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Supplementary Methods
General synthetic methods

Synthetic work was carried out in Tampere University. All reagents and solvents were commercial and purchased from Sigma Aldrich, TCI Europe,
VWR or FluoroChem. When needed, dry solvents were acquired using an Inert PureSolv solvent purification system. Reactions were monitored with
thin-layer chromatography (TLC) on commercial Merck Silica 60 F,s4 TLC plates, and the developed plates were visualized with UV irradiation
(254 nm) or with potassium permanganate and cerium ammonium molybdate stains.

Accurate mass experiments were performed with Agilent 6560 Ion mobility Q-TOF mass spectrometer, which was equipped with dualAJS ESI ion
source. The compounds were dissolved in DCM (1 mg/ml) and samples were prepared with 1 pM concentration in methanol. Samples were injected
from syringe pump generally with 5 pul/min flowrate. ES tuning mix (Agilent technologies) was used for calibration. The exact mass values were
calculated using Isotope Distribution Calculator (part of Agilent MassHunter Data Analysis Core) and the data was analyzed using MassHunter
Workstation Software B08.00 from Agilent Technologies, USA. Characterization was done using accurate mass values (limit values < 3mDa or <5
ppm) and fit of isotopic distributions. In case of overlapping distributions, the result was verified with measurement of ion mobility mass spectra
(IM-MS).

Nuclear magnetic resonance spectra (NMR) were measured with a 500 MHz JEOL ECZR 500 (125 MHz for '3C) at 25 °C and processed with the
JEOL Delta NMR software version 5.3.1 (Windows). Chemical shifts are given in ppm and are referenced to solvent signals (CHCls: 6 = 7.26 ppm
("H), 77.16 ppm ('3C). Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), and multiplet (m). Coupling
constants (J) are given in Hz.

Because many of the products have long cis-lifetimes, some of the NMR spectra contain two peaks for each magnetically inequivalent nucleus,
originating from the frans and cis isomers for which the amount of shielding is different. This results in each peak occurring twice, with the same
intensity ratio. For example, in the 'H spectrum of 4-F there are two peaks for the four identical aromatic protons: a doublet at 6.57 ppm and a less
intense doublet at 6.40 ppm, and similarly two singlets at 3.85 and 3.76 ppm with the same relative integral ratio. The reported peaks refer to those
originating from the trans isomer unless otherwise stated.

The fluorine atoms split some of the carbon signals, resulting in more carbon peaks than expected. In some cases an effort was made to assign
multiplicities to the carbon spectrum.

Because many of the syntheses were carried out in small scale (yields from 1 to 20 mg), the NMR spectra were also recorded from relatively dilute
samples. Thus, the solvent (mainly chloroform, 7.26 ppm) and water (ca. 1.6—1.5 ppm) peaks appear relatively large and the latter may in some cases
overlap with the aliphatic protons of the products. Also grease (around 1.2—0.9 ppm) is present in many samples, but none of the compounds gives
signals in that region. The recurring water and grease signals are not labeled. Traces of solvent (ethyl acetate, dichloromethane) are labeled if present
in significant amounts.

Compounds 1-F, 2-F, 1-pyr, 1-pip, 2-pyry, 3-pyri, 2-pyr; and 3-pyr; were already reported.!
Synthesis

4-F. 2,5-difluoro-4-methoxyaniline (1.0 g, 6.29 mmol), potassium permanganate (3.0 g, 19 mmol) and iron sulfate heptahydrate (3.0 g, 11 mmol)
were refluxed in dichloromethane overnight, filtered through silica, dried with magnesium sulfate and concentrated under reduced pressure. The
crude product was then purified with column chromatography (dichloromethane) to yield 4-F as an orange-yellow crystalline product (246 mg, 25%).
'TH-NMR (500 MHz, CDCls) 8 6.57 (d, J = 10.9 Hz, 4H), 3.85 (s, 6H). 3*C-NMR (126 MHz, CDCl3) 8 161.8 (t, J = 13.9 Hz), 157.3 (dd, J = 259.5,
7.2 Hz), 98.9 (d, J =24.1 Hz), 56.2. "F-NMR (471 MHz, CDCl3) § -118.1 (d, J = 11.5 Hz). HRMS ((+)ESI-TOF): m/z calcd. for Ci4H;oFsN>O,+Na*:
337.0571 [M+Na]*; found: 337.0570.

1-dma. Monofluorinated precursor 1 (26.1 mg, 0.1 mmol) and dimethylamine (ethanol solution, 71 pul, 0.4 mmol) were stirred in acetonitrile (1 ml)
at 50°C for 20 hours, after which more dimethylamine solution (500 pl, 2.8 mmol) was added and stirred at 50°C for another 24 hours. The reaction
mixture was then concentrated and purified by column chromatography (20% ethyl acetate in hexane) to yield 1-dma (3.1 mg, 11%) as an orange-
yellow crystalline product. A large amount of 1-F (not weighed) was also recovered. 'H-NMR (500 MHz, CDCl;) 6 7.85 (d, J = 8.6 Hz, 2H), 7.67
(d, J=9.2 Hz, 1H), 6.97 (d, J = 8.6 Hz, 2H), 6.49 (s, 1H), 6.46 (dd, J=9.0, 2.4 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.05 (s, 6H). 3C-NMR (126 MHz,
CDCl3) 6 162.4,161.1,152.4, 147.7,138.4,124.3,118.4, 114.2, 105.6, 103.1, 55.6, 55.5, 45.2. HRMS ((+)ESI-TOF): m/z calcd. for C1¢H9N3O,+H™:
286.1550 [M+Na]*; found: 286.1564.

2-pip: and 2-pip,. Bis-ortho-fluorinated precursor 2-F (150 mg, 0.539 mmol) and piperidine (530 pl, 5.39 mmol) were stirred in acetonitrile (7.5
ml) at room temperature for 2 hours. More piperidine (2.0 ml, 20.3 mmol) was added, and the reaction was continued for another 2 hours. The
reaction mixture was then diluted with ethyl acetate, washed with water, dried with sodium sulfate, concentrated under reduced pressure and purified
by column chromatography (5-10% ethyl acetate in hexane) to yield 2-pip: (74 mg, 40%) and 2-pip2 (62 mg, 21%) as orange solids. 2-pip;: 'H-
NMR (500 MHz, CDCl;) § 7.90 (d, J = 9.2 Hz, 2H), 6.99 (d, J = 9.2 Hz, 2H), 6.37-6.37 (m, 1H), 6.31 (dd, J = 13.2, 2.3 Hz, 1H), 3.87 (s, 3H), 3.81
(s, 3H), 3.04 (t, ] = 5.4 Hz, 4H), 1.74-1.69 (m, 4H), 1.59-1.55 (m, 2H, overlapping with water peak). '*C-NMR (126 MHz, CDCl;) 8 161.8, 160.9,



160.8, 155.0, 153.0, 152.4, 152.3, 148.1, 128.7, 128.6, 124.3, 114.2, 100.6, 95.1, 94.9, 55.7, 54.3, 26.3, 24.4. "F-NMR (471 MHz, CDCl3) § -122.1
(d, J=13.2 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C;oH2,FN30,+Na*: 366.1588 [M+Na]*; found: 366.1597. 2-pip,: 'H-NMR (500 MHz, CDCl;)
87.92 (d,J=9.2 Hz, 2H), 6.99 (d, ] = 8.6 Hz, 2H), 6.29 (s, 2H), 3.87 (s, 3H), 3.82 (s, 3H), 2.95 (t, J = 5.2 Hz, 8H), 1.65-1.61 (m, 8H), 1.53-1.48 (m,
4H). BC-NMR (126 MHz, CDCls) 4 160.8, 160.6, 149.2, 148.6, 133.3, 123.8, 114.0, 98.3, 55.6, 55.3, 54.4, 26.4, 24.5. HRMS ((+)ESI-TOF): m/z
calcd. for Co4H3,N4O,+H™: 409.2598 [M+H]*; found: 409.2590.

2-dma;. Bis-ortho-fluorinated precursor 2-F (50 mg, 0.18 mmol) and dimethylamine (ethanol solution, 127 pl, 0.72 mmol) were stirred in acetonitrile
(2 ml) at 70°C temperature for 17 hours. The reaction mixture was then diluted with ethyl acetate, washed with water, dried with sodium sulfate,
concentrated under reduced pressure and purified by column chromatography (5-10% ethyl acetate in hexane) to yield 2-dma; (13.5 mg, 25%) as
well as 2-dma; (30 mg, 51%) as orange solids. 2-dma,: "H-NMR (500 MHz, CDCls)  7.87 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 12.0 Hz, 2H), 6.30 (m,
1H), 6.25 (dd, J=13.5, 2.6 Hz, 1H), 3.84 (d, ] = 28.6 Hz, 6H), 2.90 (s, 6H). 3*C-NMR (126 MHz, CDCls)  161.7, 160.7 (d, J = 13 Hz), 155.0, 153.0,
151.9 (d, J = 6 Hz), 148.1, 128.0, 128.0, 124.2, 114.2, 99.4, 94.1, 93.9, 55.7, 44.9. ’F-NMR (471 MHz, CDCls) § -122.3 (d, J = 13.2 Hz). HRMS
((H)ESI-TOF): m/z calcd. for Ci¢HisFN30,+Na*: 326.1275 [M+Na]*; found: 326.1288. 2-dma,: 'H-NMR (500 MHz, CDCls) & 7.83 (d, J = 9.2 Hz,
2H), 6.97 (d, J=9.2 Hz, 2H), 6.10 (s, 2H), 3.85 (d, J=10.3 Hz, 6H), 2.87 (s, 12H). 3C-NMR (126 MHz, CDCl;) § 161.5, 160.3, 150.6, 148.8, 129.4,
123.4,114.1,94.9, 55.6, 55.3, 44.8. HRMS ((+)ESI-TOF): m/z calcd. for C;sH24N4O,+H*: 329.1972 [M+H]"; found: 329.1961.

2-prol;. Bis-ortho-fluorinated precursor 2-F (100 mg, 0.36 mmol) and L-prolinol (175 pl, 1.8 mmol) were stirred in acetonitrile (2 ml) at room
temperature for 2 hours. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography (50% ethyl
acetate in hexane) to yield 2-prol; (78.4 mg, 61%) as an orange-brown crystalline product. "H-NMR (500 MHz, CDCls) 8 7.78 (d, J = 8.6 Hz, 2H),
6.98 (d, J=9.2 Hz, 2H), 6.25 (s, 1H), 6.18 (dd, J = 13.2, 2.3 Hz, 1H), 4.05-4.05 (m, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.72-3.72 (m, 1H), 3.52-3.52 (m,
2H), 3.15-3.15 (m, 1H), 2.45 (br, 1H), 2.01-2.01 (m, 2H), 1.89-1.89 (m, 1H), 1.80-1.80 (m, 1H). 3C-NMR (126 MHz, CDCl3) & 161.7, 160.7 (d, J
=14 Hz), 156.5, 154.5, 147.8, 145.9, 127.3 (d, J = 7 Hz), 124.1, 114.4, 98.0, 92.7 (d, J = 24 Hz), 62.8, 60.8, 55.7, 55.6, 54.5, 28.4, 24.4. "F-NMR
(471 MHz, CDCl3) 8 -122.2 (d, J = 12.4 Hz). HRMS ((+)ESI-TOF): m/z calcd. for Ci9H2,FN3O3+Nat: 382.1537 [M+Na]*; found: 382.1537.

2-pres;. Bis-ortho-fluorinated precursor 2-F (200 mg, 0.72 mmol), L-proline methyl ester hydrochloride (478 mg, 2.9 mmol) and potassium carbonate
(400 mg, 2.9 mmol) were stirred in acetonitrile (4 ml) at room temperature for 21 hours. The reaction mixture was then diluted with ethyl acetate,
washed with water, dried with magnesium sulfate, concentrated under reduced pressure and purified by column chromatography (0-50% ethyl
acetate in dichloromethane) to yield 2-pres; (97 mg, 35%) as an orange-brown crystalline product. 'H-NMR (500 MHz, CDCls) 6 7.70 (d, J = 8.6
Hz, 2H), 6.97 (d, J = 9.2 Hz, 2H), 6.12 (s, 2H), 4.68-4.78 (m, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.63-3.69 (m, 1H), 3.48-3.57 (m, 1H), 3.44 (s, 3H),
2.20-2.34 (m, 1H), 1.88-2.11 (m, 3H). 3C-NMR (126 MHz, CDCl3) & 173.9, 161.4, 160.5 (d, J = 14 Hz), 155.0, 152.9, 147.9, 146.6, 146.6, 126.6
(d, J=7Hz), 124.3, 114.0, 96.6, 92.1 (d, J = 25 Hz), 63.8, 55.6, 55.5, 51.9, 51.8, 31.7, 23.3. 19F-NMR (471 MHz, CDCl3) 6 -123.4 (d, J = 12.4 Hz).
HRMS ((+)ESI-TOF): m/z calcd. for C0H22FN304+Na*: 410.1487 [M+Na]*; found: 410.1499.

2-pram;. Bis-ortho-fluorinated precursor 2-F (100 mg, 0.36 mmol) and L-prolinol (175 pl, 1.8 mmol) were stirred in acetonitrile (2 ml) at room
temperature for 2 hours. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography (50% ethyl
acetate in hexane) to yield 2-pramy; (78.4 mg, 59%) as an orange-brown crystalline product. "H-NMR (500 MHz, DMSO-Dg) 6 7.70 (d, J = 9.2 Hz,
2H), 7.29 (s, 1H), 7.03 (d, J = 8.6 Hz, 2H), 6.99 (s, 1H), 6.20 (dd, J = 14.3, 2.3 Hz, 1H), 6.05 (s, 1H), 4.24 (m, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 3.64-
3.71 (m, 1H), 3.37-3.47 (m, 1H), 2.09-2.21 (m, 1H), 1.71-1.93 (m, 3H). *C-NMR (126 MHz, DMSO-Dg) 6 175.1, 161.5, 160.5, 160.4, 155.1, 153.1,
147.7, 147.2, 125.8, 124.5, 114.9, 96.9, 92.0, 91.8, 64.9, 56.1, 56.0, 53.8, 31.6, 24.5. "F-NMR (471 MHz, DMSO-Dg) 8 -122.6 (d, J = 13.2 Hz).
HRMS ((+)ESI-TOF): m/z calcd. for C19H2 FN4O3+Na*: 395.1490 [M+Na]*; found: 395.1506.

3-pip:. Bis-ortho-fluorinated precursor 3-F (16 mg, 0.057 mmol) and piperidine (110 pl, 1.1 mmol) were stirred in acetonitrile (1 ml) at room
temperature for 20 hours, after which another 110 pl of piperidine was added and the reaction mixture stirred for another 2 hours. The crude mixture
was concentrated under reduced pressure and purified by column chromatography (20% ethyl acetate in hexane) to yield 3-pip: (20.5 mg,
quantitative) as a red solid. "H-NMR (500 MHz, CDCl3) 8 7.77 (t, ] =9.2 Hz, 1H), 7.71 (d, J = 9.2 Hz, 1H), 6.69-6.79 (2H), 6.56 (d, J =2.3 Hz, 1H),
6.51(dd, J=8.9,2.6 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.19 (t, ] = 5.4 Hz, 4H), 1.82-1.78 (m, 4H), 1.64-1.59 (m, 2H). 3C-NMR (126 MHz, CDCls)
§162.9,162.3, 162.3, 160.0, 153.4, 139.4, 135.6, 135.5, 118.8, 118.6, 110.8, 106.6, 104.3, 102.1, 101.9, 55.9, 55.5, 54.7, 26.4, 24.5. 'F-NMR (471
MHz, CDCl;) 6 -122.1 (dd, J = 12.4, 7.9 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C;gH»FN3O,+H*: 344.1769 [M+H]"; found: 344.1756.

3-dma;. Bis-ortho-fluorinated precursor 3-F (30 mg, 0.11 mmol) and dimethylamine (ethanol solution, 76 pul, 0.43 mmol) were stirred in acetonitrile
(1.5 ml) at 70°C for 24 hours. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography (0-20%
ethyl acetate in hexane) to yield 3-dma; (31 mg, 95%) as an orange solid. 'H-NMR (500 MHz, CDCls) 8 7.65-7.79 (m, 2H), 6.67-6.80 (m, 2H),
6.40-6.54 (m, 2H), 3.84 (s, 6H), 3.06 (s. 6H). *C-NMR (126 MHz, CDCls) § 162.8, 162.2, 162.1, 161.8, 159.8, 152.7, 138.6, 135.6, 135.6, 118.9,
118.6, 110.7, 105.8, 102.9, 102.0, 101.8, 55.9, 55.5, 45.2. F-NMR (471 MHz, CDCl;) 4 -122.2 (dd, J = 11.9, 8.4 Hz). HRMS ((+)ESI-TOF): m/z
caled. for Ci¢HsFN30>+H™: 304.1456 [M+H]*; found: 304.1433.

3-prol;. Bis-ortho-fluorinated precursor 3-F (16 mg, 0.051 mmol) and L-prolinol (24.8 pl, 0.25 mmol) were stirred in acetonitrile (1 ml) at room
temperature for 20 hours. The reaction mixture was then heated up to 45°C and stirred for another 22 hours. The crude mixture was concentrated
under reduced pressure and purified by column chromatography (dichloromethane) to yield 3-prol; (9.0 mg, 49%) as an orange-brown crystalline
product, as well as some unreacted 3-F. "H-NMR (500 MHz, CDCl3) 8 7.75 (d, J = 9.2 Hz, 1H), 7.57 (t, ] = 8.6 Hz, 1H), 6.76-6.71 (m, 2H), 6.36 (s,
2H), 4.39 (s, 1H), 3.83 (d, J = 5.2 Hz, 6H), 3.69 (s, 2H), 3.49 (s, 1H), 1.75-2.15 (m, 5H). *C-NMR (126 MHz, CDCl3) $ 162.9, 161.7, 147.9, 137.1,
135.8,119.5,118.9, 110.6, 104.5, 102.2, 102.1, 100.9, 63.3, 61.4, 55.9, 55.5, 54.0, 28.6, 23.8. ’F-NMR (471 MHz, CDCls) $ -122.1 (dd, J = 11.9,
9.3 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C19H2FN303+Nat: 382.1537 [M+Na]*; found: 382.1530.

3-pres;. Bis-ortho-fluorinated precursor 3-F (43.7 mg, 0.14 mmol), L-proline methyl ester hydrochloride (116 mg, 0.7 mmol) and potassium
carbonate (110 mg, 0.8 mmol) were stirred in acetonitrile (1 ml) at room temperature for 20 hours. The reaction mixture was then heated up to 45°C



and stirred for another 22 hours. The crude mixture was concentrated under reduced pressure and purified by column chromatography
(dichloromethane) to yield 3-pres; (6.5 mg, 12%) as an orange-brown crystalline product, as well as some unreacted 3-F. 'H-NMR (500 MHz,
CDCl3) 6 7.77 (d, J =9.2 Hz, 1H), 7.50 (t, ] = 9.2 Hz, 1H), 6.64-6.81 (2H), 6.20-6.40 (2H), 5.03 (q, J = 4.0 Hz, 1H), 3.84 (s, 3H), 3.84 (s, 3H), 3.73-
3.80 (1H), 3.65 (dd, J=16.6, 6.9 Hz, 1H), 3.45 (s, 3H), 2.28-2.41 (1H), 2.12-2.23 (1H), 1.97-2.08 (2H). '*C-NMR (126 MHz, CDCl3) § 173.9, 163.1,
161.5 (d, J=10.9 Hz), 159.3, 147.0, 136.4, 135.6 (d, T = 6.0 Hz), 119.2, 110.2, 104.5, 101.8 (d, J = 24.1 Hz), 100.1, 64.4, 55.9, 55.4, 51.8,51.6, 31.8,
29.8,23.2. "F-NMR (471 MHz, CDCls) § -122.1 (dd, J = 11.5, 8.8 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C20H,,FN304+H*: 388.1667 [M+H]*;
found: 388.1669.

3-pram;. Bis-ortho-fluorinated precursor 3-F (54.7 mg, 0.174 mmol) and L-prolinamide (99 mg, 0.87 mmol) were stirred in acetonitrile (1 ml) at
room temperature for 24 hours. The reaction mixture was then heated up to 45°C and stirred for another 24 hours. The crude mixture was filtered,
concentrated under reduced pressure and purified by column chromatography (1% methanol in ethyl acetate) to yield 3-pram; (4.6 mg, 7.1%) as an
orange-brown crystalline product, as well as some unreacted 3-F. 'H-NMR (500 MHz, CDCls) 8 7.81 (d, J = 9.2 Hz, 1H), 7.61 (t, ] = 8.9 Hz, 1H),
6.73 (t, J=10.0 Hz, 2H), 6.42 (d, J = 10.3 Hz, 1H), 6.36-6.36 (m, 1H), 6.30 (s, 1H), 5.31 (s, 1H), 4.68-4.68 (m, 1H), 3.86-3.86 (m, 1H), 3.83 (d, J =
3.4 Hz, 6H), 3.56 (q, J = 8.4 Hz, 1H), 2.30-2.30 (m, 2H), 1.93-2.10 (m, 3H). 3C-NMR (126 MHz, CDCls) 6 176.8, 162.9, 146.9, 136.9, 119.7, 119.2,
110.3, 105.4, 102.2, 102.0, 100.6, 66.5, 55.9, 55.5, 53.4, 32.0, 23.9. "F-NMR (471 MHz, CDCl;) é -122.1 (dd, J = 11.5, 8.8 Hz). HRMS ((+)ESI-
TOF): m/z caled. for Ci19H2FN4O3+Na*: 395.1490 [M+Na]*; found: 395.1485.

3-pip;. Bis-ortho-fluorinated precursor 3-F (40 mg, 0.144 mmol) and piperidine (2.0 ml, 2.2 mmol) were stirred at 60°C for 24 hours. The crude
mixture was diluted with ethyl acetate, washed three times with water, dried with sodium sulfate, concentrated under reduced pressure and purified
by column chromatography (10% ethyl acetate in hexane) to yield 3-pip2 (23 mg, 39%) as a red crystalline product. '"H-NMR (500 MHz, CDCls) &
7.69 (d, J=9.2 Hz, 2H), 6.57 (d, J = 2.3 Hz, 2H), 6.53 (dd, J = 8.9, 2.6 Hz, 2H), 3.84 (s, 6H), 3.17 (t, ] = 5.2 Hz, 8H), 1.85-1.80 (m, 8H), 1.64-1.60
(m, 4H). BC-NMR (126 MHz, CDCls) & 162.1, 153.1, 139.5, 118.2, 106.5, 104.4, 55.5, 54.7, 26.4, 24.5. HRMS ((+)ESI-TOF): m/z caled. for
C4H3:N4O+H™: 409.2598 [M+H]*; found: 409.2595.

4-pyri, 4-pyra-sym and 4-pyra.asym. Tetra-ortho-fluorinated precursor 4-F (31.1 mg, 0.1 mmol) and pyrrolidine (16.5 pl, 0.2 mmol) were stirred in
acetonitrile (1 ml) at room temperature for 2 hours. The reaction mixture was then concentrated under reduced pressure and purified by column
chromatography (10-20% ethyl acetate in hexane) to yield 4-pyr; (19 mg, 52%) as an orange solid, 4-pyrz.qym (4.0 mg, 9.6%) as a red solid and 4-
PYI2-asym (4.0 mg, 9.6%) as an orange-brown solid. Unreacted 4-F (5 mg, 16%) was also recovered. 4-pyr;: 'H-NMR (500 MHz, CDCls) 8 6.53 (d,
J=10.9 Hz, 2H), 6.07-6.03 (m, 2H), 3.81 (d, J = 8.0 Hz, 6H), 3.47 (t, J = 6.6 Hz, 4H), 1.92-1.90 (m, 4H). *C-NMR (126 MHz, CDCl3) § 161.7 (d,
J=14.5Hz), 159.9 (t,J=13.9 Hz), 157.9 (d, J= 7.2 Hz), 155.9 (d, J = 7.2 Hz), 155.7, 149.3 (d, ] = 6.0 Hz), 126.5 (t,J = 10.3 Hz), 126.2 (d, J = 6.0
Hz), 98.8, 98.6, 91.7, 91.5, 56.0, 55.5, 52.5, 25.9. YF-NMR (471 MHz, CDCl3) § -119.7 (d, J = 11.5 Hz, 2F), -119.8 (d, J = 14.1 Hz, 1F). HRMS
((H)ESI-TOF): m/z caled. for CisH;sF3N30,+K*: 404.0983 [M+K]*; found: 404.0968. 4-pyri.m: 'H-NMR (500 MHz, CDCl;) § 5.57-6.11 (m, 4H),
3.79 (s, 6H), 3.45 (t, J = 6.6 Hz, 8H), 1.83-1.95 (m, 8H). Integrated over both isomers for every peak. 3C-NMR (126 MHz, CDCl;) 6 160.2 (d, J =
14.5 Hz), 154.0 (d, J = 257.1 Hz), 148.6 (d, J = 7.2 Hz), 126.3 (d, J = 7.2 Hz), 95.5, 91.0 (d, J = 25.4 Hz), 55.5, 52.4, 25.9. "F-NMR (471 MHz,
CDCls) 6 -122.8 (d, J = 14.1 Hz, 4F). HRMS ((+)ESI-TOF): m/z caled. for C2,H26F2N4Ox+Nat: 439.1916 [M+Na]*; found: 439.1905. 4-pyri-asym:
'H-NMR (500 MHz, CDCl3) & 6.48 (d, J = 10.9 Hz, 2H), 5.70 (s, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 3.38-3.38 (m, 8H), 1.90-1.90 (m, 8H). 3C-NMR
could not be acquired due to decomposition. 'F-NMR (471 MHz, CDCl;) 8 -121.3 (d, J = 10.6 Hz). HRMS ((+)ESI-TOF): m/z calcd. for
CHi6FaN4O,+H*: 417.2097 [M+H]*; found: 417.2080.

4-pip1, 4-pipa-sym and 4-pipa-asym. Tetra-ortho-fluorinated precursor 4-F (31.1 mg, 0.1 mmol) and piperidine (39.4 pl, 0.4 mmol) were stirred in
acetonitrile (1 ml) at 50°C for 2 hours. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography
(10-20% ethyl acetate in hexane) to yield 4-pip; (4.2 mg, 11%) as an orange solid, 4-pipz-sym (24 mg, 54%) as a red solid and 4-pip2-asym (4.8 mg,
11%) as an orange-brown solid. 4-pips (3.4 mg, 6.7%) was also recovered. 4-pip;: 'H-NMR (500 MHz, CDCl3) 8 6.56 (d, J = 10.9 Hz, 2H), 6.37-
6.37 (m, 1H), 6.30 (dd, J = 13.7, 2.9 Hz, 1H), 3.83 (d, J = 12.0 Hz, 6H), 3.07-3.07 (m, 4H), 1.72-1.72 (m, 4H), 1.52-1.60 (m, 2H under H,0). '3C-
NMR (126 MHz, CDCI13) 6 161.8 (d, J = 13.3 Hz), 161.7, 161.0, 158.3 (d, J=7.2), 158.2, 156.2, 156.2 (d, J = 8.5), 155.1, 153.3, 129.7, 100.7, 98.9,
98.7,95.2,95.0,56.1, 55.7,54.4, 26.1, 24.3. "F-NMR (471 MHz, CDCI3) § -118.3 (d, J = 19.6 Hz, 2F), -120.7 (d, J = 14.1 Hz, 1F). HRMS ((+)ESI-
TOF): m/z caled. for CioHaoF3N30,+Nat*: 402.1400 [M+Na]*; found: 402.1376. 4-pip2-ym: '"H-NMR (500 MHz, CDCls) 8 6.41 (s, 2H), 6.30 (d, J =
13.7 Hz, 2H), 3.81 (s, 6H), 3.05 (s, 8H), 1.73 (s, 8H). 3C-NMR (126 MHz, CDCl3) 4 160.9 (d, J =15 Hz), 153.9, 153.3 (d, J =268 Hz), 129.8, 100.9,
95.3,95.1,55.6, 54.7, 26.1, 24.3. YF-NMR (471 MHz, CDCl3) 6 -120.3 (d, J = 14.1 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C»4H3F,N4O,+Na*:
467.2229 [M+Na]*; found: 467.2207. 4-pipz-asym: 'H-NMR (500 MHz, CDCls) 8 6.52 (d, J = 10.3 Hz, 2H), 6.19 (s, 2H), 3.81 (two overlapping s,
6H), 3.02 (m, 8H), 1.67 (m, 8H), 1.53 (m, 4H). 3C-NMR (126 MHz, CDCl3) § 162.2, 158.9, 157.4, 155.4, 150.5, 132.6, 98.6 (d, J = 27.7 Hz), 96.8,
56.0,55.3, 54.5,25.9, 24.5. 9F-NMR (471 MHz, CDCls) 6 -120.0 (d, J = 10.6 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C24H3oF,N4Oo+H*: 445.2410
[M+H]*; found: 445.2392.

4-dma,, 4-dmaj.gym and 4-dmay_aym. Tetra-ortho-fluorinated precursor 4-F (31.1 mg, 0.1 mmol) and dimethylamine (5.6 M in ethanol, 37 pl, 0.2
mmol) were stirred in acetonitrile (1 ml) at room temperature for 2.5 hours. The reaction mixture was then concentrated under reduced pressure and
purified by column chromatography (0-10% ethyl acetate in dichloromethane) to yield 4-dma; (8.4 mg, 25%) as an orange solid, 4-dma.gym (6.8
mg, 19%) as an orange-red solid and 4-dma;.aym (1.0 mg, 2.7%) as a red-brown solid. Unreacted 4-F (14.9 mg, 47%) was also recovered. 4-dma;:
'H-NMR (500 MHz, CDCls) 8 6.55 (d, J = 10.3 Hz, 2H), 6.28-6.22 (m, 2H), 3.83 (s, 3H), 3.82 (s, 3H), 2.93 (s, 6H). 3C-NMR (126 MHz, CDCl;) §
161.8,161.7,160.8, 158.1, 156.1, 155.5, 153.4, 152.9, 152.8, 147.2, 128.7,99.2,98.9, 98.7,94.2, 94.0, 56.1, 55.7, 44.9. ’F-NMR (471 MHz, CDCl;)
§-118.8 (d, J=11.5Hz, 2F), -120.2 (d, J = 14.1 Hz, 1F). HRMS ((+)ESI-TOF): m/z calcd. for C¢HcF3N30,+H*: 340.1267 [M+H]"; found: 340.1264.
4-dmaj.qym: '"H-NMR (500 MHz, CDCl3) 3 6.31 (m, 2H), 6.24 (dd, J = 14.0, 2.6 Hz, 2H), 3.81 (s, 6H), 2.90 (s, 12H). *C-NMR (126 MHz, CDCl;)
§160.8 (d, J=14.5 Hz), 154.7, 153.1 (d, J = 6.0 Hz), 129.1 (d, J = 6.0 Hz), 99.6, 94.3 (d, J = 26.6 Hz), 55.6, 45.1. ’F-NMR (471 MHz, CDCl3) & -
120.7 (d, T = 13.2 Hz). HRMS ((+)ESI-TOF): m/z calcd. for C sH3,F;N4O2+Na™: 387.1603 [M+Na]*; found: 387.1594. 4-dmay aym: '"H-NMR (500
MHz, CDCl3) 4 6.50 (d, J = 10.9 Hz, 2H), 5.95 (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H), 2.93 (s, 12H). 3C-NMR (126 MHz, CDCl;) 3 163.2, 152.0, 128 .4,
98.7,98.4,93.0, 55.9, 44.5, 29.8. "F-NMR (471 MHz, CDCls) 6 -120.2 (d, J = 10.6 Hz). HRMS ((+)ESI-TOF): m/z calcd. for CisH»FoN4O>+H*:
365.1784 [M+H]*; found: 365.1762.



4-prol; and 4-proly.qym. Tetra-ortho-fluorinated precursor 4-F (31.1 mg, 0.1 mmol) and L-prolinol (39 pl, 0.4 mmol) were stirred in acetonitrile (1
ml) at room temperature for 15 hours. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography
(20% ethyl acetate in hexane) to yield 4-prol; (2.0 mg, 5.1%) as an orange solid and 4-proly.m (8.4 mg, 18%) as a red solid. Further substituted
products decomposed during the reaction or purification and could not be isolated. 4-prol;: "H-NMR (500 MHz, CDCls) 3 6.55 (d, J=10.3 Hz, 2H),
6.22 (s, 1H), 6.16 (dd, J = 13.7, 2.3 Hz, 1H), 4.10-4.20 (1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.67-3.72 (1H, overlapping with the methoxy peak of the
cis-isomer), 3.49-3.61 (2H), 3.13-3.22 (1H), 1.75-2.22 (5H). 3C-NMR (126 MHz, CDCl3) 8 161.7 (d, J = 15.7 Hz), 160.6 (t, J = 13.9 Hz), 157.9 (d,
J=17.2Hz), 156.6 (s), 155.9 (d, ] = 7.2 Hz), 154.6 (s), 146.9 (s), 127.9 (d, J = 6.0 Hz), 126.1 (t, J = 9.7 Hz), 98.9 (d, J = 27.8 Hz), 97.5 (s), 92.8 (d,
J=125.4Hz), 62.9 (s), 60.7 (s), 56.1 (s), 55.6 (s), 54.2 (s), 28.3 (8), 24.2 (s). '°’F-NMR (471 MHz, CDCl;3) § -119.6 (d, J = 11.5 Hz, 2F), -120.8 (d, J
= 14.1 Hz, 1F). HRMS ((+)ESI-TOF): m/z calcd. for Ci19H»0F3N303+Na*: 418.1349 [M+Na]*; found: 418.1334. 4-proly.ym: 'H-NMR (500 MHz,
CDCl;3) 8 5.85 (s, 2H), 5.78 (dd, J = 13.2, 2.3 Hz, 2H), 3.54 (m, 2H), 3.36 (s, 6H), 3.15 (m, 2H), 3.01 (m, 2H), 2.83-2.78 (m, 2H), 2.55 (m, 2H), 1.44-
1.58 (m, 4H), 1.33-1.44 (m, 2H), 1.22-1.33 (m, 2H), 1.08-1.23 (s, 2H). 3C-NMR (126 MHz, CDCl3) 3 160.4 (d, J = 14.5 Hz), 156.3, 154.3, 145.2,
128.1 (d, J = 8.5 Hz, 98.0, 92.6 (d, J = 25.4 Hz), 62.0, 60.0, 55.2, 54.7, 27.1, 24.4. 'F-NMR (471 MHz, CDCls) 8 -123.4 (d, J = 13.2 Hz). HRMS
((H)ESI-TOF): m/z caled. for C24H30F2N4O>+Na*: 499.2127 [M+Na]*; found: 499.2109.

4-pres;. Tetra-ortho-fluorinated precursor 4-F (31.4 mg, 0.1 mmol) and L-proline methyl ester hydrochloride (66.4 mg, 0.4 mmol) were stirred in
acetonitrile (1 ml) at 50°C for 11 hours and then at RT for another 16 hours. The reaction mixture was then diluted with ethyl acetate, washed with
water, dried with magnesium sulfate, concentrated under reduced pressure and purified by column chromatography (0-5% methanol in
dichloromethane) to yield 4-pres; (18.0 mg, 42%) as an orange solid as well as unreacted starting material (not weighed). "H-NMR (500 MHz,
CDCl;3) 6 6.55 (d, J=10.3 Hz, 2H), 6.12-6.08 (m, 2H), 4.72-4.87 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.63-3.70 (m, 1H), 3.57 (dd, J = 16.9, 7.2 Hz,
1H), 3.32 (s, 3H), 2.20-2.31 (m, 1H), 2.05-2.11 (m, 1H), 1.91-2.02 (m, 2H). 3C-NMR (126 MHz, CDCl3) § 173.6,152.8, 161.5 (d, J = 14.5 Hz),
159.5 (t, J=13.9 Hz), 157.0 (d, J = 7.2 Hz), 154.9 (d, J = 7.2 Hz), 147.5 (d, J = 6.0 Hz), 126.1 (t, J = 11.5 Hz), 125.7 (d, J = 6.0 Hz), 98.0 (d, J =
26.6 Hz), 95.7,91.9 (d, J = 25.4 Hz), 63.6, 55.6, 55.2, 51.5, 51.2, 31.2, 22.6. 'F-NMR (471 MHz, CDCls) § -120.5 (d, J = 14.1 Hz, 1F), -121.1 (d, J
=10.6 Hz, 2F). HRMS ((+)ESI-TOF): m/z caled. for C20H20F3N304+K*: 462.1037 [M+K]*; found: 462.1026.

4-pres;.sym. Tetra-ortho-fluorinated precursor 4-F (31.4 mg, 0.1 mmol) and L-proline methy] ester hydrochloride (166 mg, 1.0 mmol) were stirred in
acetonitrile (1 ml) at 60°C for 20 hours. The reaction mixture was then diluted with ethyl acetate, washed with water, dried with magnesium sulfate,
concentrated under reduced pressure and purified by column chromatography (0-5% methanol in ethyl acetate) to yield 4-presz.gym (6.0 mg, 13%)
as an orange solid. 'H-NMR (500 MHz, CDCls) 8 6.04-6.13 (m, 4H), 4.77 (dd, J = 8.6, 2.9 Hz, 2H), 3.80 (s, 6H), 3.73 (d, J = 2.3 Hz, 2H), 3.70 (d, J
= 4.6 Hz, 2H, overlapping with cis-isomer of the para-methoxy peak), 3.59-3.67 (m, 2H), 3.47-3.55 (m, 2H), 3.30 (s, 6H), 2.17-2.25 (m, 2H), 2.00-
2.08 (m, 2H), 1.91-2.00 (m, 4H). 3C-NMR (126 MHz, CDCls)  173.7, 160.5 (d, J = 14.5 Hz), 154.9, 152.8, 148.6, 146.7 (d, J = 6.0 Hz), 126.0 (d,
J=17.2 Hz), 95.8,91.2 (d, ] = 26.6 Hz), 88.0, 64.0, 55.5, 51.7, 51.5, 31.8, 22.8. "F-NMR (471 MHz, CDCl;) & -123.4 (d, J = 13.2 Hz). HRMS
((H)ESI-TOF): m/z caled. for CosH30F2N4OstNa': 555.2026 [M+Na]*; found: 555.2011.

4-pram;, 4-pram;.gy, and 4-pram;.aeym. Tetra-ortho-fluorinated precursor 4-F (31.4 mg, 0.1 mmol) and L-prolinamide (45.6 mg, 0.4 mmol) were
stirred in acetonitrile (1 ml) at 50°C for 22 hours. The reaction mixture was then concentrated under reduced pressure and purified by column
chromatography (0-5% methanol in ethyl acetate) to yield 4-pram; (19.7 mg, 48%) as an orange solid, 4-pram,.ym (13.1 mg, 26%) as a red solid
and 4-prams..qym (2.9 mg, 5.8%) as an orange-brown solid. 4-pram;: 'H-NMR (500 MHz, CDCl3) 8 6.61 (s, 1H), 6.55 (d, J = 12.0 Hz, 2H), 6.25 (d,
J=12.6 Hz, 2H), 5.30-5.52 (1H), 4.41 (t, J = 6.6 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.60-3.73 (1H), 3.13-3.29 (1H), 2.29-2.41 (1H), 2.06-2.16 (1H),
1.82-2.02 (2H). 3C-NMR (126 MHz, CDCls) 3 176.1, 161.5 (d, J = 14.5 Hz), 160.5 (t, J = 13.3 Hz), 157.6 (d, ] = 7.2 Hz), 156.2, 155.5 (d, J=7.2
Hz), 154.1, 146.5, 127.6, 125.6, 98.4 (d, J = 26.6 Hz), 97.2, 94.0 (d, J = 24.1 Hz), 64.3, 55.7, 55.6, 54.2, 31.4, 24.4. YF-NMR (471 MHz, CDCl3) &
-120.0 (d,J = 12.4 Hz, 2F), -120.7 (d, ] = 14.1 Hz, 1F). HRMS ((+)ESI-TOF): m/z calcd. for C1oHoF3N4O5+Na™: 431.1301 [M+Na]*; found: 431.1299.
4-pram;.gm: 'H-NMR (500 MHz, CDCls) 8 6.38 (s, 2H), 6.22 (s, 2H), 6.19 (d, J = 13.7 Hz, 2H), 5.44 (s, 2H), 4.47-4.44 (m, 2H), 3.79 (s, 6H), 3.63
(dd, J=15.2, 6.6 Hz, 2H), 3.33 (q, ] = 7.6 Hz, 2H), 2.24-2.36 (m, 2H), 2.05-2.14 (m, 2H), 1.88-2.04 (m, 4H). 3C-NMR (126 MHz, CDCls) § 176.2,
160.5 (d, J = 14.5 Hz), 153.8 (d, J = 257.1 Hz), 147.0, 126.9, 97.3, 93.2 (d, J = 25.4 H), 65.0, 55.2, 53.5, 31.6, 24.0. "F-NMR (471 MHz, CDCl3) §
-123.4 (d, J=14.1 Hz). HRMS ((+)ESI-TOF): m/z calcd. for Co4H2sF2N¢O4+Na*: 525.2032 [M+Na]*; found: 525.2013. 4-prams-asym: 'H-NMR (500
MHz, CDCl;) § 6.91 (s, 2H), 6.54 (d, J = 10.3 Hz, 2H), 6.00 (s, 2H), 4.96 (s, 2H), 4.50 (q, J = 4.4 Hz, 2H), 3.81 (d, J = 4.0 Hz, 6H), 3.47-3.53 (m,
2H), 3.09 (dd, J = 16.9, 7.2 Hz, 2H), 2.26-2.36 (m, 2H), 2.08-2.17 (m, 2H), 1.84-1.98 (m, 4H). 3C-NMR (126 MHz, CDCl;) 6 176.4, 163.5, 158.7,
156.7,146.3,128.0,98.2,97.9, 91.6, 64.4, 55.6, 55.0, 52.7, 31.3, 24.1. YF-NMR (471 MHz, CDCl3) 6 -123.4 (d, J = 10.6 Hz). HRMS ((+)ESI-TOF):
m/z caled. for CosHosFaNO4+K*: 541.1772 [M+K]; found: 541.1765.

4-pips and 4-pips. Tetra-ortho-fluorinated precursor 4-F (45 mg, 0.143 mmol) was stirred in piperidine at 50°C for 4 hours. The reaction mixture
was concentrated under reduced pressure and purified by column chromatography (20% ethyl acetate in hexane) to yield 4-pips (31 mg, 43%) and
4-pip4 (27 mg, 33%) as brownish red products. 4-pips: 'H-NMR (500 MHz, CDCls) 6 6.35 (s, 1H), 6.31 (dd, J = 12.6, 2.3 Hz, 1H), 6.25 (s, 2H),
3.84 (s, 3H), 3.81 (s, 3H), 2.92-3.09 (12H), 1.40-1.65 (18H). 3 C-NMR (126 MHz, CDCls) 4 160.2, 158.8, 158.7, 154.5, 152.5, 150.4, 150.3, 148.8,
134.2, 130.7, 130.6, 100.0, 97.0, 94.2, 94.0, 55.1, 54.8, 54.1, 53.1, 25.6, 25.6, 24.1, 23.9. 9F-NMR (471 MHz, CDCl3) § -124.9 (d, ] = 12.4 Hz).
HRMS ((+)ESI-TOF): m/z calcd. for C290H40FNsO,+H*: 510.3239 [M+H]*; found: 510.3219. 4-pips: 'H-NMR (500 MHz, CDCls) § 6.28 (s, 4H),
3.84 (s, 6H), 2.86-3.06 (16H), 1.32-1.52 (24H). 3C-NMR (126 MHz, CDCls) 3 159.0, 148.3, 135.1, 97.5, 54.8, 54.1, 25.7, 24.0. HRMS ((+)ESI-
TOF): m/z caled. for C34HsoNO,+H™: 575.4068 [M+H]"; found: 575.4050.
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Figure S3. '%F NMR spectrum of 4-F.
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Figure S18. 'H NMR spectrum of 2-pram;.
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Figure S40. 'H NMR spectrum of 3-pip2.
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Figure S48. 'H NMR spectrum of 4-dmay;.
o] 4-dmay
=
] ~n F OMe
5 N
=4 N :N
©
1 F
MeO F
]
S
=1
S
]
S
[
S
=
=
=}
R
3
-
£
T T T T T T T T T T T T T T T T T T T T T T T T T
2200 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0  90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 200
l ] AN A
2 z 85862 g2 3
“ & N 4 b 3
X : parts per Million : Carbon13
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Photochemical studies

UV-Visible absorption spectra were recorded with an Agilent Cary 60 spectrophotometer equipped with an Ocean Optics Qpod 2e Peltier-
thermostated cell holder whose temperature accuracy is 0.1 °C. Photoexcitation was conducted using a Prior Lumen 1600 light source containing
multiple narrow-band LEDs at different wavelengths. The illumination intensities were acquired by measuring the illumination powers with a
Coherent LabMax thermal power meter and dividing the number by the area of the cuvette being illuminated (0.78 cm?). Quartz fluorescence cuvettes
with an optical path of 1.0 cm were used for all measurements. The molar absorption coefficients were calculated with the Beer-Lambert law for
each distinguishable absorption peak. For figures the absorption spectra were normalized to 1 with respect to the n—n* band.

Photostationary state (PSS) refers to the mixture of isomers upon constant illumination with a chosen excitation wavelength. Dark, in turn, refers to
the mixture of isomers after an elongated period in a dark cavity at room temperature or in an elevated temperature. Based on the thermal relaxation
lifetime of the molecules, the time and temperature were chosen so that the mixture would consist of azobenzenes only in the trans state.

The photostationary state compositions were determined by comparing the absorbance values of the photostationary state mixture with those in the
dark spectrum. The cis-fraction was calculated from the wavelength that had the greatest difference in the absorbance values. If the cis-absorbance

. . . . . L Ab ..
at this wavelength is assumed zero and the dark spectrum is assumed to equal to that of pure trans isomer, the cis-fraction is 1 — Absﬂ. This is a
dark

minimum value, as the cis-absorbance is typically non-zero. If the dark spectrum is not entirely frans (i.e., the mixture has not been in dark for long
enough to isomerize completely to trans), this will also lower the calculated cis-fraction compared to the true value.
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Thermal isomerization studies

The thermal isomerization rates were determined with the same methodology as in our earlier study!. The 50-150 pM acetonitrile solutions were
illuminated with 365, 385 or 405 nm light until a photostationary state was reached. The illumination was then stopped and the absorbance near the
absorption maximum of the trans isomer was monitored as a function of time. The measured absorbance values were fitted with a monoexponential
function. If the thermal cis-to-trans isomerization was fast, one measurement at 25°C was carried out. Otherwise, the rates were determined at 50,

60 and 70°C and extrapolated to 25°C using the Arrhenius equation. The analyses are presented for all new compounds in Fig. S94-S125.
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Figure S94. Thermal isomerization kinetics of 4-F.
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Figure S96. Thermal isomerization kinetics of 2-pip1.
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Figure S97. Thermal isomerization kinetics of 2-dmaj.
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Figure S98. Thermal isomerization kinetics of 2-prol:.
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Figure S99. Thermal isomerization kinetics of 2-presi.
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Figure S104. Thermal isomerization kinetics of 2-pram.
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Figure S108. Thermal isomerization kinetics of 4-pyri.
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Figure S109. Thermal isomerization kinetics of 4-pip1.
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Figure S111. Thermal isomerization kinetics of 4-prol.
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Figure S112. Thermal isomerization kinetics of 4-pres;.
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Figure S113. Thermal isomerization kinetics of 4-pram;.
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Figure S114. Thermal isomerization kinetics of 4-pyra-sym.
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Figure S115. Thermal isomerization kinetics of 4-pip2-sym.
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Figure S116. Thermal isomerization kinetics of 4-dmaz.sym.
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Figure S118. Thermal isomerization kinetics of 4-presz.sym.
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Figure S119. Thermal isomerization kinetics of 4-pramz-sym.
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Figure S121. Thermal isomerization kinetics of 4-pip2-asym.
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Computational details

All calculations have been done with Gaussian 16, revision C.012. The B3LYP functional®# with D3(BJ)> dispersion correction and PCM(ACN)%7
has been used for geometry optimizations to produce structures for spectra calculations. Low-lying electronically excited states have been calculated
with TD-DFT?® using B3LYP and ©B97X-D° functionals, with PCM(ACN). Natural transition orbitals (NTOs)!® have been computed (using
Gaussian) to visualize the nature of the excited states.

NTO analysis allows one to simplify an orbital description of electronic transitions. Often, a single NTO hole-particle pair may describe the transition
in question whereas several conventional occupied-virtual orbital pairs are needed to characterize the same transition. Upon the electronic transition
the excited electron goes from the hole NTO to the particle NTO.

The geometries of the transition states (TSs) and the cis (Z) isomers have been optimized using spin-restricted (R) und spin-unrestricted (U)
B3LYP+D3(BJ)/6-31G*/PCM(ACN) calculations. In the case of spin-restricted calculations, we have also performed calculations without dispersion
correction and without PCM to determine the influence of these corrections on thermal lifetimes. Reaction rate constants for the thermal cis—trans
isomerization have been calculated using Eyring’s transition state theory!'!:

and the corresponding thermal lifetime as:

_1
Tk

Here, kg and h are the Boltzmann and Planck constants, respectively, and T is the temperature. We used T = 298.15 K (25 °C). AG¥ = G(TS) —
G (Z) is the activation Gibbs free energy.

We have located transition states using the Berny algorithm as implemented in Gaussian (TS keyword). The intrinsic reaction coordinate!>!3
calculations (IRC keyword) have been done to locate the corresponding cis isomers, which have been further reoptimized. We have located two
transition states and two cis isomers for each molecule. Energy differences between different cis isomers of the same molecule were calculated with
respect to the lowest energy cis isomer (of two isomers) of this molecule:

AB;SI =B(Z;) - B(Zlowest energy); B =G,E;

G is Gibbs free energy; E is energy, i.e. a point on the potential energy surface (PES). Thus, ABLZ' = 0 for the lowest energy cis isomer, and positive

for the second isomer.
Normal mode analysis has been performed to confirm the nature of minima (no imaginary frequency) and transition states (one imaginary frequency).

In the case of spin-unrestricted calculations (performed at the UB3LYP+D3(BJ)/6-31G*/PCM(ACN) level), the Guess(Mix) keyword was used to
generate an initial orbital guess, and the broken-symmetry solution was found for all considered molecules. The (S2) values (at the rotational TS
geometries) were slightly above 1 for all the molecules.

To estimate the energy of a pure-singlet state AE IS%?T (at the rotational TS geometry), we used an approach proposed by Yamaguchi et al.'#

2
$H _ gt 59 s T
AEyppr = AEgper + 2 —(52) (AEUDFT - AEUDFT)

Here, the (S2) values are for rotational TSs, i.e., about 1; AEL*,DFT is the energy of the mixed-spin state, and AEL%'PT is the energy of the triplet state

at the rotational TS geometry. The second term on the r.h.s. was added to the UDFT activation Gibbs free energies AG;;D pr to obtain the corrected

activation Gibbs free energies AGL(,‘;'?T corresponding to the pure-singlet state.

The lowest triplet state was optimized starting from the rotational TS structures using the same level of theory, i.e., UB3LYP+D3(BJ)/6-
31G*/PCM(ACN). The (S2) values were slightly above 2, for the optimized triplets. The optimized triplet geometries are similar to the rotational
TS structures.
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In all the calculations the 6-31G* basis set!® has been used.

The molecular structures and NTOs have been visualized using Jmol, an open-source Java viewer for chemical structures in 3D
(http://www.jmol.org/).
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Supplementary Results and Discussion

UV-Vis spectra of synthesized compounds

The UV-Vis spectra of all new compounds in dark and in the most cis-rich photostationary state are given in Fig. S126-S136.
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Figure S126. Absorption spectra of 4-F.
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Figure S128. Absorption spectra of 1-dma, 2-dmai, 3-dma; and 2-dma.
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Figure S127. Absorption spectra of 1-pip, 2-pip1, 3-pip1, 2-pip2 and 3-pipa.
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Figure S129. Absorption spectra of 4-pyri, 4-pyr2-sym and 4-pyra-asym.
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Figure S130. Absorption spectra of 4-pip1, 4-pipz-sym and 4-pip2-asym. Figure S131. Absorption spectra of 4-dmaj, 4-dmaz.sym and 4-dmaz-asym.
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Figure S134. Absorption spectra of 4-proli, 4-pres: and 4-pram;. Figure S135. Absorption spectra of 4-prolz-sym, 4-presz-sym, 4-pramz.sym and 4-pramy-
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Figure S136. Absorption spectra of 4-pip3 and 4-pipa.
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Vertical excitation wavelengths, oscillator strengths and NTOs

The calculated vertical excitation wavelengths and oscillator strengths of the trans and cis isomers of selected products and the NTOs related to each
transition are presented in Table S1 and Table S2—S3, respectively.

Table S1. Vertical excitation wavelengths in nm and oscillator strengths (in parentheses) of the trans and cis isomers of selected products, calculated at the TD-B3LYP+D3(BJ)/6-
31G*/PCM(ACN) and TD-©B97X-D/6-31G*/PCM(ACN) level of theory at the B3LYP+D3(BJ)/6-31G*/PCM(ACN) geometries.

trans cis trans cis
B3LYP ©B97X-D  B3LYP ©B97X-D B3LYP ©B97X-D B3LYP ©B97X-D
I-F Si 462 (0.00) 441 (0.00)  487(0.12) 459 (0.08) 2-dmay Si 477(0.09) 456 (0.06) 490 (0.07) 445 (0.05)
S: 392(L11) 353(1.15)  336(0.17)  298(0.29) S: 426(0.31) 364 (0.66) 392 (0.01) 323 (0.04)
S; 302(0.01) 262(0.01)  323(0.07) 279 (0.09) Sy 362(0.61) 305 (0.37) 341 (0.03) 288 (0.22)
Si 299 (0.02) 260 (0.00) 299 (0.01) 262 (0.00) Si  297(0.00) 257 (0.00) 328(0.17) 283 (0.04)
1-pyr Si 465 (0.00) 443 (0.00)  525(0.13)  486(0.10) 3-pip1 Si 473(0.01) 451 (0.02) 493 (0.04) 438 (0.03)
S;  447(0.60) 401 (0.77)  404(0.03)  344(0.11) S:  458(0.40) 394 (0.65) 391 (0.02) 328 (0.01)
S; 366 (0.42) 307(0.29)  333(0.15) 290 (0.17) Ss 375(0.58) 314 (0.37) 344 (0.02) 282 (0.21)
Si 296 (0.00) 258 (0.01)  321(0.05)  275(0.04) Si  300(0.01) 261 (0.00) 320 (0.17) 275 (0.04)
1-pip Si 470(0.03) 449 (0.02)  491(0.03) 440 (0.03) 4-pip1 Si 493(0.06) 468 (0.05) 496 (0.08) 449 (0.06)
S;  449(0.41) 386 (0.66)  386(0.02) 323 (0.01) S: 440 (0.26) 371 (0.56) 411 (0.02) 338 (0.04)
Sy 371(0.55) 310(0.35)  340(0.02)  282(0.25) S;  359(0.70) 307 (0.51) 340 (0.06) 290 (0.08)
Si 301(0.00) 258 (0.00)  322(0.18)  272(0.02) Si 299 (0.01) 260 (0.01) 326 (0.14) 286 (0.20)
2-pyni Si 486(0.16) 459(0.10)  515(0.10) 470 (0.07) 4-piprsym Si 506 (0.04) 480 (0.04) 512 (0.07) 460 (0.05)
S:  426(0.24) 373(0.58)  406(0.02)  338(0.08) S: 450 (0.43) 386 (0.62) 424 (0.00) 339 (0.00)
S; 359(0.60) 304(0.40)  334(0.06) 287 (0.18) Ss 406 (0.01) 327 (0.01) 391 (0.02) 323 (0.12)
Si 293(0.00) 257(0.01)  326(0.17) 284 (0.09) Si  349(0.49) 295 (0.37) 338 (0.05) 286 (0.10)
2-pip1 Si 477(0.07) 455(0.05)  488(0.05) 440 (0.04) S5 334(0.12) 283 (0.06)
S: 429032 365(0.63)  391(0.01)  322(0.02)
S; 362(0.59) 306 (0.38)  344(0.03)  288(0.22)
Si  298(0.00) 257 (0.00)  329(0.16)  281(0.04)
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Table S2. Dominant natural transition orbitals (NTOs) for the lowest electronic transitions of the #rans isomers.

B3LYP ®B97X-D

Hole Particle Hole Particle

Si
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Table S3. Dominant natural transition orbitals (NTOs) for the lowest electronic transitions of the cis isomers.
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Figure S137. Calculated broadened absorption spectra of the trans (top row) and the cis (bottom row) isomers with broadening parameter 6 = 1500 cm™' (left column) and ¢ = 750

o 1
cm! (right column). The spectra were calculated as'® (1) = mz:ifi exp (— — (— -=

1 1

202\

strengths and wavelengths, respectively, for the i electronic transition, x = 4.319 x 107'° mol m™,

(TD-)B3LYP+D3(BJ)/6-31G*/PCM(ACN) level of theory.
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Figure S138. Variation in the oscillator strengths (top left) and energies (bottom left) of the lowest states of 1-pyr upon a relaxed scan about the
C-N bond corresponding to the change in the marked mcenn dihedral angle (right). The equilibrium So value of @cenn is 1.9°. Step size is 5°. Calculations are performed at the
(TD-)B3LYP+D3(BJ)/6-31G*/PCM(ACN) level of theory.
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Photostationary state mixture compositions

Table S4. Molar cis-fractions (%) in the photostationary state with different illumination wavelengths (nm).

Peak wavelength (nm) 365 385 405 435 470 500 550 595

FWHM (nm) 9 11 17 17 24 28 77 17
Power (mW cm?) 16.3 36.7 54.0 40.8 53.0 20.4 77.5 11.2
1-pyr 57 57 58 58 72 63 54 21
1-pip 76 76 77 70 54 53 32 30
1-dma 72 74 75 70 61 55 26 21
2-pyr1 63 65 68 60 47 39 19 18
2-pip1 76 76 71 54 43 42 38 37
2-dmay 73 73 69 53 43 39 30 28
2-prol; 63 75 64 44 17 11 10 10
2-pres; 60 62 62 53 40 31 16 15
2-pram; 68 69 67 60 42 30 18 18
3-pyr: 61 57 68 68 68 65 46 36
3-pip: 69 67 67 61 54 53 37 34
3-dmay 66 65 69 67 63 62 42 32
3-proh 61 56 61 60 56 52 34 22
3-presi 57 54 64 54 50 22 11 2
3-pram; 48 55 67 66 57 44 21 4
4-pyr1 60 54 53 50 45 44 41 40
4-pip: 71 68 59 68 49 55 64 64
4-dmay 64 61 57 49 45 48 52 52
4-prol 36 36 39 36 28 26 28 26
4-pres; 53 55 58 48 39 40 44 43
4-pram; 54 54 55 45 38 39 44 44
4-pyra-sym 34 43 54 48 32 30 26 25
4-pip2.sym 42 42 43 36 26 28 39 40
4-dmaz-sym 49 56 51 58 36 39 42 42
4-prolz-sym 28 35 44 42 30 27 23 24
4-presz-sym 33 41 47 47 29 26 25 24
4-prama-ym 40 50 60 52 36 35 38 38
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Computational results for thermal cis-to-frans isomerization

Table S5. Calculated activation Gibbs free energies, Z isomer energy differences, rate constants, and calculated and experimental lifetimes at 25 “C (298.15 K).

molecule I path I AG# (eV) I AGLE (AELEH (eV)® I k(s I 7 (hour) I Texp (hour)
RB3LYP/6-31G*/gas
1-F 1 1.08 0 2.9 %107 94 4
2 1.15 0.03 (0.04) 2.7 %107 1014
1-pyr 1 1.04 0.12 (0.11) 1.3 x 1075 20 0.0042
2 1.07 0 5.8x10°¢ 48
1-pip 1 1.03 0.05 (0.04) 2.4 %107 12 01
2 1.12 0 7.4 %107 377 )
2-pyri 1 0.97 0.01 (0.01) 2410 1 N
2 1.17 0 9.4 x10° 2945
2-pipi 1 1.05 0.05 (0.05) 1.0 x 107 27 445
2 1.20 0 3.1x10°® 9021
2-dma; 1 1.03 0 2.9 %107 10 286
2 1.19 0.02 (0.03) 4.4 x10°8 6247
3-pipi 1 1.08 0.08 (0.07) 3.3x10° 85 5
2 1.17 0 1.2x1077 2224
4-pip 1 1.16 0.05 (0.01) 1.4 %1077 1950 1944
2 1.18 0 53x10°% 5239
4-pipr-sym 1 1.19 0 40%10% 6996 3
2 0.91 0.34 (0.37) 2.8 %1073 0.10
RB3LYP/6-31G*/PCM(ACN)
I-F 1 1.14 0 33x107 848 “
2 1.19 0.01 (0.02) 5.1x10°% 5495
1-pyr 1 1.06 0 7.3 x 10700 38¢
2 1.06 0 6.3 x107°° 44 ¢ 0.0042
1-pip 1 1.06 0.09 (0.08) 7.4 %107 37 01
2 1.17 0 9.6 x 1078 2895 )
2-pyri 1 1.00 0.02 (0.03) 6.8 x 107 4 7
2 1.19 0 4.8 x10°% 5745
2-pipi 1 1.07 0.08 (0.09) 4.6x107° 60 445
2 1.25 0 5.4 %107 51130
2-dma; 1 1.07 0.01 (0.03) 6.0 x 107° 46 286
2 1.23 0 1.2x10°% 24079
3-pipi 1 1.10 0.11 (0.09) 1.6 x10°¢ 178 5
2 1.23 0 9.6 x 10°° 29044
4-pip 1 1.15 0.05 (0.02) 2.2x 107 1277 1944
2 1.22 0 1.6 x10°* 16941
4-pip2.sym 1 122 0 1.5x10°% 18244 3
2 0.93 0.36 (0.36) 1.1 x1073 0.25
RB3LYP+D3(BJ)/6-31G*/PCM(ACN)
1-F 1 1.24 0 6.1 x107° 45267 4
2 1.29 0.02 (0.03) 9.8 x 10710 282829
1-pyr 1 1.16 0 1.5x1074 1889 ¢
2 1.16 0 15x1074 1872 ¢ 00042
1-pip 1 1.19 0 49%10% 5619 o
2 1.30 0.04 (0.06) 6.1 x 10710 455040 )
2-pyri 1 111 0.01 (0.03) 12x10° 226 .
2 1.33 0 2.1 x 10710 1294306
2-pips 1 118 0 83x 107 3330 s
2 1.38 0.04 (0.03) 3.1x107" 8867443
2-dma; 1 1.17 0.01 (0.03) 9.8 x 1078 2844 286
2 1.36 0 7.5x 107" 3712823
3-pipi 1 1.25 0 5.6 x107° 49900 5
2 1.35 0.04 (0.06) 9.2x 107" 3026429
4-pip: 1 127 0 1.9% 10 143597 104
2 1.36 0.08 (0.12) 7.5x 107" 3720707
4-pipr-sym 1 132 0 28x 10710 1008055 2
2 1.09 0.18 (0.14) 2.0x10° 140

9ABFg = B(Z;) — B(Ziowest energy); B = G, E; G is Gibbs free energy; E is energy, i.c.

Phior = ki +ky =1.4%x 107557
“Tror = 1/Keor =20 h
Uepor = Ky + ky = 3.0 x 1075
Tir = 1/kor = 940 h
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Table S6. Notations for the UDFT calculations.

All energies are calculated w.r.t. the cis isomer energy

AE?,DFT Electronic energy of the rotational TS calculated with the unrestricted DFT (UDFT) method. It corresponds to the broken-symmetry (mixed-
spin) state with (S2) = 1.
AEL(I%?T Energy of a pure-singlet (i.e. (S?) = 0) state at the rotational TS geometry. This energy is estimated using Yamaguchi’s formula (see
Computational Details).
AESH Energy of the singlet state at the rotational TS geometry, calculated with the restricted DFT (RDFT) method.
RDFT gy g
A EL(,TD?T Energy of the triplet state at the rotational TS geometry, calculated with UDFT. (S2) ~ 2 for this state.
AEL%";’;” Energy of the triplet state at the minimum of the triplet PES.
A(;jDFT Activation Gibbs free energy calculated using broken-symmetry UDFT.
AGL(IS;?T Activation Gibbs free energy calculated using broken-symmetry UDFT and applying Yamaguchi’s formula to correct electronic energy.
AGS,*,) AG;DW + 0.26 eV, where 0.26 ¢V comes from the difference in UDFT and CASPT2 energies for rotational TS of parent azobenzene (taken
from ref. 7.
Kuprr » Tuprr Rate constant and lifetime calculated from AGﬁDFT‘
k,(fg T T%FT Rate constant and lifetime calculated from AGl(,f,’?T‘
kg),, s Téi)rr Rate constant and lifetime calculated from Acﬁﬁj? .
Texp Experimental lifetime.

Table S7. Electronic energies (differences between PES points, w.r.t. the cis isomer), calculated at BSLYP+D3(BJ)/6-31G*/PCM(ACN).

AEjppr AEg Dy AEg R AEgD Mg
1I-F 0.85 0.96 1.49 0.74 0.72
1-pyr 0.68 0.78 1.20 0.60 0.57
1-pip 0.77 0.88 1.38 0.68 0.66
2-pyri 0.81 0.92 1.41 0.71 0.70
2-pip1 0.86 0.97 1.48 0.75 0.74
2-dmay 0.85 0.96 1.47 0.74 0.73
3-pips 0.85 0.96 1.43 0.75 0.73
4-pip1 0.87 0.99 1.46 0.75 0.74
4-pip2-sym 0.88 1.00 1.46 0.78 0.76

Table S8. Calculated activation Gibbs free energies, rate constants, and calculated and experimental lifetimes at 25 °C (298.15 K). The calculations are done at the
UB3LYP+D3(BJ)/6-31G*/PCM(ACN) level.

AG;nFT AG:%?T AGc(zjr) kyprr kz(JSgFT kt(‘i)rr (s Tuprr ‘L'l(fgp., rg)rr Texp

©V) (V) V) G s (h) (h) ) ()
1-F 0.78 0.90 1.04 42 x 107! 4.0x1073 1.7 x 1073 6.6x10™%  69x1072 16 42
1-pyr 0.64 0.74 0.90 8.1 x 10" 2.1 x10° 32x1073 3.5x10° 1.3x10™ 0.09 0.0042
1-pip 0.71 0.81 0.97 6.9 x 100 1.2x107! 2.8x10™ 4.0x 107 22x%x1073 1 9.1
2-pyri 0.74 0.85 1.00 1.6 x 100 2.4 %1072 6.4 %107 1.7 x 107 1.2x1072 4 72
2-pip1 0.78 0.89 1.04 4.5x107! 52x1073 1.8 x107° 6.1 x 107 53 %1072 15 445
2-dmay 0.77 0.89 1.03 5.1x107! 6.2 %1073 2.1x107 5.4 %107 4.5x%x1072 13 286
3-pip1 0.78 0.89 1.04 4.7 x 107! 6.2 %1073 1.9 x107° 59 %107 4.5x%x1072 15 5
4-pip1 0.79 0.91 1.05 2.6 x 107! 22x%x1073 1.0 x 1073 1.1 x1073 1.3 x107! 27 1944
4-piprym  0.80 0.92 1.06 17x107 2.0x103  69x10°  1.6x103 1.4x107" 40 31
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Table S9. Geometries of the cis isomers and the transition states optimized at the RB3LYP/6-31G*/gas level of theory.

RB3LYP/6-31G*/gas

path cis TS
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Table S10. Geometries of the cis isomers and the transition states optimized at the RB3LYP/6-31G*/PCM(ACN) level of theory.

RB3LYP/6-31G*/PCM(ACN)
path cis TS
1
- ﬁ
2
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1
(rotation)
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Table S11. Geometries of the cis isomers and the transition states optimized at the RB3LYP+D3(BJ)/6-31G*/PCM(ACN) level of theory.

RB3LYP+D3(BJ)/6-31G*/PCM(ACN)
path cis TS
1
1-F
2
1
(rotation)

1-pyr
2
1

1-pip
2
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Table 12. Geometries of the cis isomers and the transition states optimized at the UB3LYP+D3(BJ)/6-31G*/PCM(ACN) level of theory.

UB3LYP+D3(BJ)/6-31G*/PCM(ACN)

cis TS

1-pyr

1-pip

2-pyr1

2-pip1
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Other results

Figure S139. Geometry of 2-proline; optimized at the B3LYP+D3(BJ)/6-31G*/PCM(ACN) level of theory.

Absorbance (a.u.)
N
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Figure S140. Absorption spectrum of a saturated aqueous solution of 4-pramz.sym at 25°C. The concentration was calculated with the Beer-Lambert law using the molar extinction
coefficients of the peaks at 392 and 482 nm (4039 and 3406 M"' cm™) to be 534 or 733 uM depending on which peak is chosen. The values should be viewed as qualitative, as the
shape of the spectrum (and, thus, the molar extinction values) is clearly solvent-dependent. However, this is enough to demonstrate that the water solubility is greatly enhanced.
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