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Supplementary Notes
Supplementary Note 1. Synthesis of Cu2O nanocube. 0.75 g CuSO4·5H2O and 0.3 g sodium citrate were dissolved in 200 mL ultra-pure water. Then, 2 g NaOH was added into the above solution under stirring for 0.5 h, and 100 mL of 0.03 M ascorbic acid was dropped into the above solution. After being stirred for 0.5 h, the Cu2O nanocube were centrifugally separated and dried in a vacuum oven at 60°C. 
Supplementary Note 2. Synthesis of precursor NiCoFeCdCr-OH. 40 mg of the as-prepared Cu2O nanocube were dispersed into the mixture solution of 40 mL ultra-pure water and 40 mL ethanol. Afterward, 666.6 mg PVP-K30, 4.8 mg NiCl2·6H2O, 4.8 mg CoCl2·6H2O, 5.6 mg FeSO4·7H2O, 4.6 mg CdCl2·2.5H2O, and 8 mg Cr(NO3)3·9H2O were dissolved in the above solution under stirring for 15 min. Finally, 32 mL of 1.0 M Na2S2O3 was added dropwise slowly into the solution system. After being stirred for 0.5 h, the NiCoFeCdCr-OH were centrifugally separated and dried by vacuum freezing. The NiCoFe-OH, NiCoFeCd-OH, and NiCoFeCr-OH were prepared with the same method just without CdCl2·2.5H2O or Cr(NO3)3·9H2O.
Supplementary Note 3. Synthesis of precursor NiCoFeCdCrLaSnZn-OH. 40 mg of the as-prepared Cu2O nanocube were dispersed into the mixture solution of 40 mL ultra-pure water and 40 mL ethanol. Afterward, 666.6 mg PVP-K30, 3.6 mg NiCl2·6H2O, 3.6 mg CoCl2·6H2O, 4.2 mg FeSO4·7H2O, 3.4 mg CdCl2·2.5H2O, 6.0 mg Cr(NO3)3·9H2O, 4.9 mg La(NO3)3·nH2O, 3.4 mg SnCl2·2H2O and 4.3 mg ZnSO4·7H2O were dissolved in the above solution under stirring for 15 min. Finally, 32 mL of 1.0 M Na2S2O3 was added dropwise into the solution system. After being stirred for 0.5 h, the NiCoFeCdCrLaSnZn-OH were centrifugally separated and dried by vacuum freezing. The NiCoFeCdCrLa-OH and NiCoFeCdCrLaSn-OH were prepared with the same method just without SnCl2·2H2O and ZnSO4·7H2O. The NiCoFeCdCrLaSnZnOHNaOH were synthesized by the same synthetic route with Na2S2O3 replaced by NaOH and without Cu2O and PVP.
[bookmark: _Hlk178154455][bookmark: _Hlk178154483][bookmark: _Hlk178154395][bookmark: OLE_LINK12]Supplementary Note 4. Characterization. X-ray diffraction (XRD) patterns were tested from Bruker D8 Advance (scan range of 10-80°). Scan electron microscopy (SEM) images were carried out on a JEOL TSM-7500F field emission scanning electron microscope. The transmission electron microscopy (TEM), High Angle Annular Dark Field-Scanning Transmission Electron Microscopy (‌HADDF-STEM), and corresponding elemental mappings images were obtained from the FEI Talos F200S emission scanning electron microscope. X-ray photoelectron spectroscopy (XPS) tests were obtained from Escalab 250Xi electron spectrometer with Mg Kα radiation. Metal element content images were obtained from inductively coupled plasma-optical emission spectrometer (ICP-OES). The high-resolution transmission electron microscopy (HRTEM) imaging was acquired on a JEOL JEM-ARM200CF microscope operated at 200kV with a Schottky cold-field emission gun at Wuhan University. Ultraviolet-visible Spectrophotometer (UV-Vis) spectroscopy measurements were carried out using a Shimadzu 3600 Plus. X-ray Absorption Fine Structure (XAFS) spectra were acquired under ambient conditions in transmission mode at beamline BL14W1 of the Shanghai Synchrotron Radiation Facility.
Supplementary Note 5. Computational detail. All the calculations are performed in the framework of the density functional theory with the projector augmented plane-wave method, as implemented in the Vienna ab initio simulation package. The generalzied gradient approximation proposed by Perdew, Burke, and Ernzerhof is selected for the exchange-correlation potential. The cut-off energy for plane wave is set to 400 eV. The energy criterion is set to 10−5 eV in iterative solution of the Kohn-Sham equation. A vacuum layer of 15 Å is added perpendicular to the sheet to avoid artificial interaction between periodic images. The Brillouin zone integration is performed using a 5×3×1 k-mesh. All the structures are relaxed until the residual forces on the atoms have declined to less than 0.03 eV/Å.
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[bookmark: OLE_LINK6]Supplementary Fig. 1 | XRD patterns of (a) NiCoFeCdCrLaSnZn-OH and (b) NiCoFeCdCrLaSnZnOHNaOH.
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Supplementary Fig. 2 | Predicted models from DFT calculations for NiCoFe-O. The red balls represent oxygen, and the coordination bond with grey, blue, and yellow represent Ni, Co, and Fe, respectively.
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Supplementary Fig. 3 | Predicted models from DFT calculations for NiCoFeCd-O. The red balls represent oxygen, and the coordination bond with grey, blue, yellow, and pink represents Ni, Co, Fe, and Cd, respectively.
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Supplementary Fig. 4 | Predicted models from DFT calculations for NiCoFeCr-O. The red balls represent oxygen, and the coordination bond with grey, blue, and green represent Ni, Co, Fe, and Cr, respectively.
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Supplementary Fig. 5 | Predicted models from DFT calculations for NiCoFeCdCr-O. The red balls represent oxygen, and the coordination bond with grey, blue, yellow, pink, and green represents Ni, Co, Fe, Cd, and Cr, respectively.
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Supplementary Fig. 6 | Total and partial density of states for NiCoFeCd-O. 
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Supplementary Fig. 7 | Total and partial density of states for NiCoFeCr-O.
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Supplementary Fig. 8 | The d-band center of different elements for NiCoFe-O, NiCoFeCd-O, NiCoFeCr-O, and NiCoFeCdCr-O.
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Supplementary Fig. 9 | Characterizations of Cu2O. (a) SEM images and (b) XRD patterns.
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Supplementary Fig. 10 | Characterizations of Cu2O. (a-c) TEM images and (d) element mapping of nanocube Cu2O.



[image: ]
Supplementary Fig. 11 | Characterizations of NiCoFeCdCr-OH nanocube. (a) SEM images and (b) XRD patterns. 
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[bookmark: _Hlk154132811]Supplementary Fig. 12 | TEM images and element distribution of NiCoFeCdCr-OH nanocube.


[image: ]
Supplementary Fig. 13 | TEM image and element distribution of NiCoFeCdCr-O2min with the reaction time of NiCoFeCdCr-OH for 2 min.
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[bookmark: _Hlk179623983]Supplementary Fig. 14 | (a) XRD pattern of NiCoFeCdCr-OH precursor under thermal treatment with different temperatures. (b) Schematic diagram of spinel oxide with single-phase forming driven by entropy-increasing.
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[bookmark: _Hlk178109471]Supplementary Fig. 15 | Characterizations of NiCoFeCdCr-O. TEM images of NiCoFeCdCr-O nanocube with polycrystalline structure.
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Supplementary Fig. 16 | XRD pattern of NiCoFeCdCr-O.
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[bookmark: _Hlk162117133]Supplementary Fig. 17 | Characterizations of NiCoFeCdCr-O. (a, b) TEM and (c) enlarge TEM image (insert pattern: FFT image), (d) IFFT patterns and lattice spacing profiles from (b).
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Supplementary Fig. 18 | HAADF-STEM image and element mapping images of NiCoFe-O.
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Supplementary Fig. 19 | HAADF-STEM image and element mapping images of NiCoFeCd-O. 
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Supplementary Fig. 20 | HAADF-STEM image and element mapping images of NiCoFeCr-O.
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Supplementary Fig. 21 | Characterizations of different components of oxides. XRD patterns (indexed to CoFe2O4 (powder diffraction file PDF#22-1086)) of (a) NiCoFe-O, (b) NiCoFeCd-O, (c) NiCoFeCr-O.
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Supplementary Fig. 22 | Characterizations of NiCoFe-O. (a) TEM and (b-c) enlarged TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c).
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Supplementary Fig. 23 | Characterizations of NiCoFeCd-O. (a) TEM and (b-c) enlarge TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c).
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Supplementary Fig. 24 | Characterizations of NiCoFeCr-O. (a) TEM and (b-c) enlarged TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c).
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Supplementary Fig. 25 | Characterizations of NiCoFeCdCrLa-O. (a) TEM and (b-c) enlarge TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c). 
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Supplementary Fig. 26 | Characterizations of NiCoFeCdCrLaSn-O. (a) TEM and (b-c) enlarge TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c). 
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Supplementary Fig. 27 | Characterizations of NiCoFeCdCrLaSnZn-O. (a) TEM and (b-c) enlarge TEM image, (d) IFFT patterns and lattice spacing profiles from (b and c). 
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[bookmark: _Hlk144388403]Supplementary Fig. 28 | XRD pattern of NiCoFeCdCrLaSnZn-OH under thermal treatment with different temperatures to obtain the NiCoFeCdCrLaSnZn-O.
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[bookmark: _Hlk142750998]Supplementary Fig. 29 | XPS survey spectrum of different components. In Supplementary Fig. 29, the XPS survey spectrum confirms the coexistence of Cu, Co, Ni, Fe, Cd, Cr, and O elements in NiCoFeCdCr-O. 
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Supplementary Fig. 30 | The XPS spectra at the Ni 2p (a) and O 1s (b). In Supplementary Fig. 30a, Ni 2p spectra show a binding energy Δ~18 eV between two spin-orbit peaks Ni 2p1/2 and Ni 2p3/2, and the peak located at 855.9 and 873.6 eV indicates the existence of Ni2+ from Ni-O.1, 2 The peak of O 1s is deconvoluted into four peaks at 530.2, 531.8, and 532.5 eV for M-O(O1), O-Vacancy(O2), and M-OH(O3), respectively (Supplementary Fig. 30b).3
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Supplementary Fig. 31 | XPS Characterizations of NiCoFeCdCr-O: Cr 2p. The Cr 2p spectrum in Supplementary Fig. 31 shows two main peaks, which are from Cr3+ 2p3/2 (∼576.6 eV) and 2p1/2 (∼586.5 eV).
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[bookmark: _Hlk179730006]Supplementary Fig. 32 | XPS Characterizations of NiCoFeCdCr-O. The high-resolution XPS spectra of NiCoFeCdCr-O: (a) Co 2p, (b) Fe 2p, (c) Cd 3d, (d) Cu 2p. In the Co 2p spectrum (Supplementary Fig. 32a), the peaks at 781.9 eV and 798.3 eV can be ascribed to Co2+ 2p3/2 and 2p1/2, respectively.4 The Fe 2p peaks at 724.6 and 711.9 eV confirm Fe species exists in the form of Fe3+ (Supplementary Fig. 32b).5 In the Cd 3d spectrum of NiCoFeCdCr-O, the 3d5/2 at 405.9 eV and 3d3/2 at 412.7 eV, which are characteristics of Cd in the valance state of +2 (Supplementary Fig. 32c). In Fig. S32d, the doublets of Cu 2p spectra located at 934.46 and 954.59 eV are attributed to the 2p3/2 and 2p1/2 of Cu2+ for the CuO phase.6
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[bookmark: _Hlk144387799]Supplementary Fig. 33 | The high-resolution XPS spectra. (a) Co 2p, (b) Fe 2p of NiCoFe-O; (c) Co 2p, (d) Fe 2p and (e) Cd 3d of NiCoFeCd-O; (f) Co 2p, (g) Fe 2p and (h) Cr 2p of NiCoFeCr-O. Supplementary Fig. 33 illustrated that the valence state of the metal element in ternary and quaternary oxides is same with that of NiCoFeCdCr-O, revealing the similar structure of the sample synthesized by this strategy. 
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Supplementary Fig. 34 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Ni K-edge. 
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Supplementary Fig. 35 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Co K-edge.
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Supplementary Fig. 36 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Fe K-edge.
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Supplementary Fig. 37 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Cd K-edge.
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Supplementary Fig. 38 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Cr K-edge.
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Supplementary Fig. 39 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of La L-edge.


[image: ]
Supplementary Fig. 40 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Sn K-edge.
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Supplementary Fig. 41 | X-ray absorption fine structure analysis. XANES and FT-EXAFS spectra of Zn K-edge.
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Supplementary Fig. 42 | Performance of different samples. (a) UV–vis absorption spectra with the photo images for the conversion of 4-NP to nitrophenolate ions in the presence of NaBH4. UV–vis absorbance spectra for the catalytic reduction of 4-NP to 4-AP over as-prepared catalysts at ambient temperature (b) NiCoFe-O, (c) NiCoFeCd-O, and (d) NiCoFeCr-O, respectively.
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[bookmark: _Hlk191138737][bookmark: _Hlk144392170]Supplementary Fig. 43 | Performance of samples with different concentrations of 4-NP. UV–vis absorbance spectra for the catalytic reduction of 4-NP to 4-AP over as-prepared catalysts at 25℃. The absorbance of 4-NP solutions at different system concentrations with a change of reaction time for (a) 0.25 mM, (b) 0.5 mM, and (c) 1.5 mM. (d) Plots of ln(Ct/C0) against the reaction time of as-measured concentration. As shown in Supplementary Fig. 43a-c, the change absorbance of 4-NP solutions at different concentrations for 0.25 mM, 0.5 mM, and 1.5 mM, and the absorbance peak intensity gradually decreased to 0 within 90, 120, and 180s, respectively. The plots of ln(Ct/C0) against the reaction time of the as-measured concentration, as can be seen in Supplementary Fig. 43d, the k value gradually increases with the rising concentration, which is attributed to the enhancement of the collision probability between the catalyst and reaction substrate during catalytic reaction, thereby the reaction rate k gradually increases.


[image: ]
[bookmark: OLE_LINK7][bookmark: _Hlk179989779][bookmark: OLE_LINK14]Supplementary Fig. 44 | Performance of samples with different homologs of 2-NP and 3-NP. (a) UV–vis absorbance spectra for the catalytic reduction of 2-NP to 2-AP over NiCoFeCdCr-O at 25℃. (b) Plots of ln(Ct/C0) against the reaction time. (c) UV–vis absorbance spectra for the catalytic reduction of 3-NP to 3-AP over NiCoFeCdCr-O at 25℃. (d) Plots of ln(Ct/C0) against the reaction time. As shown in Supplementary Fig. 44a and c, it was obviously observed from a series of successive UV–vis spectra that NiCoFeCdCr-O facilitated the reduction of nitrophenol to corresponding aminophenol products in the presence of NaBH4, and the absorbance peak intensity of the nitrophenol (2-NP at 416 nm and 3-NP at 394 nm) gradually decreased with reaction time in 180 and 40 s, respectively. The reduction of nitrophenol was recorded by using the maximum absorbance of wavelength as a signal. It was acquired from plots of ln(Ct/C0) against reaction time in Supplementary Fig. 44b and d, indicating that the conversion of nitrophenol to corresponding aminophenol products was achieved by NiCoFeCdCr-O and the large value of k for 0.655 and 1.64 min-1 implying superior catalytic performance. The difference in reaction rate for the reduction of those nitrophenol compounds by NaBH4 using the same catalyst can be related to the conjugation effect, inductive effect, and steric effect of the substituent group.7, 8 It was also concluded that NiCoFeCdCr-O exhibited remarkable catalytic efficiency and was more suitable for the reduction of nitrophenol compounds.
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Supplementary Fig. 45 | Performance of samples with different conditions. (a) The absorbance of 4-NP solutions with a change of reaction time at 25℃ for NiCoFeCdCrONaOH. (b) XRD patterns of NiCoFeCdCrONaOH. (c) The absorbance of p-nitrophenol solutions with a change of reaction time at 25℃ for CuO. (d) XRD patterns of CuO.


[bookmark: OLE_LINK2][bookmark: OLE_LINK5]Supplementary Tables

Supplementary Table 1. The content result of the metal element from ICP-OES tests.
	[bookmark: OLE_LINK1]Element
Content(%)
	Ni
	Co
	Fe
	Cd
	Cr
	Cu
	[bookmark: OLE_LINK4]Ratio constant (K) (min-1 g-1)

	
	7.22
	6.09
	5.71
	6.01
	4.19
	16.4
	1.53×106





Supplementary Table 2. Comparison of rate constants (k) and ratio constant (K) for catalytic reduction of p-nitrophenol over NiCoFeCdCr-O with previously reported noble metal nanocatalysts.
	[bookmark: _Hlk156809111]Catalyst
	Kinetic rate constant
k (min-1)
	Ratio constant
K (min-1 g-1)
	Reference

	Fe3O4/Ag@NFC
	0.1980
	1.477 × 103
	9

	Ag@CeO2
	1.9560
	1.345 × 105
	10

	Ag-OMS-C
	1.8
	9.000 × 103
	11

	Pd/C
	0.52980
	6.915 ×102
	12

	PdPt nanotubes
	0.5
	33
	13

	Au/EPA
	0.96
	1.92×103
	14

	Ag-NSs
	0.277
	28.83
	15

	Au/CN-EPI
	0.188
	376
	16

	AuNCs@C-lotus leaf
	0.561
	22.44
	17

	[bookmark: OLE_LINK8][bookmark: _Hlk154159341]Eggshell/Ag
	1.560
	260
	18

	NiCoFeCdCr-O
	1.79
	1.53×105
	This work




Supplementary Table 3. Comparison of rate constants (k) of 4-NP over NiCoFeCdCr-O with previously reported high-entropy nanocatalysts at different temperatures.
	[bookmark: OLE_LINK3]Catalyst
	Temperature (℃)
	Kinetic rate constant
k (min-1)
	Reference

	AlCoCrFeNiV(550)
	23
	0.0258
	19

	
	39
	0.0301
	

	
	53
	0.0478
	

	Etched CrMnFeCoNi
	30
	0.051
	20

	
	40
	0.084
	

	
	50
	0.11
	

	
	60
	0.17
	

	AlCoCrFeNi(RDT)
	16
	0.019
	21

	
	25
	0.0324
	

	
	32
	0.174
	

	CrMnFeCoNi(600)
	25
	0.096
	22

	
	34
	0.439
	

	
	56
	1.069
	

	CrMnFeCoNi(700)
	24
	0.04
	

	
	34
	0.09
	

	
	55
	0.421
	

	CrMnFeCoNi(800)
	1
	0.019
	

	
	25
	0.108
	

	
	56
	0.991
	

	NiCoFeCdCr-O
	20
	1.43
	

	
	25
	1.79
	This work

	
	30
	2.67
	

	
	35
	3.68
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