

Supplementary Material

PRPF19 mediates the proteasomal degradation of VDR to exacerbate ferroptosis in diabetic nephropathy

Qiongyao He^{1,5}, Wu He², Yanlin Ren³, Wenbin Wu¹, Hui Dong⁴, Gang Yuan⁵, Huihui

Ren⁵, Xinwei Wang⁶, Fuer Lu^{4*}, Dingkun Wang^{4*}

6

⁷ *¹Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital,*
⁸ *Tongji Medical College, Huazhong University of Science and Technology, Wuhan*
⁹ *430030, China*

10 *²Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory*
11 *of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital,*
12 *Tongji Medical College, Huazhong University of Science and Technology, Wuhan,*
13 *430000, China*

14 ³Department of Traditional Chinese Medicine, Zhongshan Hospital of Hubei Province,
15 Wuhan 430030, China

16 ⁴*Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical*
17 *College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan*
18 *430030, China*

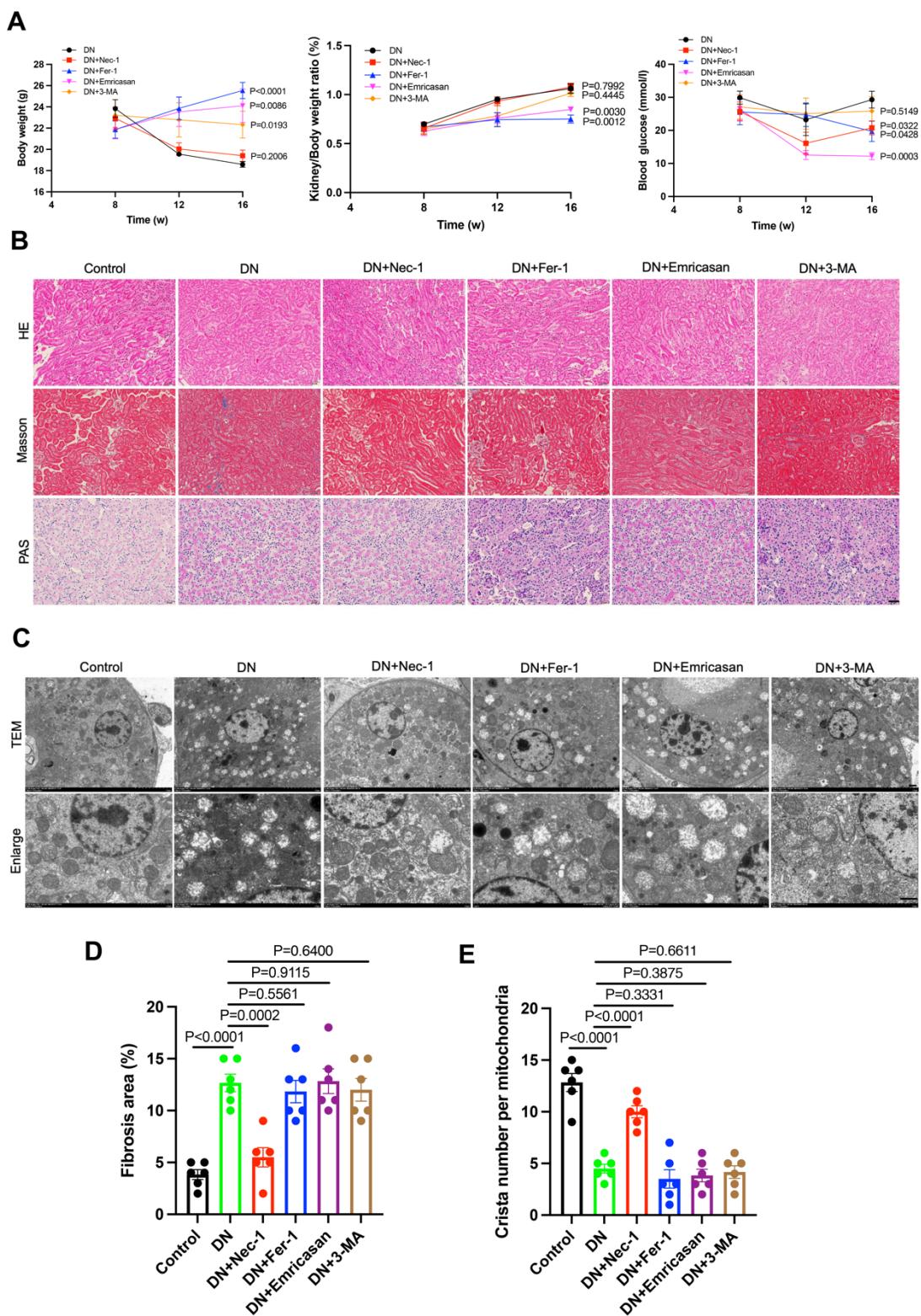
19 ⁵*Department of Endocrinology, Department of Internal Medicine, Tongji Hospital,*
20 *Tongji Medical College, Huazhong University of Science and Technology, Wuhan*
21 *430030, China*

²² ⁶College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China

24 *To whom correspondence should be addressed:

25 Dr Fuer Lu, Department of Integrated Traditional Chinese and Western Medicine,

26 Tongji Medical College, Tongji Hospital, Huazhong University of Science and


27 Technology, Wuhan 430030, China, Email: felutjh88@163.com

28 Dr Dingkun Wang, Department of Integrated Traditional Chinese and Western

29 Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science

30 and Technology, Wuhan 430030, China, Email: wdkung@163.com;

31

34 **Fig S1. Necrosis is the predominant form of cell death in the early-stage of DN.**

35 (A) Levels of body weight, kidney/body weight ratio and blood glucose in DN mice

36 treated with Nec-1 (5 mg·kg⁻¹·d⁻¹), Fer-1 (5 mg·kg⁻¹·d⁻¹), Emricasan (12.5 mg·kg⁻

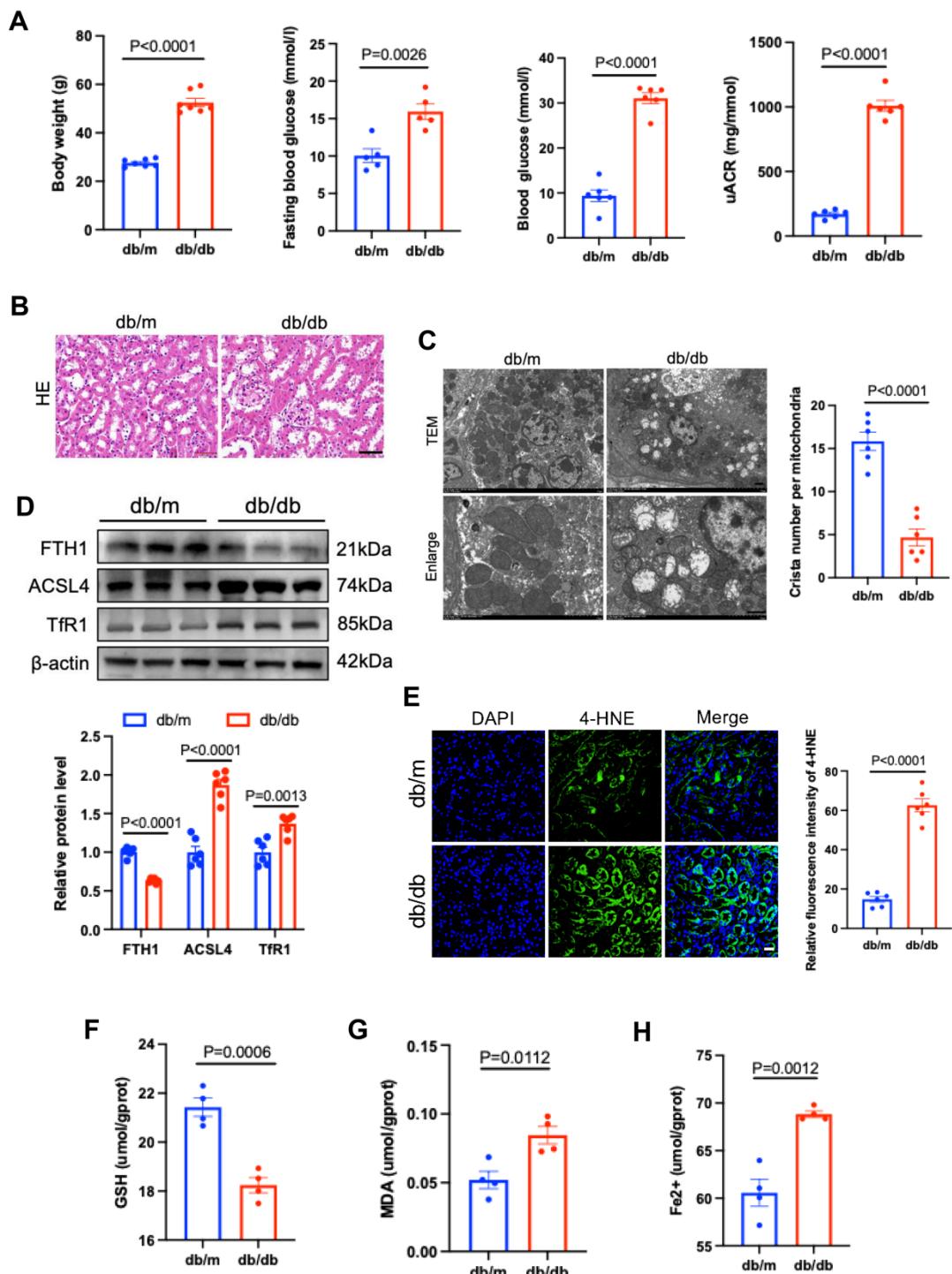
37 1·d⁻¹), 3-MA (10 mg·kg⁻¹·d⁻¹), or vehicle (n = 5 or 6). (B) H&E, Masson and PAS

38 staining of kidney sections collected from mice in the indicated groups at week 8 (bar

39 = 100 μ m). (C) Representative transmission electron microscopy images of PTECs

40 from mice in the indicated groups at week 8 (bar = 10 μ m). (D) Quantification of

41 tubulointerstitial fibrosis in the kidney cortex at week 8. (E) Absolute counting of the


42 number of cristae per mitochondria at week 8. Data are expressed as means \pm SEM.

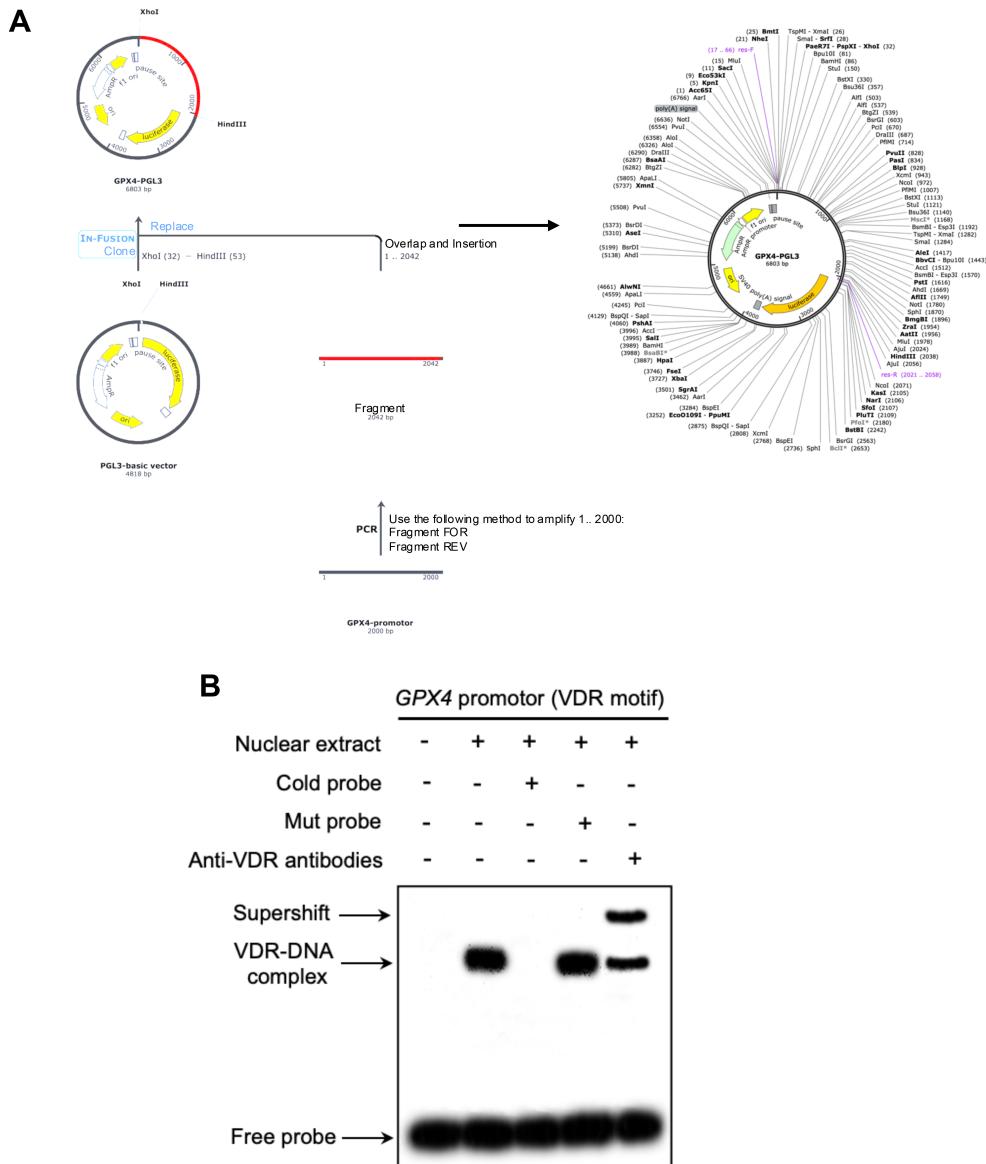
43 Student's t-test was employed for comparisons between two groups; one-way ANOVA

44 followed by Tukey's post-test for multiple comparisons was used for groups of three or

45 more.

46

47

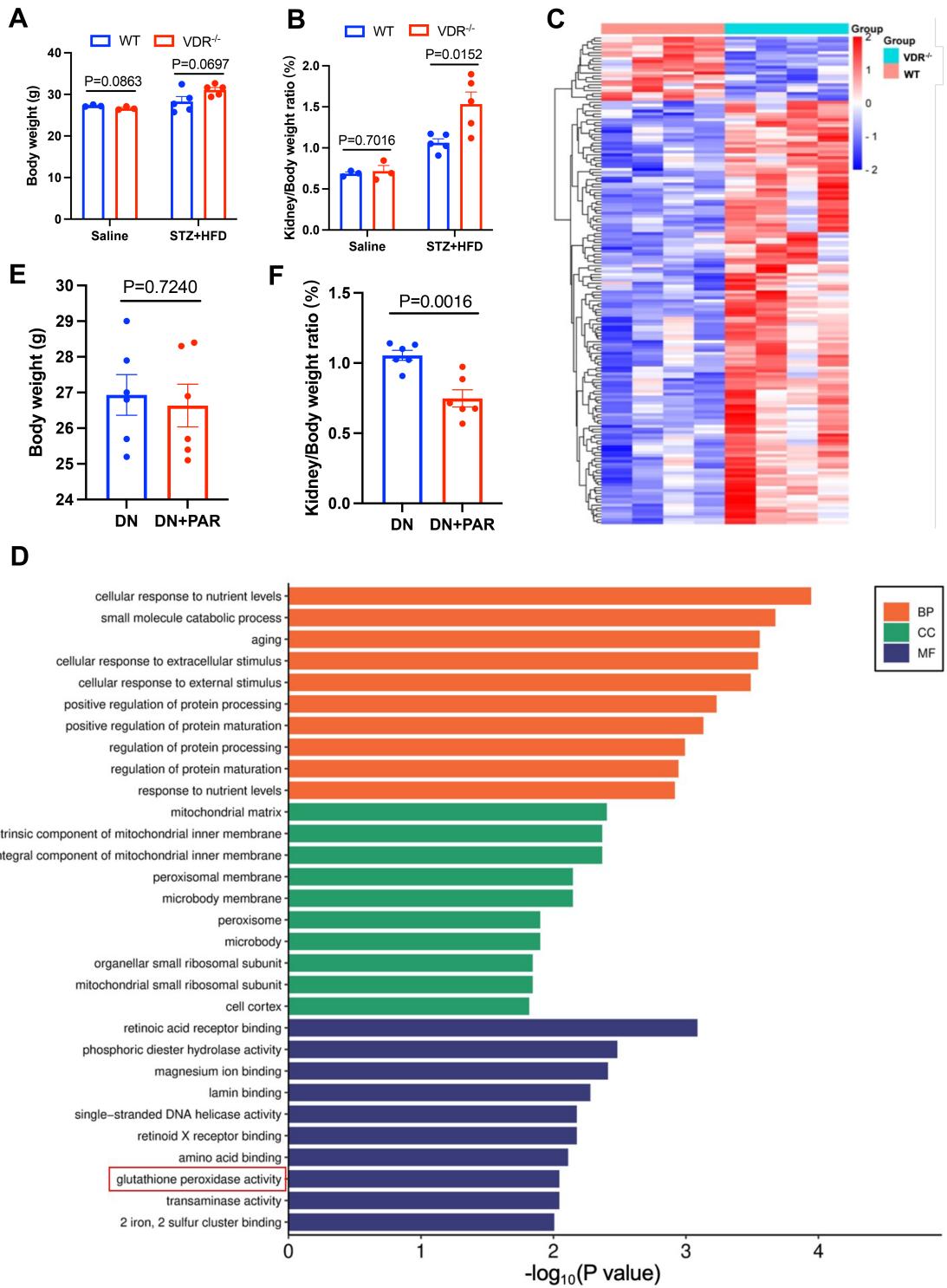

48

49

50 **Fig S2. Ferroptosis in renal tubular cells of db/db mice.**

51 (A) Levels of body weight, fasting blood glucose, blood glucose and uACR in db/db or
52 db/m mice (n = 5-7). (B) H&E staining of kidney sections collected from db/db or db/m
53 mice (bar = 50 μ m). (C) Representative transmission electron microscopy images of
54 PTECs from db/db or db/m mice (bar = 10 μ m). (D) Western blotting of FTH1, ACSL4
55 and TfR1 in the kidney tissues of db/db or db/m mice (n = 6). (E) Immunofluorescence
56 staining of 4-HNE of PTECs from db/db or db/m mice (n = 6; bar = 50 μ m). (F-H) GSH,
57 MDA and iron levels of db/db or db/m mice (n = 4). Data are expressed as means \pm SEM.
58 Student's t-test was employed for comparisons between two groups; one-way ANOVA
59 followed by Tukey's post-test for multiple comparisons was used for groups of three or
60 more.

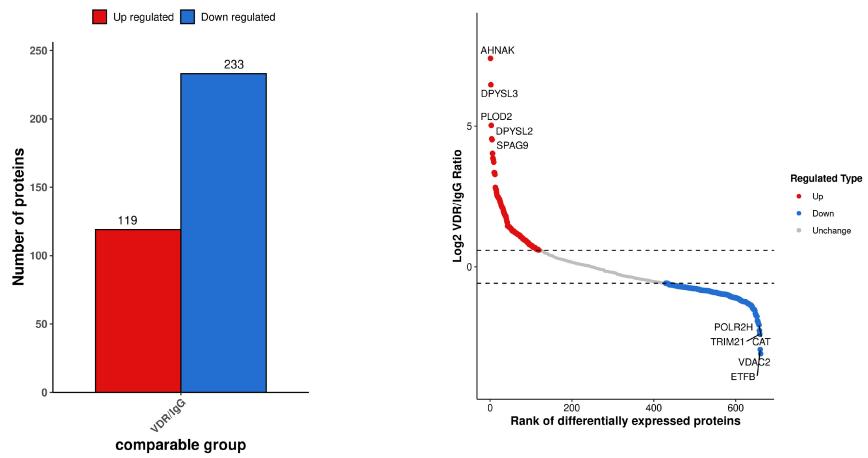
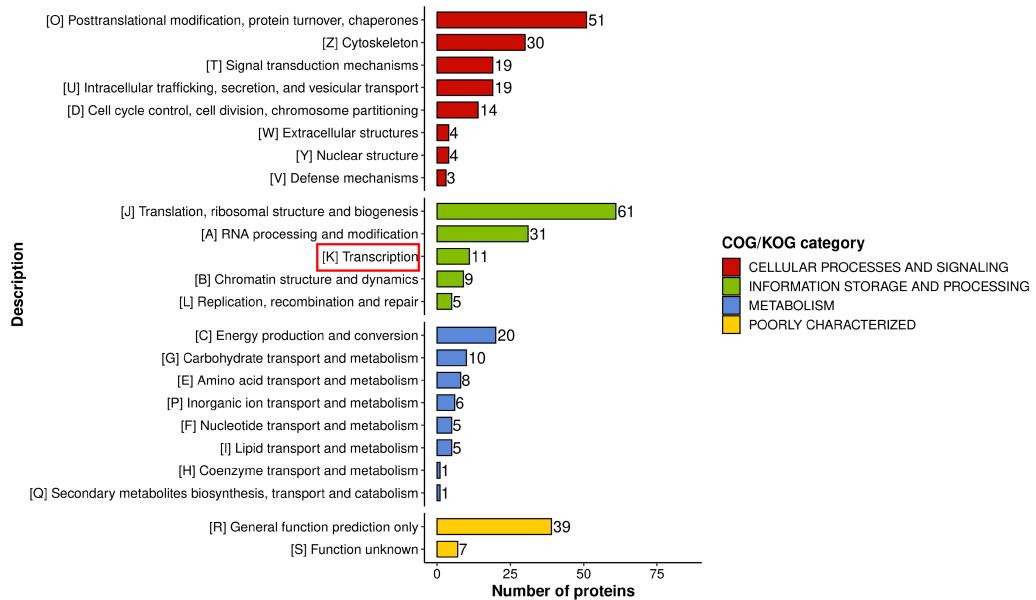
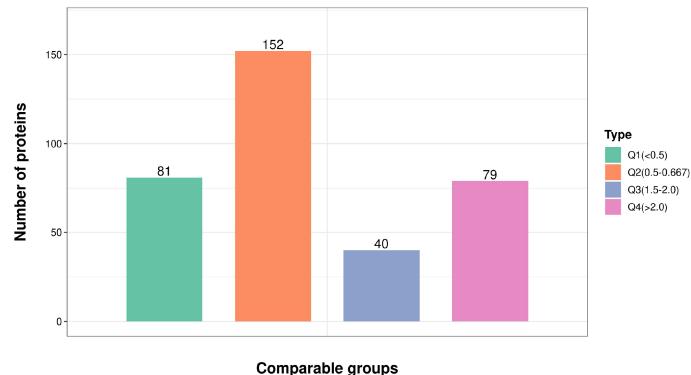
61


62

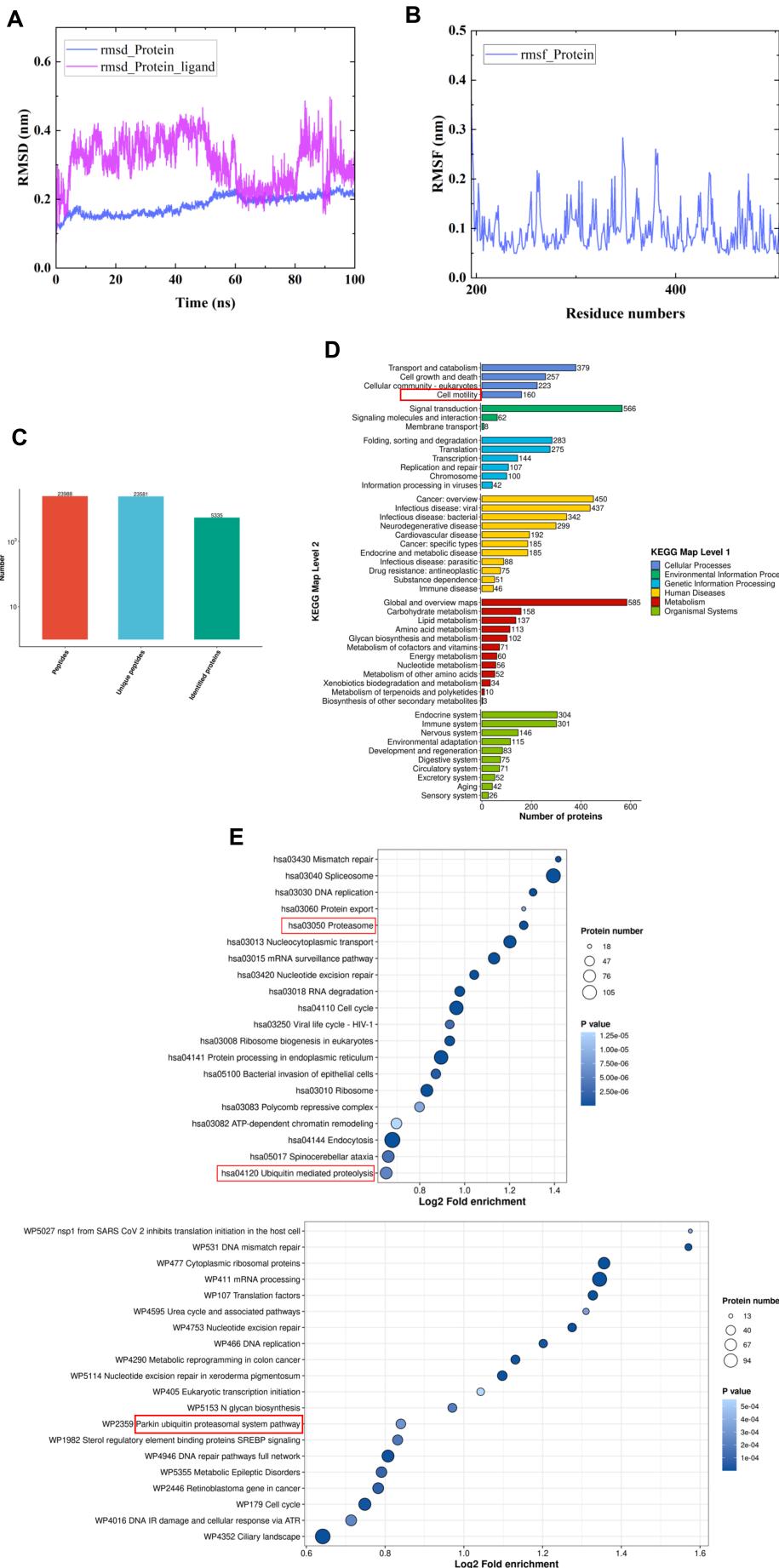
63 **Fig S3. VDR is a key transcriptional regulator of GPX4.**

64 (A) Schematic diagram of synthesis of PGL3-GPX4 luc plasmid. (B) Nuclear extracts
65 from HK-2 cells were incubated with anti-VDR antibodies for 15min prior to further
66 incubating with biotin-labeled probes containing VDR motif from GPX4 promoter. The
67 VDR-DNA complexes and supershifts were measured using EMSA.

68




69

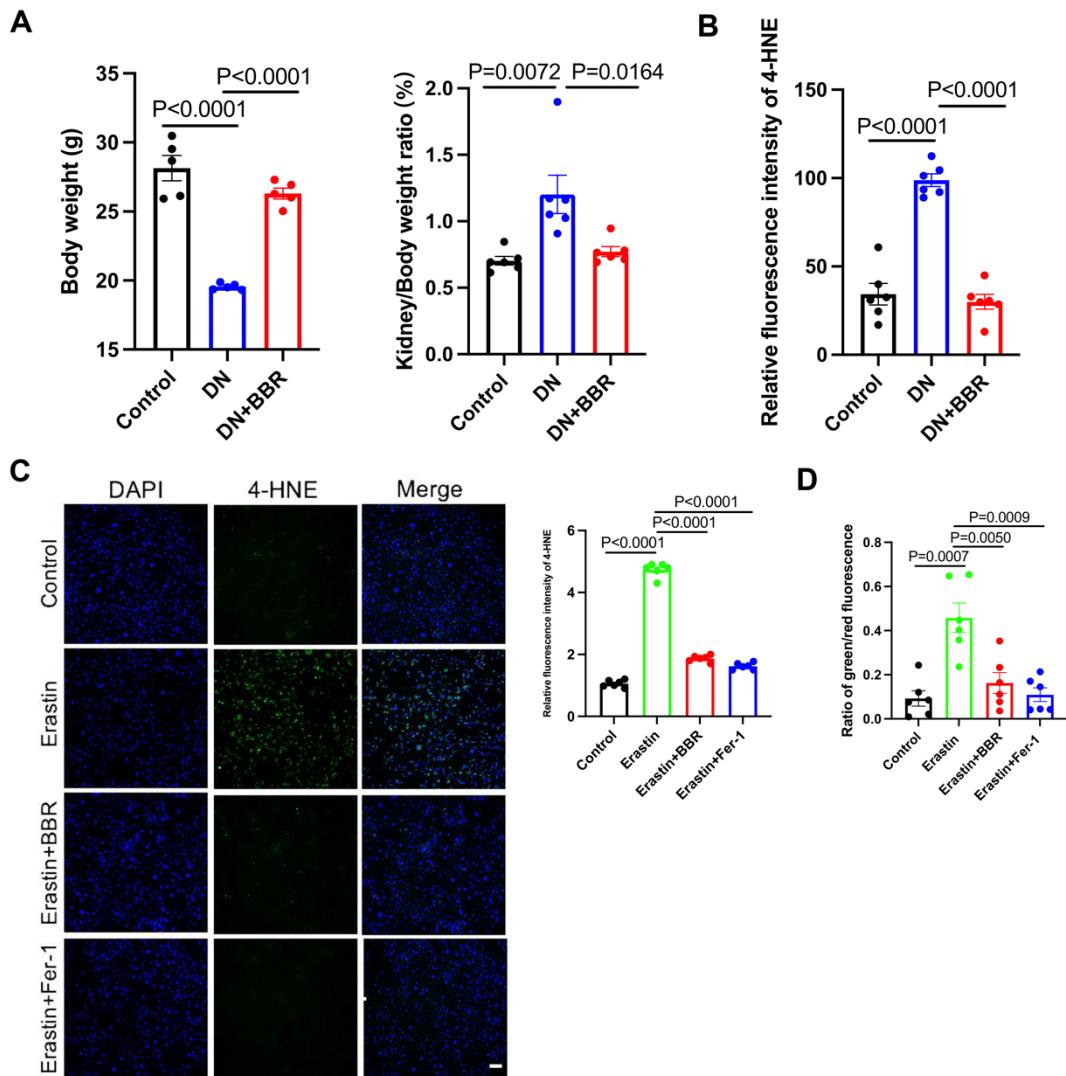
72 **Fig S4. VDR deletion promotes ferroptosis to exacerbate renal tubule injury in DN**
73 **mice.**


74 (A and B) Levels of body weight and kidney/body weight ratio in mice in the indicated
75 groups (n = 3/5). (C) Heatmap showing the expression of differential genes in the
76 kidney tissues of VDR^{-/-} and WT mice treated with STZ and HFD (n = 3). (D) GO
77 enrichment analysis of differentially expressed genes in VDR^{-/-} and WT mice treated
78 with STZ and HFD. (E and F) Levels of body weight and kidney/body weight ratio in
79 DN mice treated with PAR or vehicle (n = 6). Data are expressed as means \pm SEM.
80 Student's t-test was employed for comparisons between two groups; one-way ANOVA
81 followed by Tukey's post-test for multiple comparisons was used for groups of three or
82 more.

83

A**B****C**

86 **Fig S5. E3 ubiquitin ligase PRPF19 mediates ubiquitination degradation of VDR.**
87 (A) Statistical and scatter plots of differential proteins. (B) Perform COG/KOG
88 classification analysis on the selected differentially expressed proteins. (C) In order to
89 compare the functional similarities and differences between proteins with different
90 expression levels, we divided the proteins into four parts, called Q1 to Q4, based on
91 their differential expression levels, and performed GO, KEGG enrichment, and
92 COG/KOG category analysis on each part.


93

95 **Fig S6. BBR and VDR competitively bind to PRPF19.**

96 (A) The plots of RMSD of BBR-PRPF19 complex and free PRPF19. (B) The plots of
97 RMSF of BBR-PRPF19 complex. (C) The overall situation of peptide segments and
98 protein numbers identified in protein group. (D) Perform KEGG pathway classification
99 analysis on identified proteins. (E) Perform WikiPathways pathway enrichment
100 analysis on identified proteins (up), and KEGG pathway analysis of BBR interacting
101 proteins (down).

102

103

104 **Fig S7. BBR inhibits ferroptosis of RTECs in vitro and in vivo.**

105 (A) Levels of body weight and kidney/body weight ratio in DN mice treated with BBR
 106 or vehicle for 4 weeks (bar = 5 cm). (B) Analysis results of fluorescence staining of 4-
 107 HNE in DN mice treated with BBR or vehicle for 4 weeks (n = 6). (C)
 108 Immunofluorescence staining of 4-HNE in HK-2 cells treated with erastin (5 μ M), BBR
 109 (10 μ M), Fer-1 (5 μ M) or vehicle (n = 6; bar = 50 μ m). Data are expressed as
 110 means \pm SEM. Student's t-test was employed for comparisons between two groups;
 111 one-way ANOVA followed by Tukey's post-test for multiple comparisons was used for
 112 groups of three or more.

113 **Supplementary Table 1. Clinical information of the subjects**

Characteristics	Diabetic Nephropathy (n=40)	Non-Diabetic Nephropathy (n=40)	p value
Age (years)	57.38±8.14	43.76±8.02	0.0017*
Male (n, %)	29 (72.50%)	25 (52.50%)	0.1080 [#]
SCr (μmol/L)	512.88±153.87	79±13.53	2e-5*
BUN (mmol/L)	18.16±7.24	4.40±3.38	0.0010*
GFR (ml/min)	23.10±18.07	97±6.74	1.3e-8*
Comorbidities/ Medical history			
Hypertension	38 (95%)	0	
Diabetes mellitus	40 (100%)	0	
Coronary disease	9 (22.50%)	0	
Neurologic	0	0	
Neoplasms (extra- renal)	0	0	

114 #Fisher's two-tailed test. *Unpaired two-tailed t-test. GFR: Glomerular filtration rate.

115

116 **Supplementary Table 2. List of primers used for qRT-PCR**

Gene names	Primer	Sequence (5' to 3')
Mouse <i>GPX4</i>	Forward	CTCCGGAGACTCCTCCTCAA
Mouse <i>GPX4</i>	Reversed	AGCGAACATGATCACCTCA
Mouse <i>VDR</i>	Forward	CCGTCTGAGCCGCTTACTTA
Mouse <i>VDR</i>	Reversed	TATCGGGCATGCAGATCGAC
Mouse <i>GAPDH</i>	Forward	GAGAGTGTTCCTCGTCCCG
Mouse <i>GAPDH</i>	Reversed	ATCCGTTCACACCGACCTTC
Human <i>VDR</i> -Motif 1	Forward	TCACACCTGTAATCCCAGCACTCT
Human <i>VDR</i> -Motif 1	Reversed	TACACGAGCGAGCCACCACA
Human <i>VDR</i> -Motif 2	Forward	GCTGAGGCTGGAGGATCACTTG
Human <i>VDR</i> -Motif 2	Reversed	GGACAACAGGCTCATCCACCAT
Human <i>VDR</i> -Motif 3	Forward	GGTGACAGACCAAGACTCCTCAA
Human <i>VDR</i> -Motif 3	Reversed	GGCAACAGAAACACTCATCTCATACTT
Human <i>VDR</i> -Motif 4	Forward	ACGCCTCTGTGCTGCATCTG
Human <i>VDR</i> -Motif 4	Reversed	GGATTACAGGTGTGAGCCACTCTAC
Human <i>VDR</i> -Motif 5	Forward	GCCCTGAGTCTGTCTCTGAAGAAATAC
Human <i>VDR</i> -Motif 5	Reversed	CAAAGTGCTGGATTACAGGTGTGA
Human <i>YY1</i> -Motif 1	Forward	CGGGAGCAAAGCCATGTGAACA
Human <i>YY1</i> -Motif 1	Reversed	AGATGCAGCACAGAGGCGTCAT
Human <i>YY1</i> -Motif 2	Forward	GCGTGGTAGCACATGCCTGTA
Human <i>YY1</i> -Motif 2	Reversed	GGAACTGAGTCACCGTGATTGGA
Human <i>YY1</i> -Motif 3	Forward	TGTCTTGATGACTCTCAGGTCTCAG
Human <i>YY1</i> -Motif 3	Reversed	GAGTGCTGGATTACAGGTGTGA
Human <i>YY1</i> -Motif 4	Forward	TCGCAAGGGCAAGAACAGAGTC
Human <i>YY1</i> -Motif 4	Reversed	GCAGAGGCAGTGAAGCAAGGAT
Human <i>YY1</i> -Motif 5	Forward	TCTCAGGTCTCAGTGCCCACATTA
Human <i>YY1</i> -Motif 5	Reversed	TTGCTTCTCATCACAGCTCCATCTT
Human <i>POU2F2</i> -Motif 1	Forward	TCTCAGGTCTCAGTGCCCACAT
Human <i>POU2F2</i> -Motif 1	Reversed	GCCAGGCTGATCTCGAACTCCT

Human <i>POU2F2</i> -Motif 2	Forward	CTGTGATGAGAAGCAAACCCAAC
Human <i>POU2F2</i> -Motif 2	Reversed	GGCTGATCTCGAACTCCTGACCT
Human <i>POU2F2</i> -Motif 3	Forward	TGAGTCAGGAGAATCGCTGAACC
Human <i>POU2F2</i> -Motif 3	Reversed	GCTCATCCACCATTCTGGCTAAT
Human <i>POU2F2</i> -Motif 4	Forward	AACCATCCATGACGCCCTGTG
Human <i>POU2F2</i> -Motif 4	Reversed	TGGTCAGGCTGGTCTCGAACTC
Human <i>POU2F2</i> -Motif 5	Forward	AGAGACGGGAGGTTCGCTTGAG
Human <i>POU2F2</i> -Motif 5	Reversed	CGCAGTTATCCGGCTGGTTGAC

117

118

119 **Supplementary Table 3. List of antibodies used in this study**

Antibody	Source	Supplier	Catalog number
VDR	Rabbit	Abcam	ab109234
VDR	Mouse	Proteintech	67192-1-lg
GPX4	Mouse	Proteintech	67763-1-lg
PRPF19	Rabbit	Proteintech	15414-1-AP
FTH1	Rabbit	ABclonal	A19544
ACSL4	Rabbit	Proteintech	22401-1-AP
TfR1	Rabbit	ABclonal	A5865
4-HNE	Rabbit	Bioss	bs-6313R
YY1	Rabbit	Cell Signaling	46395S
POU2F2	Rabbit	BOSTER	M04407-2
Anti-MYC tag mAb	Rabbit	Proteintech	16286-1-AP
Anti-FLAG tag mAb	Mouse	Proteintech	66008-4-lg
Anti-Ubiquitin mAb	Mouse	ThermoFisher	13-1600
FITC Goat Anti-Rabbit IgG (H+L)	Goat	BOSTER	BA1032
FITC Goat Anti-Rabbit IgG (H+L)	Goat	ABclonal	AS011
CY3 Goat Anti-Rabbit IgG(H+L)	Goat	BOSTER	BA1105
β-actin	Mouse	Proteintech	66009-1-lg

120

121

122