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1 Materials and Methods

1.1 Simulation Model
We performed simulations using the TIP4P/2005 water model,1 a re-parametrized version of the ‘classical’ TIP4P
model. Widely utilized, this model has demonstrated exceptional reliability and accuracy in capturing various ex-
perimental characteristics of water.

1.2 Simulation Methods
We conducted molecular dynamics simulations of water using the LAMMPS2 package, employing both the isothermal-
isochoric (NV T ) and the isothermal isobaric (NPT ) ensembles. In both cases, we utilized the Verlet integrator
with a time step of 1 fs (and 0.1 fs for some cases). Electrostatic interactions were computed using the Particle-
Particle Particle-Mesh (PPPM) method with a real space cutoff distance of 1.2 nm. Similarly, a 1.2 nm cutoff
distance was applied for van der Waals interactions. For both NV T and NPT simulations, we employed the
Nose–Hoover thermostat and barostat. Cubic systems (with periodic boundary conditions) of size 1024 and cubic
systems (with periodic boundary conditions) of sizes 512 and 1620 were studied in NV T and NPT Simulations,
respectively.

1.3 Generalized Replica Exchange Method
The generalized replica exchange method (gREM) is tailored for simulating systems undergoing first-order phase
transitions. In a NV T simulation, the probability distribution of the potential energy, P (E) is defined as P (E) =
W (E) Ω(E)/Z, where W (E) ≡ exp(−w(E)) is the sampling weight, Ω(E) is the density of states (linked
to entropy, S(E), through Ω(U) = exp(−S(E)/kB)), and Z =

∫
dUW (E) Ω(E) represents the generalized

configurational integral.
The generalized ensemble (g) introduces a generalized temperature function, dw(E)/dE= 1/(kBT g(E)) with

w = βE, β = 1/(kBT ), and T g is the usual constant temperature T . Computing the extrema, E∗ of P (E) yields
T g(E∗) = TS(E

∗), where TS(E) = 1/(dS(E)/dE) is the statistical temperature. At a first-order phase transition,
the statistical temperature exhibits an S-shaped loop, attributed to the ”convex intruder” in entropy stemming from
the reduced density of states in the phase coexistence range due to surface effects.

In the vicinity of the transition region, within a constant temperature ensemble, TS(E
∗) has three solutions

corresponding to two pure phases at E1 and E2, and the barrier at Ebar. These points align with two minima and
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one maximum in the Gibbs free-energy profile at the specified temperature. States around the barrier are seldom
visited, with the system predominantly residing in one of the free-energy minima (E1 or E2).

The gREM conceptually involves employing an ensemble with a temperature function that intersects TS only
once. This approach facilitates the sequential exploration of the unstable energy region between two stable states.
This generalized temperature function as the linear effective temperature is defined as follows:

Tα(E) = λα + γ0(E − E0) (1)

where the slope, γ0, should be sufficiently negative to ensure a single intersection with TS despite the S loop.
By varying the intercept λα, the intersection point with TS can be systematically adjusted through the coexistence
range, enabling thorough sampling with a series of unimodal, overlapping energy distributions. Replica exchanges
are periodically attempted, with acceptance probabilities chosen to preserve detailed balance. Thermodynamic
quantities can be computed using the statistical temperature, accessible from energy histograms in the replicas
through the statistical temperature-weighted histogram analysis method (ST-WHAM).

In this particular case, 16 generalized replicas (ensembles) of water molecules (N=1024) at a density of ρ = 1.0
g/cm3 were utilized. A swap between adjacent ensembles was attempted every 1000 time steps. Each production
run spanned 60-80 ns, during which the potentials of the configurations were sampled every 10 time steps for
subsequent analysis.

In the gREM, a walker is an independent simulation trajectory that explores the phase space of the system. A
replica, on the other hand, represents a version of the system defined by particular parameters, such as temperature,
pressure, or Hamiltonian settings. Walkers are assigned to replicas during the simulation, and exchanges between
replicas allow walkers to transition between different conditions, allowing better sampling of the system’s land-
scape and overcoming energy barriers. This approach ensures efficient exploration while maintaining the desired
ensemble distribution.

1.4 Well-Tempered Metadynamics
Well-tempered metadynamics (WTMetaD)3 revolutionizes molecular dynamics simulations by systematically fill-
ing energy minima encountered during the simulation with a bias potential. This process effectively smooths
out the free energy surface, facilitating the sampling of rare events crucial for understanding molecular behavior.
Unlike conventional metadynamics, WTMetaD introduces a pivotal component known as the ”well-tempering”
parameter. This parameter regulates the rate at which the bias potential is added, ensuring a gradual and controlled
convergence over time. By doing so, WTMetaD prevents the excessive oversampling of certain states, promot-
ing a more efficient exploration of the system’s configurational space. To implement this method, the PLUMED
package4 is integrated with the LAMMPS package.

WTMetaD achieves this by incorporating Gaussian-shaped bias potentials W (ϕ, t), strategically centered
around previously explored regions of the energy landscape. As the simulation progresses, these Gaussians ac-
cumulate, flattening the energy landscape and enabling the system to explore a broader range of states. Crucially,
the ”bias factor” within WTMetaD plays a fundamental role in this process. It governs the rate at which these
Gaussian bias potentials are introduced, effectively influencing the pace of exploration and ensuring a balanced
sampling across different states. By finely adjusting the bias factor, we can maintain a uniform exploration of the
energy landscape, avoiding the overemphasis on specific regions while promoting an efficient and comprehensive
analysis of molecular dynamics. For any time t, the cumulative bias potential is computing using:

W (ϕ, t) = W0

∑
t′≤t

exp[
−W (ϕ, t′)

kB∆T
]exp(−

n∑
i=1

[ϕi − ϕi(t
′)]2

2σϕ2
i

) (2)
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where n is the number of order parameters, parameters σϕ2
i and W0 set the width and initial height of the

Gaussians respectively, and parameter ∆T , as we mentioned earlier controls the rate of decay of their height.
Values for the parameters in eqn (3) were systematically determined using the procedure developed by Quigley.5

This resulted in W0= 0.2 kBT and the Gaussian width that is estimated from the fluctuations of the collective
variable (volume) in an unbiased simulation. Additionally, we updated the bias factor in our study, increasing it
from 6 to 11.

1.5 Bootstrap Analysis
Bootstrap analysis6 is a statistical method utilized to estimate the sampling distribution and ascertain its level of
uncertainty. This technique generates numerous resamples by randomly selecting observations from the initial
sample, with replacement. Consequently, an observation may be chosen multiple times within the same bootstrap
sample, while others may not be selected at all. Each bootstrap sample maintains the same size as the original sam-
ple, meaning that if there are ”n” observations in the original data set, each bootstrap sample also encompasses
”n” observations. We then calculate the average of these re-sampled data sets, repeat this process numerous times,
and subsequently determine the standard deviation of the averages obtained. This provides us with an estimate of
the statistical uncertainty associated with the average computed using actual data.

1.6 Radial Distribution Function
The structural distinctions among the two states are illustrated in the Extended Data Fig.4 through the radial dis-
tribution function.
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Supplementary Fig. 1 | a) The statistical temperature-total energy graphs were computed using the gREM method.
The two-phase region is schematically highlighted in red, extending up to the critical point. b) The essential
conditions below the actual critical point are illustrated. c) The autocorrelation functions of various walkers (red)
and replicas (blue) (from graph b) are depicted.

Supplementary Fig. 2 | Total energy histograms of 16 replicas with different temperature ranges T , T+2,...,
T+30K. The uppermost graph corresponds to the higher temperature. The skewness of each replica at each graph
is presented in the column next to the graphs.
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Supplementary Fig. 3 | The autocorrelation function of unbiased NPT simulations at constant temperature and
two different pressures.
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Supplementary Fig. 4 | Radial distribution functions for the highly ordered and less ordered liquid states, extracted
from unbiased NPT simulations at two different temperatures.
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Supplementary Fig. 5 | The autocorrelation function from unbiased NPT simulations at two different temperatures
and various pressures near the inflection point of the gREM.
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