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1.  Supplementary materials37

Table S1 shows the details of the datasets used to evaluate scMEDAL subnetworks as well as the38
baseline PCA and the AE and AEC models. Data processing steps are described in supplemental39
section 2.240

41

2. Supplementary methods42

2.1. Supplementary figures of the scMEDAL architecture43

Random effects Bayesian layer block44
Fig. S1 depicts the architecture of the Random Effects Dense (REDEN) Bayesian layer block, which45

is used to construct the Bayesian layers of the scMEDAL-RE subnetwork.46
47
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49
50
51
52
53
54
55
56
57
58
59
60
61
62

Fig. S1: Random effects dense (REDEN) block used in the random effects autoencoder (scMEDAL-RE). A
dense layer with 𝑛𝑙  neurons transforms an input representation from the preceding layer, 𝑥𝑙−1, into an
intermediate output tensor, 𝑑𝑙. A batch-specific scale γ(z) and bias b(z) are then applied to each of the f
feature maps. These batch-specific slopes and biases are regularized to follow normal distributions, with
mean zero, and learned variances 𝜎𝛾 and 𝜎𝑏, respectively.

Table S1. Datasets used to evaluate scMEDAL models.
Healthy Heart1,2   ASD3 AML4

Description Heart cells from multiple tissues ASD and TD (controls) AML and healthy subjects

Data type Single cell Single nucleus Single cell

Total cells (pre-filtering) 486,134 104, 559 41,090

Total cells (post-filtering) 486,134 104, 559 38,417

Total genes 33,538 36,501 27,899

Highly variable genes 3,000 2,916 2,916

Number of cell types 12 + Not Assigned cell type 17 6 malignant + 15 healthy

Batch effect type Technical batch (z =147) Biological donor (z = 31) Technical batch (z=19)
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2.2. Data preprocessing63
     We used standard preprocessing steps from Yu et al. , 20235 which included: 1) filtering out cells64
exhibiting expression in fewer than ten genes and removal of genes detected in fewer than three cells,65
2) normalizing total Unique Molecular Identifiers (UMI) counts per cell to 10,000, 3) log-transforming the66
data to stabilize variance log (𝑋 + 1), and 4) selecting the top highly variable genes (HVGs).67
     Since the ASD and Healthy Heart datasets had previously undergone quality control, no additional68
cells were removed during the filtering step. For the AML dataset, additional quality control measures69
were implemented. Cells with undefined or missing cell type annotations were excluded. Furthermore,70
samples identified by Dai et al., (2021) as having ambiguous annotations—specifically AML314, AML371,71
AML722B, and AML9976—were removed from the original 16 AML donors to ensure the dataset's72
integrity, resulting in 12 AML donors available for analysis. Including 5 healthy donors and 2 cell lines,73
the dataset comprised a total of 19 batches. The ASD dataset had previously undergone a log274
transformation as part of the original preprocessing by van Galen et al. (2019). To maintain consistency75
across all datasets, this transformation was reversed by applying an exponential function (base 2) to the76
data after adding 1 to each value, thereby returning the data to its original scale. Following this reversal,77
the standard preprocessing pipeline was applied.78
     The datasets were then partitioned through 5 fold cross-validation, stratified by batch and cell type in79
all three datasets.  For each split, three folds were used for training, one for validation, and one for testing.80
The data were loaded for each subset and scaled using min-max scaling before model fitting. To reduce81
compute time for the ASW calculations, we used a random sample of 10,000 cells when datasets82
exceeded this size in training, validation, or testing subsets.83

2.3. Hyperparameters used to build the AE, AEC, scMEDAL-FE,84
scMEDAL-FEC, and scMEDAL-RE models85

     Section 4.5 of the main paper describes the hyperparameter optimization process for the overall86
objective function in equation 9. In the following Tables S2-S4, we describe the values of the87
hyperparameter that are found to optimize the AE, AEC, scMEDAL-FE, scMEDAL-FEC, and scMEDAL-88
RE models in three datasets: Healthy Heart, the Autism Spectrum Disorder (ASD), and Acute Myeloid89
Leukemia (AML).90

91
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Table S2. Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the Healthy
Heart dataset.

Hyperparameter AE AEC scMEDAL-
FE scMEDAL-FEC scMEDAL-RE

𝜆𝑟𝑒𝑐𝑜𝑛,𝐹 1 81 5400 9450 -

𝜆𝑟𝑒𝑐𝑜𝑛,𝑅 - - - - 110

𝜆𝑦 - 0.1 - 1 -

𝜆𝐴 - - 1 1 -

𝜆𝐿 - 0.1

𝜆𝐾 - 1.00E-05

Table S3. Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the ASD dataset.

Hyperparameter AE AEC scMEDAL-FE
scMEDAL-

FEC scMEDAL-RE
𝜆𝑟𝑒𝑐𝑜𝑛,𝐹 1 1 1000 1000 -
𝜆𝑟𝑒𝑐𝑜𝑛,𝑅 - - - - 110
𝜆𝑦 - 0.1 - 1 -
𝜆𝐴 - 1 1 -
𝜆𝐿 - 0.1
𝜆𝐾 - 1.00E-05
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2.4. UMAP visualization parameters121
Table S5 describes the minimum distance and nearest neighbor’s choices for UMAP visualizations122

presented in the main paper in sections 2.2, 2.3, 2.4, and 2.7.123
124

2.5. Hardware and software used for model implementation and125
training126

     All deep learning models were developed and trained on Nvidia Tesla V100 GPUs with 32 GB of127
memory and Tesla P4 GPUs with 8 GB of memory. The software stack for model training included Python128
3.8.5, TensorFlow 2.37, TensorFlow Probability 0.11.17-9, scikit-learn 0.23.2, and Scanpy 1.6.0.129
Performance measures, including ASW, DB, CH, accuracy, balanced accuracy, and chance accuracy,130
were computed using the Scikit-learn library10. The PCA model was also implemented through the Scikit-131
learn library. ScRNA-seq preprocessing and UMAP computations11 were performed using Python 3.8.18132
with the Scanpy 1.9.8 library12. Genomaps were generated using genomap 1.3.6 and the Mann-Whitney133
U test was implemented using the using the stats module from SciPy 1.10.113 and the linear mixed-effects134
models were implemented in the Statsmodels 0.10.0 library14. For more details on the software used for135
model training, plot creation, and generation of visualizations, please refer to the code repository136
described in the Code and data availability section 5.137

2.6. Clustering metric definitions138
     We use the following metrics to quantify the clustering (separability) of the cells: the Average139
Silhouette Width (ASW)15, Calinski-Harabasz (CH) index16, and Davies-Bouldin (DB) index17. The140
Silhouette Width quantifies how well each cell fits within its assigned cluster compared to the other141
clusters. It is computed using two distances: the within-cluster distance (𝑎𝑖) and the between-cluster142
distance (𝑏𝑖). The within-cluster distance, 𝑎𝑖, represents the average distance between a cell 𝑖 and all143
other cells in its cluster. This distance is defined as:144

Table S4. Hyperparameters used for training PCA, AE and scMEDAL subnetworks AML dataset.
Hyperparameter AE AEC scMEDAL-FE scMEDAL-

FEC scMEDAL-RE

𝜆𝑟𝑒𝑐𝑜𝑛,𝐹 1 100 4000 1500 -

𝜆𝑟𝑒𝑐𝑜𝑛,𝑅 - - - - 110

𝜆𝑦 - 0.1 - 1 -

𝜆𝐴 - - 1 1 -

𝜆𝐿 - 0.1

𝜆𝐾 - 1.00E-05

Table S5. UMAP Visualization parameters.
Dataset UMAP parameters AE AEC scMEDAL-FE scMEDAL-FE scMEDAL-RE

Healthy Heart Min distance 0.5 0
Nearest Neighbors 15 1000

ASD Min distance 0.5
Nearest Neighbors 15

AML Min distance 0.5
Nearest Neighbors 15
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𝑎𝑖 =
1

|𝐶𝑖| −  1
෍ 𝑑(𝑖, 𝑗)

{𝑗 ∈ 𝐶𝑖,𝑗 ≠ 𝑖}

145

146
where 𝐶𝑖 is the set of cells in the cluster of cell 𝑖, |𝐶𝑖| is the total number of cells in this cluster, and 𝑑(𝑖, 𝑗)147
is the distance between cell 𝑖 and cell 𝑗 within the cluster. In contrast, the between-cluster distance, 𝑏𝑖, is148
the minimum of the average distance between cell 𝑖 and cells from other clusters. It is defined as:149

𝑏𝑖  = 𝑚𝑖𝑛{𝑘 ≠ 𝑖}
1

|𝐶𝑘| ෍ 𝑑(𝑖, 𝑗)
{𝑗 ∈ 𝐶𝑘}

150

151
where 𝐶𝑘 is the set of cells assigned to cluster 𝑘 which is different from the cluster of cell 𝑖, while |𝐶𝑘| is152
the total number of cells in cluster 𝑘. The silhouette coefficient for each cell 𝑖 is calculated as:153

𝑠𝑖 =
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖,𝑎𝑖)
154

where a higher 𝑠𝑖 value (closer to 1.0) indicates that the cell is well-clustered, being more similar to cells155
within its own cluster than to those in any other cluster. The ASW is defined as the average of 𝑠𝑖 over all156
cells and provides an overall measure of clustering quality.157
     The Davies–Bouldin (DB) index quantifies the extent to which clusters overlap. For each cluster, we158
compare its average within-cluster dispersion to the distance between its centroid and the centroid of the159
most similar (closest) cluster. Consequently, a lower DB index value indicates less overlap and better160
separation between clusters. The DB index is computed as:161

𝐷𝐵 = ൬
1
𝐾
൰ ෍ 𝐷𝑘

𝐾

{𝑘=1}

162

163
where 𝐾  is the number of clusters, and 𝐷𝑘 for cluster 𝑘 is the ratio, 𝑅𝑘𝑙 for the most similar cluster 𝑙 to164
𝑘, (𝑙 ≠ 𝑘). 𝐷𝑘  is expressed as:165

𝐷𝑘  = 𝑚𝑎𝑥{𝑙 ≠ 𝑘}𝑅𝑘𝑙166

where the ratio 𝑅𝑘𝑙 measures how similar are the clusters 𝑘 and 𝑙. 𝑅𝑘𝑙 is computed as:167

𝑅𝑘𝑙  =
( 𝑞𝑘  + 𝑞𝑙 )

𝑀𝑘𝑙
168

where 𝑞𝑘 is the is the average distance from each cell in cluster 𝑘 to the centroid of cluster 𝑘, 𝑞𝑙 is the169
corresponding average distance for cluster 𝑙, and 𝑀𝑘𝑙 is the distance between the centroids of clusters 𝑘170
and 𝑙. A larger 𝑀𝑘𝑙 indicates better separation between the two clusters.171
     The Calinski-Harabasz (CH) index measures the ratio of between-cluster variance to within-cluster172
variance, with higher values indicating more distinct and cohesive clusters. It is calculated as173

𝐶𝐻 =
∑ 𝑛𝑘  ∗  || 𝜇𝑘 − 𝜇 ||2𝐾

{𝑘=1}

∑ ∑ || 𝑝𝑖 − 𝜇𝑘  ||2𝑛𝑘
{𝑖=1}

𝐾
{𝑘=1}

∗ ൤
𝑁 − 𝐾
𝐾 − 1൨

174
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where 𝑛𝑘 is the number of points in the 𝑘𝑡ℎ cluster, 𝜇𝑘 is the centroid of the 𝑘𝑡ℎ cluster, 𝜇 is the centroid175
of the entire data (all the cells), 𝑝𝑖  is the position (coordinates) of the cell 𝑖, 𝑁 is the total number of cells176
and 𝐾 is the number of clusters.177
     To align the interpretation of the DB index with the CH index and ASW, we used the reciprocal (1/DB),178
ensuring that higher scores consistently indicate better clustering quality. When measuring the clustering179
by cell type, higher scores signify improved separability in the latent space, enhancing the cell type180
signal—an objective of batch correction. Conversely, when measuring the clustering by batch label, lower181
scores indicate more effective batch correction, as it indicates that the batches become less182
distinguishable, which is another objective of batch correction. Additionally, higher batch scores in the183
batch-specific latent space of the random effects subnetwork indicates effective modeling of the batch184
effects and capture of the between-batch variance in gene expression data.185

3.  Supplementary results186

3.1. Confounding within the AML dataset187
     In Fig. S2 the representation of donors across cell types in AML is shown graphically. We observe188
that not all donor samples contain cells from every cell type, making this dataset a particularly189
challenging and interesting one for batch correction due to potential confounding between donor190
identity and cell type.191

192

Fig. S2: AML dataset demonstrates intrinsec cell type-donor confounding. This stacked bar plot shows the number
of donors for each cell type (y-axis), grouped by patient group, with cell types displayed along the x-axis. The colors
indicate the donor patient group.
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3.2. Hyperparameter Optimization (HPO) for AEC and scMEDAL-193
FEC models194

Hyperparameter optimization (HPO) was conducted per dataset to tune the parameters using the195
held-out validation data (not used for model training). This tuning adjusts the weights of the196
reconstruction, adversarial, classification (cell type for scMEDAL-FE and batch for scMEDAL-RE), and197
Kullback–Leibler divergence loss function terms so that they are on a similar scale, allowing all terms to198
guide the model fitting, and optimizing performance on the validation data. The winning parameters are199
shown in Tables S2-S4. However, when cell type information is available from an external source (as200
described in Section 2.7 of the main paper) this can be used to further guide hyperparameter tuning. In201
this scenario, the ASW for cell type can be used to further refine the loss function weights. Both batch202
and cell-type ASW on the AEC and scMEDAL-FEC models can be evaluated during the training for 500203
epochs with early stopping, prioritizing the cell-type ASW. Table S6 illustrates how the ASW scores for204
both batch and cell type separability can vary somewhat for different values of the weights assigned to205
the reconstruction loss (measured with mean squared error), adversarial loss, and classification loss of206
the cell type labels 𝑦, while the selected (winning) parameters are in boldface.207

208

209

3.3. Supplementary results for scMEDAL-FE and scMEDAL-RE210
models211

3.3.1. CH and 1/DB scores212
     In Tables S7-S9, scores are shown from the Calinski-Harabasz (CH) clustering index and the213
reciprocal of the Davies-Bouldin (DB) clustering index (1/DB), as these complement the primary metric,214
ASW, used in the main paper. These scores confirm the ASW results. In particular, the scMEDAL-RE215
subnetwork consistently captures batch specific information as designed, demonstrating significantly216
more batch information (higher scores) than any of the other models, as measured with both the CH and217
1/DB indices, across all three datasets (4th row, first 2 columns of Tables S7-S9). Meanwhile, the218
scMEDAL-FE subnetwork substantially suppresses batch specific information, demonstrating much219
lower CH scores (less batch contamination) than the baseline model (PCA) in all three datasets (3rd row,220
2nd column of Tables S7-S9). In terms of preserving cell type information, across all datasets, the221
scMEDAL-FE subnetwork outperforms the baseline model (PCA) and scMEDAL-RE (by design) with222
higher scores in the 1/DB metric (rows 1,3,4 of 3rd column) and performs comparably well to the AE model223
in the CH metric (rows 2,3 of 4th column of Tables S7-S9).224

225

Table S6. Average Silhouette Width (ASW) scores for batch and cell type separability of the AML dataset (mean across 5 folds).
Hyperparameter Optimization (HPO) selection of reconstruction loss 𝜆𝑟𝑒𝑐𝑜𝑛  and classification loss 𝜆𝑦 weights using validation data.
Adversarial loss weight 𝜆𝐴 = 1 for all models.

𝜆𝑟𝑒𝑐𝑜𝑛 𝜆𝑦 ASW (batch) ASW (cell type)

mean 95% CI mean 95% CI

AEC

1

0.1

-0.43 -0.52 -0.34 -0.15 -0.23 -0.06

10 -0.37 -0.44 -0.31 -0.11 -0.20 -0.02

100 -0.28 -0.34 -0.23 0.03 -0.04 0.10

scMEDAL-FEC

500 1 -0.33 -0.35 -0.31 -0.10 -0.13 -0.06

1500 1 -0.30 -0.37 -0.24 -0.05 -0.08 -0.02

1500 2 -0.33 -0.40 -0.26 -0.07 -0.11 -0.04

2000 2 -0.31 -0.33 -0.28 -0.07 -0.13 -0.01
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226

227

228

3.3.2. Random Effects subnetwork (scMEDAL-RE) latent spaces229
230

Figs. S3–S5 show the scMEDAL-RE latent spaces through UMAP visualizations. We observe that the231
batches (colored) are visibly apparent across all datasets. This further confirms the high degree of232
batch separability attainable by the scMEDAL-RE subnetwork, which is as designed, because its233
purpose is to model the batch effects.234

235

Table S7. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the Healthy Heart dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

PCA (Baseline) 0.02 0.01 0.03 148.65 145.33 151.98 0.13 0.10 0.15 1502.74 1456.79 1548.69

AE 0.02 0.02 0.02 70.49 51.09 89.90 0.22 0.10 0.33 1712.76 1405.70 2019.83

scMEDAL-FE 0.02 0.01 0.02 61.38 38.74 84.03 0.19 0.13 0.24 1984.01 1078.08 2889.95

scMEDAL-RE 0.56 0.17 0.94 2555.27 544.02 4566.51 0.06 0.04 0.08 224.76 66.19 383.34

Table S8. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the ASD dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

PCA (Baseline) 0.03 0.02 0.03 32.67 32.06 33.28 0.18 0.15 0.21 9089.94 8906.86 9273.02

AE 0.02 0.02 0.03 23.72 20.74 26.69 0.78 0.71 0.85 9863.14 8673.06 11053.22

scMEDAL-FE 0.02 0.02 0.03 19.43 14.12 24.74 0.32 0.15 0.49 9631.75 8052.25 11211.25

scMEDAL-RE 0.16 -0.09 0.40 2423.99 -3510.80 8358.77 0.03 0.01 0.04 749.41 -261.64 1760.45

Table S9. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of
the AML dataset, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

PCA
(Baseline) 0.06 0.05 0.07 156.52 154.20 158.84 0.14 0.12 0.16 2560.96 2482.14 2639.79

AE 0.07 0.07 0.08 189.78 169.23 210.32 0.28 0.24 0.32 1956.48 1779.39 2133.58

scMEDAL-FE 0.07 0.06 0.09 80.63 69.88 91.37 0.19 0.09 0.29 1493.43 1353.85 1633.01

scMEDAL-RE 0.37 0.07 0.67 63228.21 9245.17 117211.25 0.07 0.05 0.09 114.73 69.53 159.94



9

236
237

238
239
240

Fig. S4: scMEDAL-RE separates cells from different donors in the ASD dataset. UMAP visualization of scMEDAL-
RE latent components, representing 62,735 cells from 31 donors. Colors indicate different donors, demonstrating the
separation of cells by donors in the scMEDAL-RE latent space.

Fig. S3: scMEDAL-RE separates cells from different batches in the Healthy Heart dataset. UMAP visualization of
scMEDAL-RE latent components, representing 44,987 cells from 20 selected batches (out of 147 total). Colors indicate
different batches, demonstrating the separation of cells by batch in the scMEDAL-RE latent space.
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241
242

3.3.3. Training and validation curves243
     Figs. S6-S8 present the training and validation curves, for the AE, scMEDAL-FE, and scMEDAL-RE244
models in all three datasets. For scMEDAL-FE, the total loss is calculated as the reconstruction loss245
minus the adversarial loss, with each component scaled by its respective weight. In the scMEDAL-RE246
curves, the left axis displays the reconstruction loss and total loss, while the right axis shows: the latent247
cluster loss classifying a cell’s batch and the Kullback-Leibler divergence (KLD) loss. Also shown is the248
total loss, which is computed as the sum of the reconstruction loss, latent cluster loss, and KLD loss,249
each adjusted by their respective weights. We observe that through all models, no one term dominates.250
Instead the individual terms have values in similar ranges and can contribute effectively to the overall251
loss, thereby guiding the model fitting.252

Fig. S5: scMEDAL-RE separates cells from cellines, AML and healthy donors in the AML dataset. Latent spaces
from 23,050 cells from the AML dataset latent spaces obtained with scMEDAL-RE. UMAP applied to the scMEDAL-RE
latent space.
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253
254
255
256
257
258
259
260
261
262
263
264

Fig. S6: Training and validation curves for the Healthy Heart dataset. Individual loss terms (see legend) maintain a
similar scale throughout training. Training and validation curves adjusted by weights for a AE, b scMEDAL-FE (total loss
= reconstruction loss - adversarial loss), and c scMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster
loss).
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265
266
267
268
269
270
271
272
273

Fig. S7: Training and validation curves for the ASD dataset. Individual loss terms (see legend) maintain a similar
scale throughout training. Training and validation curves adjusted by weights for a AE, b scMEDAL-FE (total loss =
reconstruction loss - adversarial loss), and c scMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster
loss)



13

274

3.4. Supplementary results for scMEDAL-FEC and AEC models275

3.4.1. CH and 1/DB scores276
     In Tables S10-S12 scores that complement the primary metric, ASW, are shown, including the277
Calinski-Harabasz (CH) clustering index and the reciprocal of the Davies-Bouldin (DB) clustering index278
(1/DB). These results further corroborate the ASW results in Section 2.7 of the main paper. The279
scMEDAL-FEC subnetwork substantially suppresses batch specific information, demonstrating lower CH280
scores (less batch contamination) than the AEC in all three datasets (rows 1,2 of the 2nd column of Tables281
S10-S12). In terms of preserving cell type information, both models perform admirably and similarly,282
including in their CH scores for the ASD and AML datasets (4th column of Tables S11-S12) and the 1/DB283
score for the Healthy Heart dataset (3rd column of Table S10). As described in the main paper (Section284
2.7) the UMAP latent space visualizations provide a more nuanced view including additional comparative285
performance benefits of scMEDAL-FEC over the AEC model across datasets.286

Fig. S8: Training and validation curves for the AML dataset. Individual loss terms (see legend) maintain a similar
scale throughout training. Training and validation curves adjusted by weights for a AE, b scMEDAL-FE (total loss =
reconstruction loss - adversarial loss), and c scMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster
loss)
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287

288

3.4.2. Average training and validation curves for AEC and scMEDAL-289
FE across 5 folds in the Healthy Heart, ASD, and AML datasets290

     Figs. S9-S11 present the training and validation curves, for the AEC and scMEDAL-FEC models in291
the three datasets. For the AEC model, the total loss is calculated as the sum of the reconstruction loss292
and the cell type classification loss. For scMEDAL-FEC, the total loss is calculated as the sum of the293
reconstruction loss and the cell type classification loss minus the adversarial loss. We observe that in all294
cases the individual terms have similar value ranges and contribute effectively to the total loss.295

Table S12. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the AML dataset, using AEC and scMEDAL-FEC models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

AEC 0.08 0.04 0.12 142.75 81.95 203.54 0.17 0.09 0.25 2159.15 1216.68 3101.61

scMEDAL-FEC 0.06 0.04 0.07 87.24 70.03 104.45 0.18 0.10 0.25 2065.85 1301.67 2830.04

Table S10. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the Healthy Heart dataset, using AEC and scMEDAL-FEC models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

AEC 0.02 0.01 0.03 48.29 15.26 81.32 0.23 0.06 0.41 5563.96 2833.93 8293.99

scMEDAL-FEC 0.02 0.01 0.02 41.39 27.01 55.77 0.21 0.04 0.38 3750.68 2318.16 5183.19

Table S11. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces
of the ASD dataset, using AEC and scMEDAL-FEC models.

batch cell type

1/DB CH 1/DB CH

mean 95% CI mean 95% CI mean 95% CI mean 95% CI

AEC 0.02 0.01 0.03 20.06 14.48 25.64 0.73 0.51 0.95 10631.01 5846.41 15415.61

scMEDAL-FEC 0.02 0.01 0.02 12.72 7.40 18.03 0.34 0.18 0.50 9911.04 8726.06 11096.02
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Fig. S9: The training and validation curves for the Healthy Heart dataset demonstrate that the weight-adjusted
individual loss terms effectively balance their contributions to the total loss. Training and validation curves for the
Healthy Heart dataset for a AEC and b scMEDAL-FEC models.
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Fig. S10: The training and validation curves for the ASD dataset demonstrate that the weight-adjusted individual
loss terms effectively balance their contributions to the total loss. Training and validation curves for the ASD
dataset for a AEC and b scMEDAL-FEC models.
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310

3.5. Significant genes from the genomaps for AML versus311
controls and ASD versus controls312

Table S13 presents the statistics for significant genes related to ASD, identified using the scMEDAL-313
RE projection of the same 300 L2/3 cells across 15 ASD donors and then across 16 control (typically314
developing) donors. Statistical analysis of the gene expression between these groups was conducted315
using linear mixed-effects models implemented in Statsmodels14. A total of 230 genes were identified as316

Fig. S11: The training and validation curves for the AML dataset demonstrate that the weight-adjusted individual
loss terms effectively balance their contributions to the total loss. Training and validation curves for the AML
dataset for a AEC and b scMEDAL-FEC models.
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significantly associated with ASD (𝑝𝑠𝑙𝑜𝑝𝑒  <  0.05). Statistics for these ASD-relevant genes are illustrated317
below. The full list of all ASD mapped genomap genes is available in Supplementary Data 1.318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
     Table S14 presents the statistics for significant genes related to AML. These are identified by a Mann-340
Whitney U test performed on the same set of 300 monocytes projected with scMEDAL-RE onto 12 AML341
donors and then onto 5 healthy control subjects. Averages from the AML subjects and the control342
(healthy) subjects were computed for each set of 300 monocytes, and stats module from SciPy13was343
used to conduct the Mann-Whitney U test to identify gene expression differences between these groups.344
In total, 358 genes were found to have significantly different expression levels (p < 0.05). The full list of345
all AML mapped genomap genes is available in Supplementary Data 1.346

347
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349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

Table S14. Statistics for relevant genes associated with AML,
identified as significant through a Mann-Whitney U test on the
same 300 monocyte Genomap projections from 12 AML
scMEDAL-RE analyses and 5 control scMEDAL-RE analyses.

genes pixel_i pixel_j p-val

SH2B3 24 36 0.0023

HERPUD1 3 19 0.0194

PRDM1 2 23 0.0365

MKI67 11 27 0.0365

GATA2 45 46 0.0365

ABCB1 30 43 0.0485

SAMD9L 30 40 0.0194

SERPINA1 4 44 0.0013

SLC11A1 20 28 0.0094

VNN2 17 27 0.0365

Table S13. Statistics for relevant genes associated with ASD. These genes are identified as significant through linear mixed-
effects modeling comparing scMEDAL-RE projections of the same 300 L2/3 cells across 15 ASD and 16 control donors.

genes pixel_i pixel_j intercept p-val
intercept 95% CI (intercept) slope

(control)
p-val
slope

95% CI (slope)

CNR1 1 1 0.3946 0.0048 0.1206 0.6686 -0.7758 0.0001 -1.1572 -0.3944

MYO1E 5 15 -0.2923 0.0752 -0.6144 0.0297 0.6037 0.0083 0.1554 1.052

CYP27A1 4 27 -0.2552 0.0801 -0.541 0.0306 0.5158 0.0111 0.118 0.9136

KCNJ10 48 15 -0.3308 0.1317 -0.761 0.0993 0.6454 0.0346 0.0466 1.2441

THBS1 17 34 -0.1595 0.0946 -0.3465 0.0275 0.2753 0.0382 0.015 0.5356

NOTCH3 5 34 -0.259 0.147 -0.6091 0.0911 0.5295 0.0332 0.0422 1.0167

IL1R1 40 15 -0.1641 0.1696 -0.3984 0.0701 0.3533 0.0337 0.0272 0.6793

COL4A1 17 3 -0.3247 0.0165 -0.5901 -
0.0593 0.6232 0.0009 0.2538 0.9926

TGM2 10 11 -0.2724 0.1728 -0.664 0.1192 0.5951 0.0324 0.05 1.1402

FGF2 49 16 -0.3256 0.149 -0.7678 0.1167 0.6917 0.0277 0.0761 1.3072
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