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1. Supplementary materials

Table S1 shows the details of the datasets used to evaluate sScMEDAL subnetworks as well as the
baseline PCA and the AE and AEC models. Data processing steps are described in supplemental

section 2.2

Table S1. Datasets used to evaluate sScMEDAL models.

Healthy Heart*?

ASD?

AML*

Description
Data type
Total cells (pre-filtering)
Total cells (post-filtering)
Total genes
Highly variable genes

Number of cell types

Batch effect type

Heart cells from multiple tissues
Single cell
486,134
486,134
33,538
3,000

12 + Not Assigned cell type

Technical batch (z =147)

ASD and TD (controls)
Single nucleus
104, 559
104, 559
36,501
2,916
17

Biological donor (z = 31)

AML and healthy subjects
Single cell
41,090
38,417
27,899
2,916
6 malignant + 15 healthy

Technical batch (z=19)

2.Supplementary methods

2.1. Supplementary figures of the scMEDAL architecture

Random effects Bayesian layer block

Fig. S1 depicts the architecture of the Random Effects Dense (REDEN) Bayesian layer block, which
is used to construct the Bayesian layers of the sScMEDAL-RE subnetwork.

REDEN block

X1

Dense layer

y(@)~N(0, Gy)

Batch specific slope

Batch specific bias
b(2)~N(0, 05)

d,

x;=d;*(1+y(2)+b(2)

X

Fig. S1: Random effects dense (REDEN) block used in the random effects autoencoder (SCMEDAL-RE). A
dense layer with n; neurons transforms an input representation from the preceding layer, x;_;, into an
intermediate output tensor, d;. A batch-specific scale y(z) and bias b(z) are then applied to each of the f
feature maps. These batch-specific slopes and biases are regularized to follow normal distributions, with
mean zero, and learned variances o, and gy, respectively.




63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

2.2. Data preprocessing

We used standard preprocessing steps from Yu et al. , 2023° which included: 1) filtering out cells
exhibiting expression in fewer than ten genes and removal of genes detected in fewer than three cells,
2) normalizing total Unique Molecular Identifiers (UMI) counts per cell to 10,000, 3) log-transforming the
data to stabilize variance log (X + 1), and 4) selecting the top highly variable genes (HVGS).

Since the ASD and Healthy Heart datasets had previously undergone quality control, no additional
cells were removed during the filtering step. For the AML dataset, additional quality control measures
were implemented. Cells with undefined or missing cell type annotations were excluded. Furthermore,
samples identified by Dai et al., (2021) as having ambiguous annotations—specifically AML314, AML371,
AML722B, and AML997°—were removed from the original 16 AML donors to ensure the dataset's
integrity, resulting in 12 AML donors available for analysis. Including 5 healthy donors and 2 cell lines,
the dataset comprised a total of 19 batches. The ASD dataset had previously undergone a log2
transformation as part of the original preprocessing by van Galen et al. (2019). To maintain consistency
across all datasets, this transformation was reversed by applying an exponential function (base 2) to the
data after adding 1 to each value, thereby returning the data to its original scale. Following this reversal,
the standard preprocessing pipeline was applied.

The datasets were then partitioned through 5 fold cross-validation, stratified by batch and cell type in
all three datasets. For each split, three folds were used for training, one for validation, and one for testing.
The data were loaded for each subset and scaled using min-max scaling before model fitting. To reduce
compute time for the ASW calculations, we used a random sample of 10,000 cells when datasets
exceeded this size in training, validation, or testing subsets.

2.3. Hyperparameters used to build the AE, AEC, scMEDAL-FE,
ScMEDAL-FEC, and scMEDAL-RE models

Section 4.5 of the main paper describes the hyperparameter optimization process for the overall
objective function in equation 9. In the following Tables S2-S4, we describe the values of the
hyperparameter that are found to optimize the AE, AEC, scMEDAL-FE, scMEDAL-FEC, and scMEDAL-
RE models in three datasets: Healthy Heart, the Autism Spectrum Disorder (ASD), and Acute Myeloid
Leukemia (AML).

Table S2. Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the Healthy
Heart dataset.

Hyperparameter AE aec | SMEPAL | SeMEDALFEC | scMEDAL-RE
Arecon,F 1 81 5400 9450
Arecon,R 110
Ay - 0.1 - 1
A 1 1
AL - 0.1
Ax - 1.00E-05

Table S3. Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the ASD dataset.

SCMEDAL-
Hyperparameter AE AEC SCMEDAL-FE FEC scMEDAL-RE
Arecon,F 1 1 1000 1000
Arecon,R - - - - 110
/1y - 0.1 - 1
Aq 1 1
/1L - 0.1
/11{ - 1.00E-05
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Table S4. Hyperparameters used for training PCA, AE and scMEDAL subnetworks AML dataset.
Hyperparameter AE AEC | scmeDALFE | SMEPAL | sovEDALRE
Arec onF 1 100 4000 1500
Arecon,R 110
Ay - 0.1 - 1
A A 1 1
AL - 0.1
Ak - 1.00E-05

2.4. UMAP visualization parameters

Table S5 describes the minimum distance and nearest neighbor’s choices for UMAP visualizations
presented in the main paper in sections 2.2, 2.3, 2.4, and 2.7.

Table S5. UMAP Visualization parameters.

Dataset UMAP parameters AE | AEC | ScMEDAL-FE |  scMEDAL-FE SCMEDAL-RE
Healthy Heart Nex;ans:j ;\Sl:grc]gors (ig 10000
ASD Ne::/ll’;ens:j ;L?gﬁsors 0155
AML Ne;:\l/::anstd ;\SI’L?SESOrs (ig

2.5. Hardware and software used for model implementation and
training

All deep learning models were developed and trained on Nvidia Tesla V100 GPUs with 32 GB of
memory and Tesla P4 GPUs with 8 GB of memory. The software stack for model training included Python
3.8.5, TensorFlow 2.37, TensorFlow Probability 0.11.17° scikit-learn 0.23.2, and Scanpy 1.6.0.
Performance measures, including ASW, DB, CH, accuracy, balanced accuracy, and chance accuracy,
were computed using the Scikit-learn library'®. The PCA model was also implemented through the Scikit-
learn library. SCRNA-seq preprocessing and UMAP computations!! were performed using Python 3.8.18
with the Scanpy 1.9.8 library*?. Genomaps were generated using genomap 1.3.6 and the Mann-Whitney
U test was implemented using the using the stats module from SciPy 1.10.1*2 and the linear mixed-effects
models were implemented in the Statsmodels 0.10.0 library'®. For more details on the software used for
model training, plot creation, and generation of visualizations, please refer to the code repository
described in the Code and data availability section 5.

2.6. Clustering metric definitions

We use the following metrics to quantify the clustering (separability) of the cells: the Average
Silhouette Width (ASW)®, Calinski-Harabasz (CH) index'®, and Davies-Bouldin (DB) index!’. The
Silhouette Width quantifies how well each cell fits within its assigned cluster compared to the other
clusters. It is computed using two distances: the within-cluster distance (a;) and the between-cluster
distance (b;). The within-cluster distance, a;, represents the average distance between a cell i and all
other cells in its cluster. This distance is defined as:

4
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where (; is the set of cells in the cluster of cell i, |C;] is the total number of cells in this cluster, and d (i, j)
is the distance between cell i and cell j within the cluster. In contrast, the between-cluster distance, b;, is
the minimum of the average distance between cell i and cells from other clusters. It is defined as:

. 1 .
bi = mm{kii} m 2 d(l,])
& {j e cy}

where Cy, is the set of cells assigned to cluster k which is different from the cluster of cell i, while |Cy]| is
the total number of cells in cluster k. The silhouette coefficient for each cell i is calculated as:

bi —Qa;
S = —————
' max(b;, a;)
where a higher s; value (closer to 1.0) indicates that the cell is well-clustered, being more similar to cells
within its own cluster than to those in any other cluster. The ASW is defined as the average of s; over all
cells and provides an overall measure of clustering quality.

The Davies—Bouldin (DB) index quantifies the extent to which clusters overlap. For each cluster, we
compare its average within-cluster dispersion to the distance between its centroid and the centroid of the
most similar (closest) cluster. Consequently, a lower DB index value indicates less overlap and better
separation between clusters. The DB index is computed as:

{k=1}
where K is the number of clusters, and D, for cluster k is the ratio, Ry, for the most similar cluster [ to
k, (L # k). Dy, is expressed as:
Dy = maxy 4 3Ry
where the ratio R,; measures how similar are the clusters k and [. Ry; is computed as:

(qr + q;)
Ry =—— 22
Kl My,

where g is the is the average distance from each cell in cluster k to the centroid of cluster k, g, is the
corresponding average distance for cluster [, and M, is the distance between the centroids of clusters k
and [. A larger M, indicates better separation between the two clusters.

The Calinski-Harabasz (CH) index measures the ratio of between-cluster variance to within-cluster
variance, with higher values indicating more distinct and cohesive clusters. It is calculated as

CH

Xl * Ml — wll? *[N—K
Z?k:ﬂz?l-k:l}” pi— me |l LK—1
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where n,, is the number of points in the k" cluster, y, is the centroid of the k" cluster, u is the centroid
of the entire data (all the cells), p; is the position (coordinates) of the cell i, N is the total number of cells
and K is the number of clusters.

To align the interpretation of the DB index with the CH index and ASW, we used the reciprocal (1/DB),
ensuring that higher scores consistently indicate better clustering quality. When measuring the clustering
by cell type, higher scores signify improved separability in the latent space, enhancing the cell type
signal—an objective of batch correction. Conversely, when measuring the clustering by batch label, lower
scores indicate more effective batch correction, as it indicates that the batches become less
distinguishable, which is another objective of batch correction. Additionally, higher batch scores in the
batch-specific latent space of the random effects subnetwork indicates effective modeling of the batch
effects and capture of the between-batch variance in gene expression data.

3. Supplementary results

3.1. Confounding within the AML dataset

In Fig. S2 the representation of donors across cell types in AML is shown graphically. We observe
that not all donor samples contain cells from every cell type, making this dataset a particularly
challenging and interesting one for batch correction due to potential confounding between donor
identity and cell type.

Patient_group
= AML
16 mm cellline
mmm control
14 -
12 4
w
s
& 10 -
(a]
‘s
Y
g8
3
=
6 4
4
2 1
0 -
o (&) E- o - z. (=] (@] o [+a] [+e] o b L L] LY U U Y
g 2 § 3 E & § 8 ¢ £ §F =24 42 4 44
] © S 2 a g8 R g 8
g N & 9 £ £ & § s
e
a.
Cell Type
Fig. S2: AML dataset demonstrates intrinsec cell type-donor confounding. This stacked bar plot shows the number
of donors for each cell type (y-axis), grouped by patient group, with cell types displayed along the x-axis. The colors
indicate the donor patient group.
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3.2. Hyperparameter Optimization (HPO) for AEC and scMEDAL-
FEC models

Hyperparameter optimization (HPO) was conducted per dataset to tune the parameters using the
held-out validation data (not used for model training). This tuning adjusts the weights of the
reconstruction, adversarial, classification (cell type for ssMEDAL-FE and batch for ssMEDAL-RE), and
Kullback—Leibler divergence loss function terms so that they are on a similar scale, allowing all terms to
guide the model fitting, and optimizing performance on the validation data. The winning parameters are
shown in Tables S2-S4. However, when cell type information is available from an external source (as
described in Section 2.7 of the main paper) this can be used to further guide hyperparameter tuning. In
this scenario, the ASW for cell type can be used to further refine the loss function weights. Both batch
and cell-type ASW on the AEC and scMEDAL-FEC models can be evaluated during the training for 500
epochs with early stopping, prioritizing the cell-type ASW. Table S6 illustrates how the ASW scores for
both batch and cell type separability can vary somewhat for different values of the weights assigned to
the reconstruction loss (measured with mean squared error), adversarial loss, and classification loss of
the cell type labels y, while the selected (winning) parameters are in boldface.

Table S6. Average Silhouette Width (ASW) scores for batch and cell type separability of the AML dataset (mean across 5 folds).
Hyperparameter Optimization (HPO) selection of reconstruction loss ..., and classification loss 1, weights using validation data.
Adversarial loss weight 1, = 1 for all models.
Arecon Ay ASW (batch) ASW (cell type)
mean 95% CI mean 95% CI
1 -0.43 -0.52 -0.34 -0.15 -0.23 -0.06
AEC 10 0.1 -0.37 -0.44 -0.31 -0.11 -0.20 -0.02
100 -0.28 -0.34 -0.23 0.03 -0.04 0.10
500 1 -0.33 -0.35 -0.31 -0.10 -0.13 -0.06
1500 1 -0.30 -0.37 -0.24 -0.05 -0.08 -0.02
SCMEDAL-FEC
1500 2 -0.33 -0.40 -0.26 -0.07 -0.11 -0.04
2000 2 -0.31 -0.33 -0.28 -0.07 -0.13 -0.01

3.3. Supplementary results for scMEDAL-FE and scMEDAL-RE
models

3.3.1. CH and 1/DB scores

In Tables S7-S9, scores are shown from the Calinski-Harabasz (CH) clustering index and the
reciprocal of the Davies-Bouldin (DB) clustering index (1/DB), as these complement the primary metric,
ASW, used in the main paper. These scores confirm the ASW results. In particular, the scMEDAL-RE
subnetwork consistently captures batch specific information as designed, demonstrating significantly
more batch information (higher scores) than any of the other models, as measured with both the CH and
1/DB indices, across all three datasets (4" row, first 2 columns of Tables S7-S9). Meanwhile, the
scMEDAL-FE subnetwork substantially suppresses batch specific information, demonstrating much
lower CH scores (less batch contamination) than the baseline model (PCA) in all three datasets (3" row,
2" column of Tables S7-S9). In terms of preserving cell type information, across all datasets, the
scMEDAL-FE subnetwork outperforms the baseline model (PCA) and scMEDAL-RE (by design) with
higher scores in the 1/DB metric (rows 1,3,4 of 3" column) and performs comparably well to the AE model
in the CH metric (rows 2,3 of 4™ column of Tables S7-S9).
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Table S7. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the Healthy Heart dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

PCA (Baseline)
AE
SCMEDAL-FE

SCMEDAL-RE

batch cell type
1/DB CH 1/DB CH
mean 95% CI mean 95% ClI mean 95% CI mean 95% CI
0.02 0.01 0.03 148.65 145.33 151.98 0.13 0.10 0.15 1502.74  1456.79  1548.69
0.02 0.02 0.02 70.49 51.09 89.90 0.22 0.10 0.33 1712.76 ~ 140570  2019.83
0.02 0.01 0.02 61.38 38.74 84.03 0.19 0.13 0.24 1984.01  1078.08  2889.95
0.56 0.17 0.94 2555.27  544.02  4566.51 0.06 0.04 0.08 224.76 66.19 383.34

Table S8. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the ASD dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

PCA (Baseline)
AE
SCMEDAL-FE

SCMEDAL-RE

batch cell type
1/DB CH 1/DB CH
mean 95% CI mean 95% CI mean 95% CI mean 95% CI
0.03 0.02 0.03 32.67 32.06 33.28 0.18 0.15 0.21 | 9089.94 8906.86 9273.02
0.02 0.02 0.03 23.72 20.74 26.69 0.78 0.71 0.85 | 9863.14 8673.06 11053.22
0.02 0.02 0.03 19.43 14.12 24.74 0.32 0.15 0.49 | 9631.75 8052.25 11211.25
0.16 -0.09 0.40 2423.99 -3510.80 8358.77 0.03 0.01 0.04 749.41 -261.64 1760.45

Table S9. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the AML dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

batch cell type
1/DB CH 1/DB CH
mean 95% ClI mean 95% ClI mean 95% ClI mean 95% ClI
(B:s(;ﬁne) 0.06 0.05 0.07 156.52 154.20 158.84 0.14 0.12 0.16 | 2560.96 2482.14  2639.79
AE 0.07 0.07 0.08 189.78 169.23 210.32 0.28 0.24 0.32 | 1956.48 1779.39  2133.58
SCMEDAL-FE 0.07 0.06 0.09 80.63 69.88 91.37 0.19 0.09 0.29 | 1493.43 1353.85  1633.01
SCMEDAL-RE 0.37 0.07 0.67 63228.21 9245.17 117211.25 0.07 0.05 0.09 114.73 69.53 159.94
3.3.2. Random Effects subnetwork (ScMEDAL-RE) latent spaces

Figs. S3—-S5 show the scMEDAL-RE latent spaces through UMAP visualizations. We observe that the
batches (colored) are visibly apparent across all datasets. This further confirms the high degree of
batch separability attainable by the sScMEDAL-RE subnetwork, which is as designed, because its
purpose is to model the batch effects.
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HO0025_LA
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HCAHeart8287128

Fig. S3: scMEDAL-RE separates cells from different batches in the Healthy Heart dataset. UMAP visualization of
scMEDAL-RE latent components, representing 44,987 cells from 20 selected batches (out of 147 total). Colors indicate
different batches, demonstrating the separation of cells by batch in the scMEDAL-RE latent space.
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Batch labels
donor_1823
donor_4341
donor_4849
donor_4899
donor_5144
donor_5163
donor_5242
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Fig. S4: scMEDAL-RE separates cells from different donors in the ASD dataset. UMAP visualization of SSMEDAL-
RE latent components, representing 62,735 cells from 31 donors. Colors indicate different donors, demonstrating the
separation of cells by donors in the sScMEDAL-RE latent space.
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Fig. S5: scMEDAL-RE separates cells from cellines, AML and healthy donors in the AML dataset. Latent spaces
from 23,050 cells from the AML dataset latent spaces obtained with scMEDAL-RE. UMAP applied to the scMEDAL-RE
latent space.

3.3.3. Training and validation curves

Figs. S6-S8 present the training and validation curves, for the AE, scMEDAL-FE, and scMEDAL-RE
models in all three datasets. For sSScMEDAL-FE, the total loss is calculated as the reconstruction loss
minus the adversarial loss, with each component scaled by its respective weight. In the scMEDAL-RE
curves, the left axis displays the reconstruction loss and total loss, while the right axis shows: the latent
cluster loss classifying a cell’'s batch and the Kullback-Leibler divergence (KLD) loss. Also shown is the
total loss, which is computed as the sum of the reconstruction loss, latent cluster loss, and KLD loss,
each adjusted by their respective weights. We observe that through all models, no one term dominates.
Instead the individual terms have values in similar ranges and can contribute effectively to the overall
loss, thereby guiding the model fitting.

10
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reconstruction loss - adversarial loss), and ¢ SCMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster

loss)
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Fig. S8: Training and validation curves for the AML dataset. Individual loss terms (see legend) maintain a similar
scale throughout training. Training and validation curves adjusted by weights for a AE, b scMEDAL-FE (total loss =
reconstruction loss - adversarial loss), and ¢ ScMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster
loss)

3.4. Supplementary results for sScMEDAL-FEC and AEC models

3.4.1. CHand 1/DB scores

In Tables S10-S12 scores that complement the primary metric, ASW, are shown, including the
Calinski-Harabasz (CH) clustering index and the reciprocal of the Davies-Bouldin (DB) clustering index
(1/DB). These results further corroborate the ASW results in Section 2.7 of the main paper. The
scMEDAL-FEC subnetwork substantially suppresses batch specific information, demonstrating lower CH
scores (less batch contamination) than the AEC in all three datasets (rows 1,2 of the 2™ column of Tables
S10-S12). In terms of preserving cell type information, both models perform admirably and similarly,
including in their CH scores for the ASD and AML datasets (4™ column of Tables S11-S12) and the 1/DB
score for the Healthy Heart dataset (3™ column of Table S10). As described in the main paper (Section
2.7) the UMAP latent space visualizations provide a more nuanced view including additional comparative
performance benefits of sScMEDAL-FEC over the AEC model across datasets.
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Table S10. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the Healthy Heart dataset, using AEC and scMEDAL-FEC models.

batch cell type
1/DB CH 1/DB CH
mean 95% ClI mean 95% ClI mean 95% ClI mean 95% ClI
AEC 0.02 0.01 0.03 48.29 15.26 81.32 0.23 0.06 0.41 5563.96 2833.93 8293.99
SCMEDAL-FEC | 0.02 0.01 0.02 41.39 27.01 55.77 0.21 0.04 0.38 3750.68 2318.16 5183.19

Table S11. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the ASD dataset, using AEC and scMEDAL-FEC models.

batch cell type
1/DB CH 1/DB CH
mean 95% ClI mean 95% CI mean 95% ClI mean 95% CI
AEC 0.02 0.01 0.03 | 20.06 14.48 25.64 0.73 0.51 0.95 | 10631.01 5846.41 15415.61
SCMEDAL-FEC 0.02 0.01 002 | 1272 7.40 18.03 0.34 0.18 0.50 9911.04 8726.06 11096.02

Table S12. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the AML dataset, using AEC and scMEDAL-FEC models.

batch cell type
1/DB CH 1/DB CH
mean 95% ClI mean 95% ClI mean 95% ClI mean 95% ClI
AEC 0.08 0.04 0.12 142.75 8195 203.54 | 0.17 0.09 0.25 2159.15 1216.68 3101.61
SCMEDAL-FEC | 0.06 0.04 0.07 87.24 70.03 104.45 | 0.18 0.10 0.25 2065.85 1301.67 2830.04

3.4.2.

Average training and validation curves for AEC and scMEDAL-

FE across 5 folds in the Healthy Heart, ASD, and AML datasets

Figs. S9-S11 present the training and validation curves, for the AEC and scMEDAL-FEC models in
the three datasets. For the AEC model, the total loss is calculated as the sum of the reconstruction loss
and the cell type classification loss. For scMEDAL-FEC, the total loss is calculated as the sum of the
reconstruction loss and the cell type classification loss minus the adversarial loss. We observe that in all
cases the individual terms have similar value ranges and contribute effectively to the total loss.
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Fig. S9: The training and validation curves for the Healthy Heart dataset demonstrate that the weight-adjusted
individual loss terms effectively balance their contributions to the total loss. Training and validation curves for the
Healthy Heart dataset for a AEC and b scMEDAL-FEC models.

15



300
301
302
303
304
305
306
307
308
309

a AEC

Reconstruction Loss Classification Loss
0.6 4 —— reconstruction_output_loss classification_output_loss
-== val_reconstruction_output_loss 025 1 val_classification_output_loss
—— Total Train Loss i
===~ Total Val Loss
0.54
0.20 4
v 0.4 @
= 4 0.15 4
0.3
0.10
029 Niomceccccccccmcccacem=™" % .
T T T T T T 0‘05 1 T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
epochs epochs

b scMEDAL-FEC

Losses Adjusted by Weights

3.0 4 -2.50
— recon_loss
2.5 -2.25 —— adv_loss
. — total_loss
g 201 [2.00 -—- val_recon_loss
2 1 75 —=-=- val_adv_loss
< 159 ' --=- val_total_loss
[=]
& 101 - 1.50
= class_loss
=
S o054 -1.25 val_class_loss
0.0 - -1.00
o5 | F0.75
0 50 100 150 200 250 300 350
epochs

Fig. S10: The training and validation curves for the ASD dataset demonstrate that the weight-adjusted individual
loss terms effectively balance their contributions to the total loss. Training and validation curves for the ASD
dataset for a AEC and b scMEDAL-FEC models.
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Fig. S11: The training and validation curves for the AML dataset demonstrate that the weight-adjusted individual
loss terms effectively balance their contributions to the total loss. Training and validation curves for the AML
dataset for a AEC and b scMEDAL-FEC models.

3.5. Significant genes from the genomaps for AML versus
controls and ASD versus controls

Table S13 presents the statistics for significant genes related to ASD, identified using the sScMEDAL-
RE projection of the same 300 L2/3 cells across 15 ASD donors and then across 16 control (typically
developing) donors. Statistical analysis of the gene expression between these groups was conducted
using linear mixed-effects models implemented in Statsmodels!*. A total of 230 genes were identified as
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317  significantly associated with ASD (pg;,pe < 0.05). Statistics for these ASD-relevant genes are illustrated
318  below. The full list of all ASD mapped genomap genes is available in Supplementary Data 1.
319

Table S13. Statistics for relevant genes associated with ASD. These genes are identified as significant through linear mixed-
effects modeling comparing sScMEDAL-RE projections of the same 300 L2/3 cells across 15 ASD and 16 control donors.
genes pixel_i | pixel_j | intercept intp(-:‘_ 'Ycﬂpt 95% CI (intercept) (cscl?]frgl) glglsé 95% Cl (slope)
CNR1 1 1 0.3946 0.0048 0.1206 0.6686 -0.7758 0.0001 -1.1572 -0.3944
MYO1E 5 15 -0.2923 0.0752 -0.6144  0.0297 0.6037 0.0083 0.1554 1.052
CYP27A1 4 27 -0.2552 0.0801 -0.541 0.0306 0.5158 0.0111 0.118 0.9136
KCNJ10 48 15 -0.3308 0.1317 -0.761 0.0993 0.6454 0.0346 0.0466 1.2441
THBS1 17 34 -0.1595 0.0946 -0.3465 0.0275 0.2753 0.0382 0.015 0.5356
NOTCH3 5 34 -0.259 0.147 -0.6091  0.0911 0.5295 0.0332 0.0422 1.0167
ILIR1 40 15 -0.1641 0.1696 -0.3984  0.0701 0.3533 0.0337 0.0272 0.6793
COL4A1 17 3 -0.3247 0.0165 -0.5901 0.0;’93 0.6232 0.0009 0.2538 0.9926
TGM2 10 11 -0.2724 0.1728 -0.664 0.1192 0.5951 0.0324 0.05 1.1402
FGF2 49 16 -0.3256 0.149 -0.7678  0.1167 0.6917 0.0277 0.0761 1.3072
339
340 Table S14 presents the statistics for significant genes related to AML. These are identified by a Mann-

341  Whitney U test performed on the same set of 300 monocytes projected with sScMEDAL-RE onto 12 AML
342  donors and then onto 5 healthy control subjects. Averages from the AML subjects and the control
343  (healthy) subjects were computed for each set of 300 monocytes, and stats module from SciPy**was
344  used to conduct the Mann-Whitney U test to identify gene expression differences between these groups.
345 In total, 358 genes were found to have significantly different expression levels (p < 0.05). The full list of
346  all AML mapped genomap genes is available in Supplementary Data 1.

347

348 Table S14. Statistics for relevant genes associated with AML,
identified as significant through a Mann-Whitney U test on the

349 same 300 monocyte Genomap projections from 12 AML

350 sCMEDAL-RE analyses and 5 control scMEDAL-RE analyses.

351 genes pixel_i | pixel_j p-val

352 SH2B3 24 36 0.0023

353 HERPUD1 3 19 0.0194

354 PRDM1 2 23 0.0365

355 '

356 MKI67 11 27 0.0365

357 GATA2 45 46 0.0365

358 ABCBL1 30 43 | 0.0485

359 SAMDIL 30 40 0.0194

360

361 SERPINA1 4 44 0.0013

362 SLC11A1 20 28 0.0094

363 VNN2 17 27 | 0.0365
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