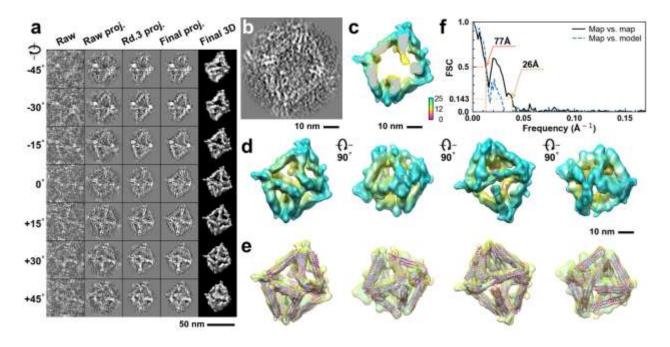

Supplementary Fig. 313: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 305) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 314: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 306) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

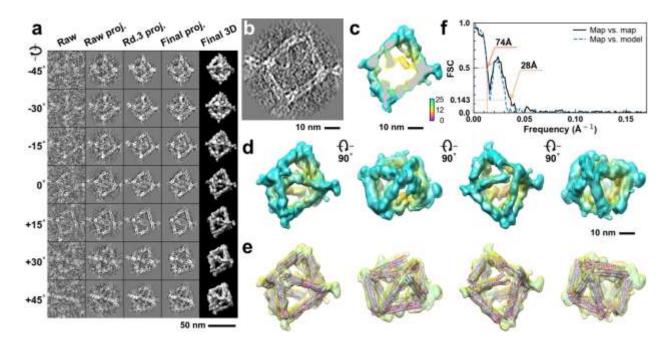

Supplementary Fig. 315: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 307) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

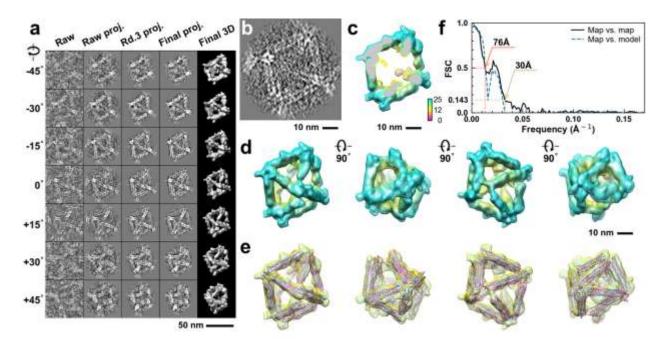

Supplementary Fig. 316: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 308) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

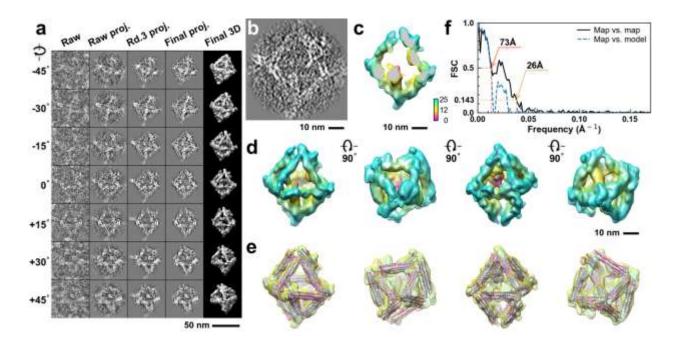

Supplementary Fig. 317: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 309) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

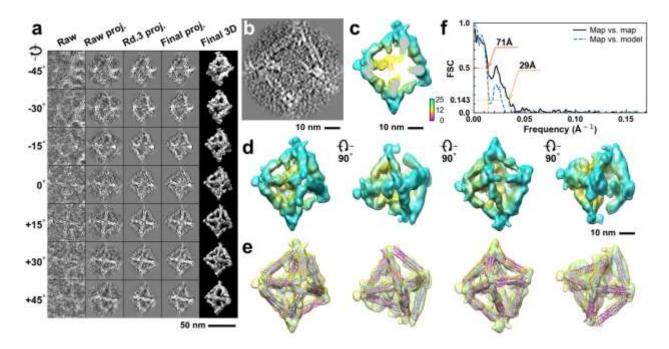

Supplementary Fig. 318: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 310) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

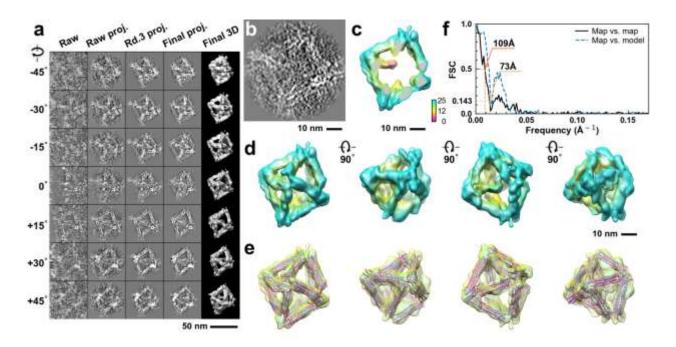
Supplementary Fig. 319: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 311) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

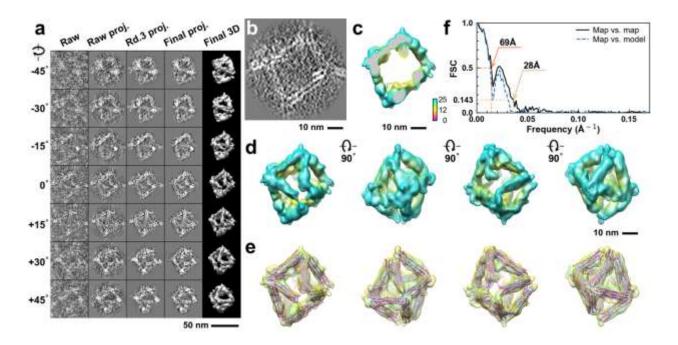

Supplementary Fig. 320: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 312) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

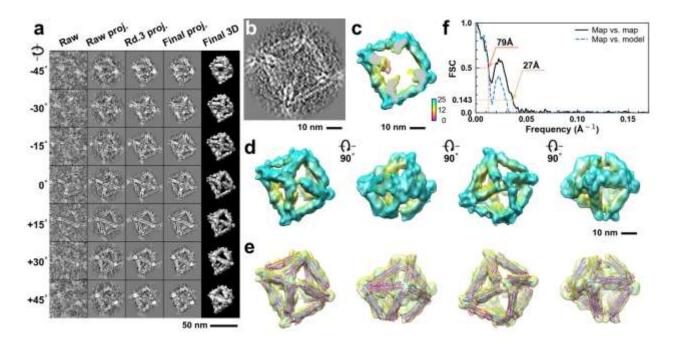

Supplementary Fig. 321: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 313) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 322: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 314) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

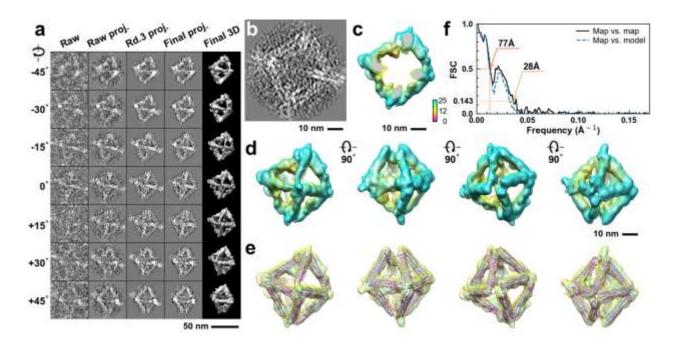

Supplementary Fig. 323: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 315) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

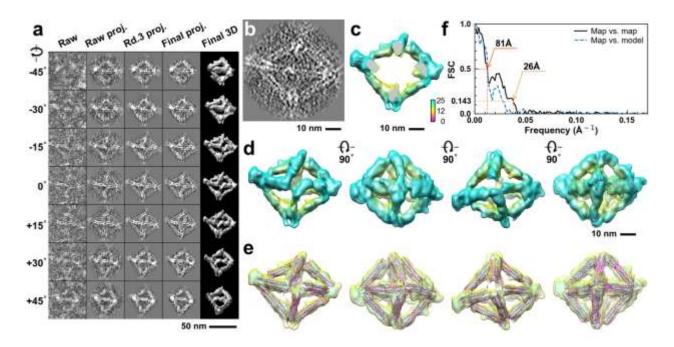

Supplementary Fig. 324: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 316) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

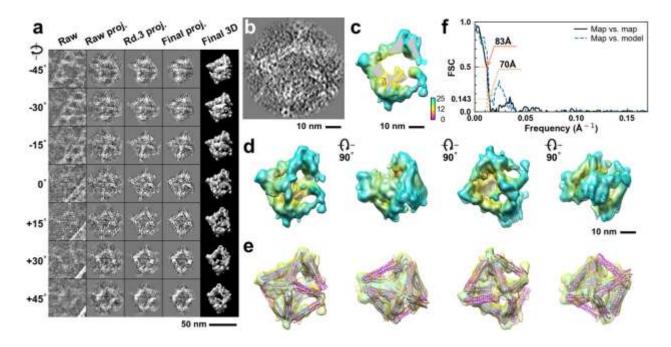

Supplementary Fig. 325: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 317) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

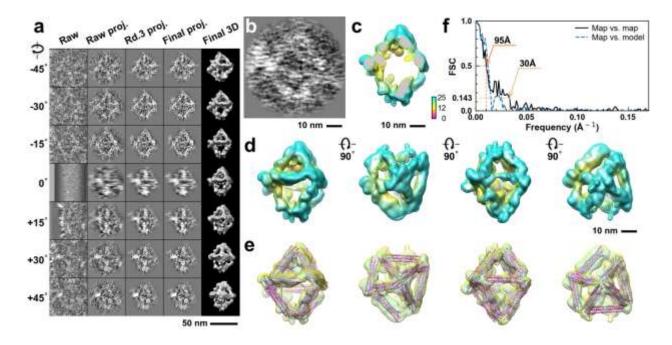

Supplementary Fig. 326: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 318) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

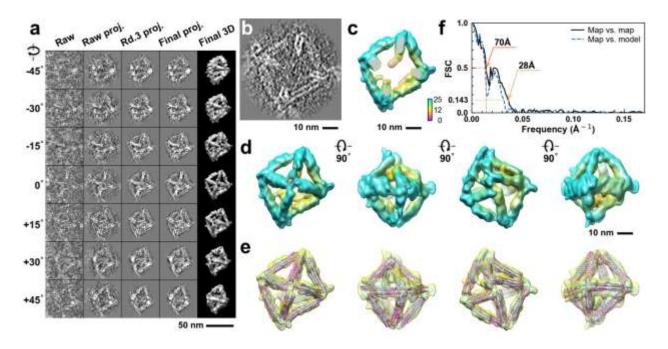
Supplementary Fig. 327: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 319) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

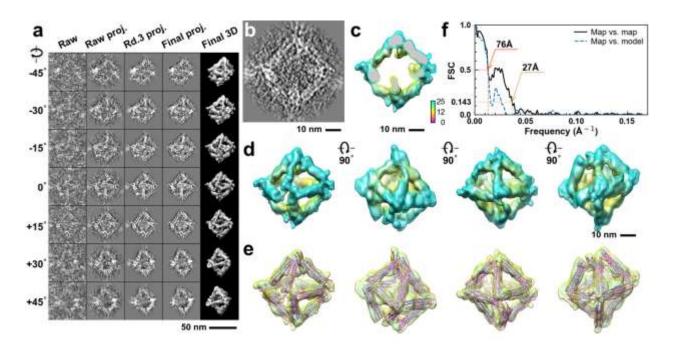

Supplementary Fig. 328: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 320) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

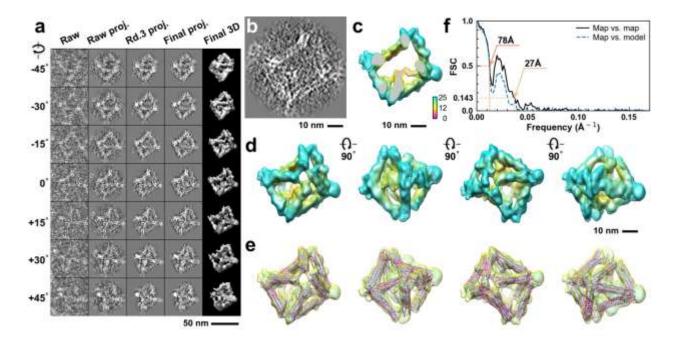

Supplementary Fig. 329: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 321) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

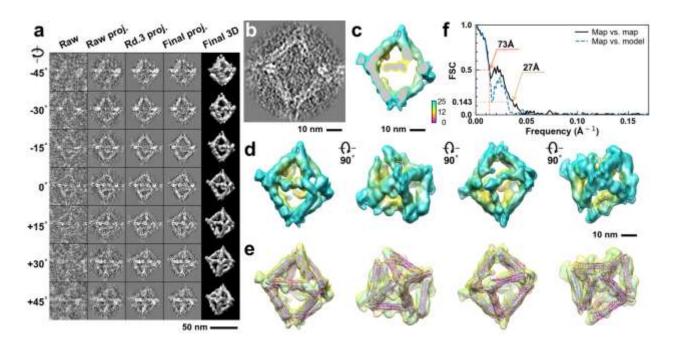

Supplementary Fig. 330: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 322) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

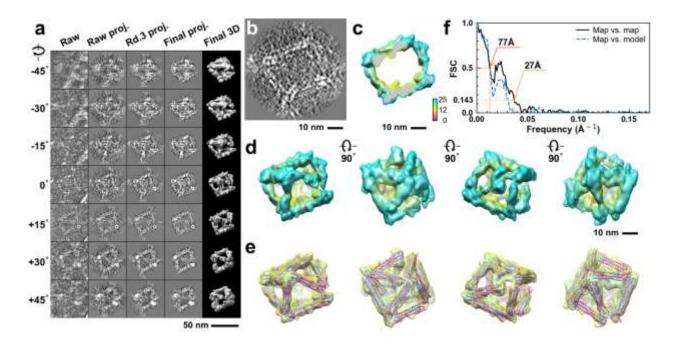

Supplementary Fig. 331: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 323) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

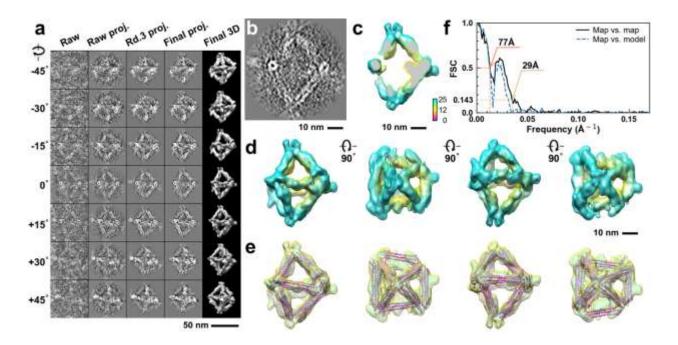

Supplementary Fig. 332: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 324) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 333: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 325) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

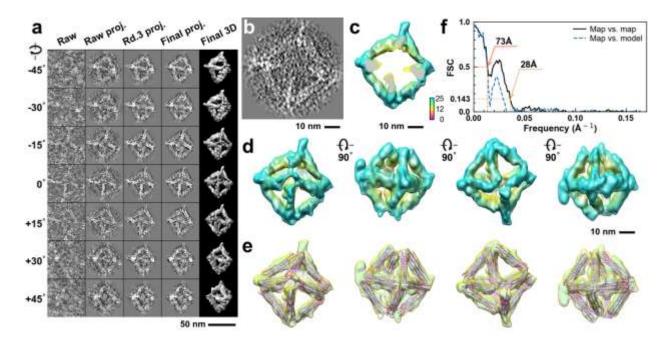

Supplementary Fig. 334: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 326) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

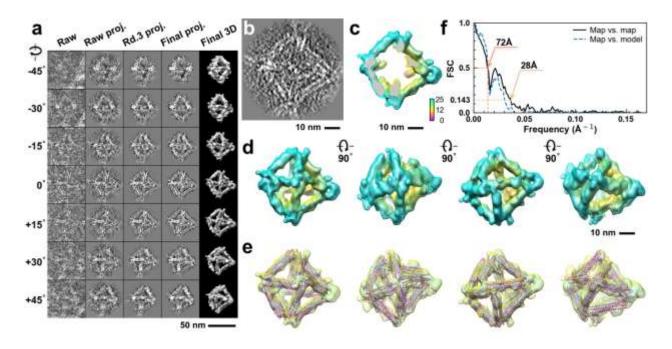

Supplementary Fig. 335: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 327) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

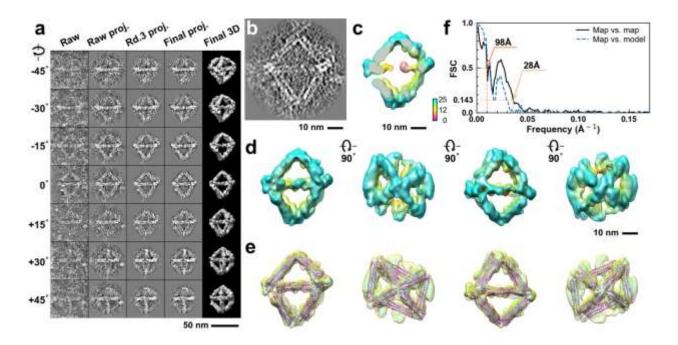

Supplementary Fig. 336: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 328) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

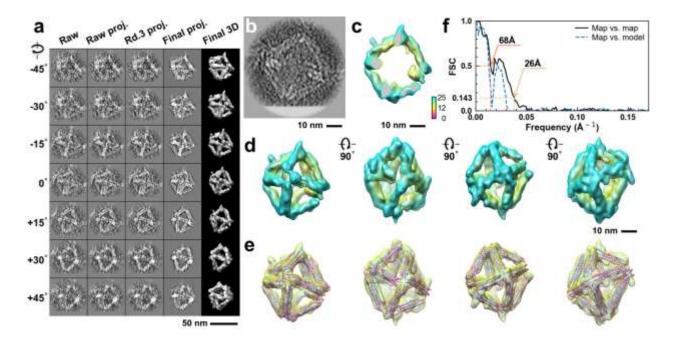

Supplementary Fig. 337: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 329) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

Supplementary Fig. 338: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 330) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 339: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 331) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 340: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 332) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 341: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 333) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.


Supplementary Fig. 342: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 334) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

Supplementary Fig. 343: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 335) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

Supplementary Fig. 344: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 336) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.

Supplementary Fig. 345: IPET 3D reconstruction and model fitting of an individual unit-cell particle (Index: 337) within a 2D lattice with 0% ferritin loading. a, Seven representative tilt images of a single unit-cell particle are shown in the first column (from left). The tilt images are aligned to a common center using IPET through iterative refinement. The projections of the raw, intermediate, and final 3D reconstruction at the corresponding angles are displayed in the subsequent four columns. b, A central cross-section (~23 nm thick) of the final reconstruction before masking is applied. c, 3D views of the central cross-section. d, Final 3D density map of this particle, viewed from four perpendicular directions. e, Final 3D reconstruction superimposed with the fitted model, viewed from four perpendicular directions. f, FSC analyses of the final map resolution using two methods: map-map FSC, where each map is reconstructed from one half of the images (even vs. odd tilt angle indices), and map-model FSC, where the model map is generated from the fitted model. Resolution assessments are provided based on tilt-based map-map and map-model FSC analyses at thresholds of FSC=0.5 and 0.143, respectively.