

scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder

Aixa X. Andrade¹, Son Nguyen¹ and Albert Montillo^{1*}

¹Lyda Hill Department of Bioinformatics

University of Texas Southwestern Medical Center

Dallas, TX 75390, USA

*Corresponding author: Albert Montillo¹, Ph.D.; Email: albert.montillo@utsouthwestern.edu

Supplementary information

Table of contents

11	1. Supplementary materials	2
12	2. Supplementary methods.....	2
13	2.1. <i>Supplementary figures of the scMEDAL architecture</i>	2
14	Random effects Bayesian layer block	2
15	2.2. <i>Data preprocessing</i>	3
16	2.3. <i>Hyperparameters used to build the AE, AEC, scMEDAL-FE, scMEDAL-FEC, and scMEDAL-RE models</i>	3
17	2.4. <i>UMAP visualization parameters</i>	4
18	2.5. <i>Hardware and software used for model implementation and training</i>	4
19	2.6. <i>Clustering metric definitions</i>	4
20	3. Supplementary results	6
21	3.1. <i>Confounding within the AML dataset</i>	6
22	3.2. <i>Hyperparameter Optimization (HPO) for AEC and scMEDAL-FEC models</i>	7
23	3.3. <i>Supplementary results for scMEDAL-FE and scMEDAL-RE models</i>	7
24	3.3.1. CH and 1/DB scores	7
25	3.3.2. Random Effects subnetwork (scMEDAL-RE) latent spaces	8
26	3.3.3. Training and validation curves.....	10
27	3.4. <i>Supplementary results for scMEDAL-FEC and AEC models</i>	13
28	3.4.1. CH and 1/DB scores	13
29	3.4.2. Average training and validation curves for AEC and scMEDAL-FE across 5 folds in the Healthy	
30	Heart, ASD, and AML datasets	14
31	3.5. <i>Significant genes from the genomaps for AML versus controls and ASD versus controls</i>	17
32	4. References	19

37 1. Supplementary materials

38 **Table S1** shows the details of the datasets used to evaluate scMEDAL subnetworks as well as the
 39 baseline PCA and the AE and AEC models. Data processing steps are described in supplemental
 40 section 2.2
 41

Table S1. Datasets used to evaluate scMEDAL models.

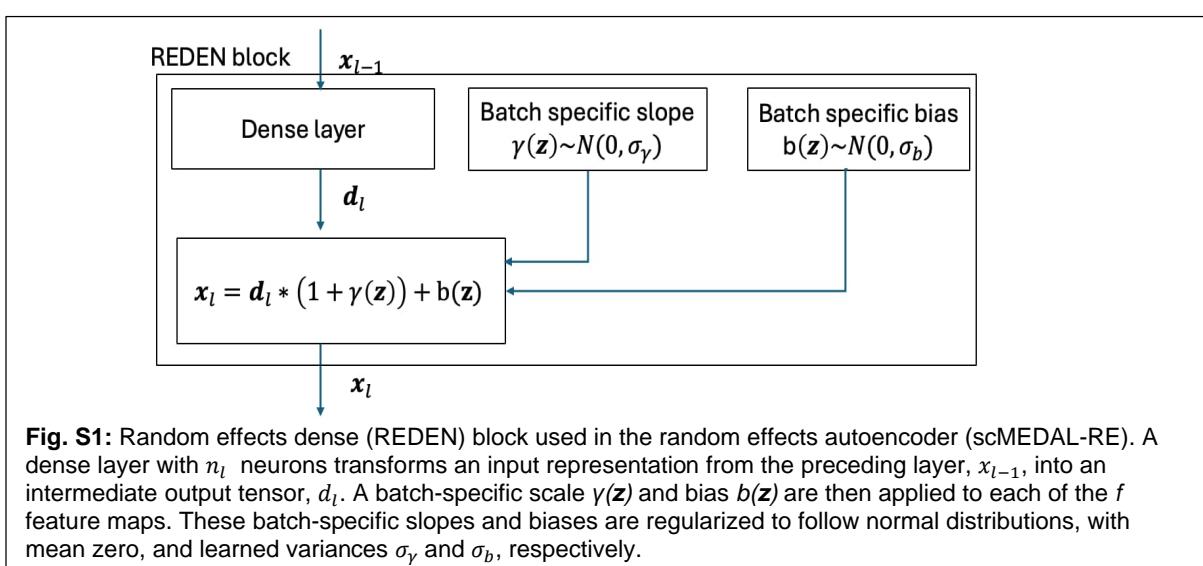
	<i>Healthy Heart</i> ^{1,2}	<i>ASD</i> ³	<i>AML</i> ⁴
Description	Heart cells from multiple tissues	ASD and TD (controls)	AML and healthy subjects
Data type	Single cell	Single nucleus	Single cell
Total cells (pre-filtering)	486,134	104, 559	41,090
Total cells (post-filtering)	486,134	104, 559	38,417
Total genes	33,538	36,501	27,899
Highly variable genes	3,000	2,916	2,916
Number of cell types	12 + Not Assigned cell type	17	6 malignant + 15 healthy
Batch effect type	Technical batch (z = 147)	Biological donor (z = 31)	Technical batch (z=19)

42 2. Supplementary methods

43 2.1. Supplementary figures of the scMEDAL architecture

44 Random effects *Bayesian* layer block

45 **Fig. S1** depicts the architecture of the Random Effects Dense (REDEN) Bayesian layer block, which
 46 is used to construct the Bayesian layers of the scMEDAL-RE subnetwork.
 47



63 2.2. Data preprocessing

64 We used standard preprocessing steps from Yu et al. , 2023⁵ which included: 1) filtering out cells
 65 exhibiting expression in fewer than ten genes and removal of genes detected in fewer than three cells,
 66 2) normalizing total Unique Molecular Identifiers (UMI) counts per cell to 10,000, 3) log-transforming the
 67 data to stabilize variance log ($X + 1$), and 4) selecting the top highly variable genes (HVGs).

68 Since the ASD and Healthy Heart datasets had previously undergone quality control, no additional
 69 cells were removed during the filtering step. For the AML dataset, additional quality control measures
 70 were implemented. Cells with undefined or missing cell type annotations were excluded. Furthermore,
 71 samples identified by Dai et al., (2021) as having ambiguous annotations—specifically AML314, AML371,
 72 AML722B, and AML997⁶—were removed from the original 16 AML donors to ensure the dataset's
 73 integrity, resulting in 12 AML donors available for analysis. Including 5 healthy donors and 2 cell lines,
 74 the dataset comprised a total of 19 batches. The ASD dataset had previously undergone a log2
 75 transformation as part of the original preprocessing by van Galen et al. (2019). To maintain consistency
 76 across all datasets, this transformation was reversed by applying an exponential function (base 2) to the
 77 data after adding 1 to each value, thereby returning the data to its original scale. Following this reversal,
 78 the standard preprocessing pipeline was applied.

79 The datasets were then partitioned through 5 fold cross-validation, stratified by batch and cell type in
 80 all three datasets. For each split, three folds were used for training, one for validation, and one for testing.
 81 The data were loaded for each subset and scaled using min-max scaling before model fitting. To reduce
 82 compute time for the ASW calculations, we used a random sample of 10,000 cells when datasets
 83 exceeded this size in training, validation, or testing subsets.

84 2.3. Hyperparameters used to build the AE, AEC, scMEDAL-FE, 85 scMEDAL-FEC, and scMEDAL-RE models

86 Section 4.5 of the main paper describes the hyperparameter optimization process for the overall
 87 objective function in equation 9. In the following **Tables** S2-S4, we describe the values of the
 88 hyperparameter that are found to optimize the AE, AEC, scMEDAL-FE, scMEDAL-FEC, and scMEDAL-
 89 RE models in three datasets: Healthy Heart, the Autism Spectrum Disorder (ASD), and Acute Myeloid
 90 Leukemia (AML).

91 **Table S2.** Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the **Healthy**
 92 **Heart dataset.**

Hyperparameter	AE	AEC	scMEDAL-FE	scMEDAL-FEC	scMEDAL-RE
$\lambda_{recon,F}$	1	81	5400	9450	-
$\lambda_{recon,R}$	-	-	-	-	110
λ_y	-	0.1	-	1	-
λ_A	-	-	1	1	-
λ_L			-		0.1
λ_K			-		1.00E-05

101 **Table S3.** Hyperparameters used for training PCA, AE and scMEDAL subnetworks in the **ASD dataset.**

Hyperparameter	AE	AEC	scMEDAL-FE	scMEDAL-FEC	scMEDAL-RE
$\lambda_{recon,F}$	1	1	1000	1000	-
$\lambda_{recon,R}$	-	-	-	-	110
λ_y	-	0.1	-	1	-
λ_A		-	1	1	-
λ_L			-		0.1
λ_K			-		1.00E-05

Hyperparameter	AE	AEC	scMEDAL-FE	scMEDAL-FEC	scMEDAL-RE
$\lambda_{recon,F}$	1	100	4000	1500	-
$\lambda_{recon,R}$	-	-	-	-	110
λ_y	-	0.1	-	1	-
λ_A	-	-	1	1	-
λ_L			-		0.1
λ_K			-		1.00E-05

2.4. UMAP visualization parameters

Table S5 describes the minimum distance and nearest neighbor's choices for UMAP visualizations presented in the main paper in sections 2.2, 2.3, 2.4, and 2.7.

Table S5. UMAP Visualization parameters.

Dataset	UMAP parameters	AE	AEC	scMEDAL-FE	scMEDAL-FE	scMEDAL-RE
Healthy Heart	Min distance			0.5		0
	Nearest Neighbors			15		1000
ASD	Min distance			0.5		
	Nearest Neighbors			15		
AML	Min distance			0.5		
	Nearest Neighbors			15		

2.5. Hardware and software used for model implementation and training

All deep learning models were developed and trained on Nvidia Tesla V100 GPUs with 32 GB of memory and Tesla P4 GPUs with 8 GB of memory. The software stack for model training included Python 3.8.5, TensorFlow 2.3⁷, TensorFlow Probability 0.11.1⁸, scikit-learn 0.23.2, and Scanpy 1.6.0. Performance measures, including ASW, DB, CH, accuracy, balanced accuracy, and chance accuracy, were computed using the Scikit-learn library¹⁰. The PCA model was also implemented through the Scikit-learn library. ScRNA-seq preprocessing and UMAP computations¹¹ were performed using Python 3.8.18 with the Scanpy 1.9.8 library¹². Genomaps were generated using genomap 1.3.6 and the Mann-Whitney U test was implemented using the using the *stats* module from SciPy 1.10.1¹³ and the linear mixed-effects models were implemented in the Statsmodels 0.10.0 library¹⁴. For more details on the software used for model training, plot creation, and generation of visualizations, please refer to the code repository described in the *Code and data availability* section 5.

2.6. Clustering metric definitions

We use the following metrics to quantify the clustering (separability) of the cells: the Average Silhouette Width (ASW)¹⁵, Calinski-Harabasz (CH) index¹⁶, and Davies-Bouldin (DB) index¹⁷. The *Silhouette Width* quantifies how well each cell fits within its assigned cluster compared to the other clusters. It is computed using two distances: the within-cluster distance (a_i) and the between-cluster distance (b_i). The within-cluster distance, a_i , represents the average distance between a cell i and all other cells in its cluster. This distance is defined as:

$$145 \quad a_i = \frac{1}{|C_i| - 1} \sum_{\{j \in C_i, j \neq i\}} d(i, j)$$

146
147 where C_i is the set of cells in the cluster of cell i , $|C_i|$ is the total number of cells in this cluster, and $d(i, j)$
148 is the distance between cell i and cell j within the cluster. In contrast, the between-cluster distance, b_i , is
149 the minimum of the average distance between cell i and cells from other clusters. It is defined as:

$$150 \quad b_i = \min_{\{k \neq i\}} \frac{1}{|C_k|} \sum_{\{j \in C_k\}} d(i, j)$$

151
152 where C_k is the set of cells assigned to cluster k which is different from the cluster of cell i , while $|C_k|$ is
153 the total number of cells in cluster k . The silhouette coefficient for each cell i is calculated as:

$$154 \quad s_i = \frac{b_i - a_i}{\max(b_i, a_i)}$$

155 where a higher s_i value (closer to 1.0) indicates that the cell is well-clustered, being more similar to cells
156 within its own cluster than to those in any other cluster. The ASW is defined as the average of s_i over all
157 cells and provides an overall measure of clustering quality.

158 The *Davies–Bouldin* (DB) index quantifies the extent to which clusters overlap. For each cluster, we
159 compare its average within-cluster dispersion to the distance between its centroid and the centroid of the
160 most similar (closest) cluster. Consequently, a lower DB index value indicates less overlap and better
161 separation between clusters. The DB index is computed as:

$$162 \quad DB = \left(\frac{1}{K}\right) \sum_{\{k=1\}}^K D_k$$

163
164 where K is the number of clusters, and D_k for cluster k is the ratio, R_{kl} for the most similar cluster l to
165 k , ($l \neq k$). D_k is expressed as:

$$166 \quad D_k = \max_{\{l \neq k\}} R_{kl}$$

167 where the ratio R_{kl} measures how similar are the clusters k and l . R_{kl} is computed as:

$$168 \quad R_{kl} = \frac{(q_k + q_l)}{M_{kl}}$$

169 where q_k is the average distance from each cell in cluster k to the centroid of cluster k , q_l is the
170 corresponding average distance for cluster l , and M_{kl} is the distance between the centroids of clusters k
171 and l . A larger M_{kl} indicates better separation between the two clusters.

172 The *Calinski-Harabasz* (CH) index measures the ratio of between-cluster variance to within-cluster
173 variance, with higher values indicating more distinct and cohesive clusters. It is calculated as

$$174 \quad CH = \frac{\sum_{\{k=1\}}^K n_k * ||\mu_k - \mu||^2}{\sum_{\{k=1\}}^K \sum_{\{i=1\}}^{n_k} ||p_i - \mu_k||^2} * \frac{[N - K]}{[K - 1]}$$

175 where n_k is the number of points in the k^{th} cluster, μ_k is the centroid of the k^{th} cluster, μ is the centroid
176 of the entire data (all the cells), p_i is the position (coordinates) of the cell i , N is the total number of cells
177 and K is the number of clusters.

178 To align the interpretation of the DB index with the CH index and ASW, we used the reciprocal (1/DB),
179 ensuring that higher scores consistently indicate better clustering quality. When measuring the clustering
180 by cell type, higher scores signify improved separability in the latent space, enhancing the cell type
181 signal—an objective of batch correction. Conversely, when measuring the clustering by batch label, lower
182 scores indicate more effective batch correction, as it indicates that the batches become less
183 distinguishable, which is another objective of batch correction. Additionally, higher batch scores in the
184 batch-specific latent space of the random effects subnetwork indicates effective modeling of the batch
185 effects and capture of the between-batch variance in gene expression data.

186 3. Supplementary results

187 3.1. Confounding within the AML dataset

188 In **Fig. S2** the representation of donors across cell types in AML is shown graphically. We observe
189 that not all donor samples contain cells from every cell type, making this dataset a particularly
190 challenging and interesting one for batch correction due to potential confounding between donor
191 identity and cell type.

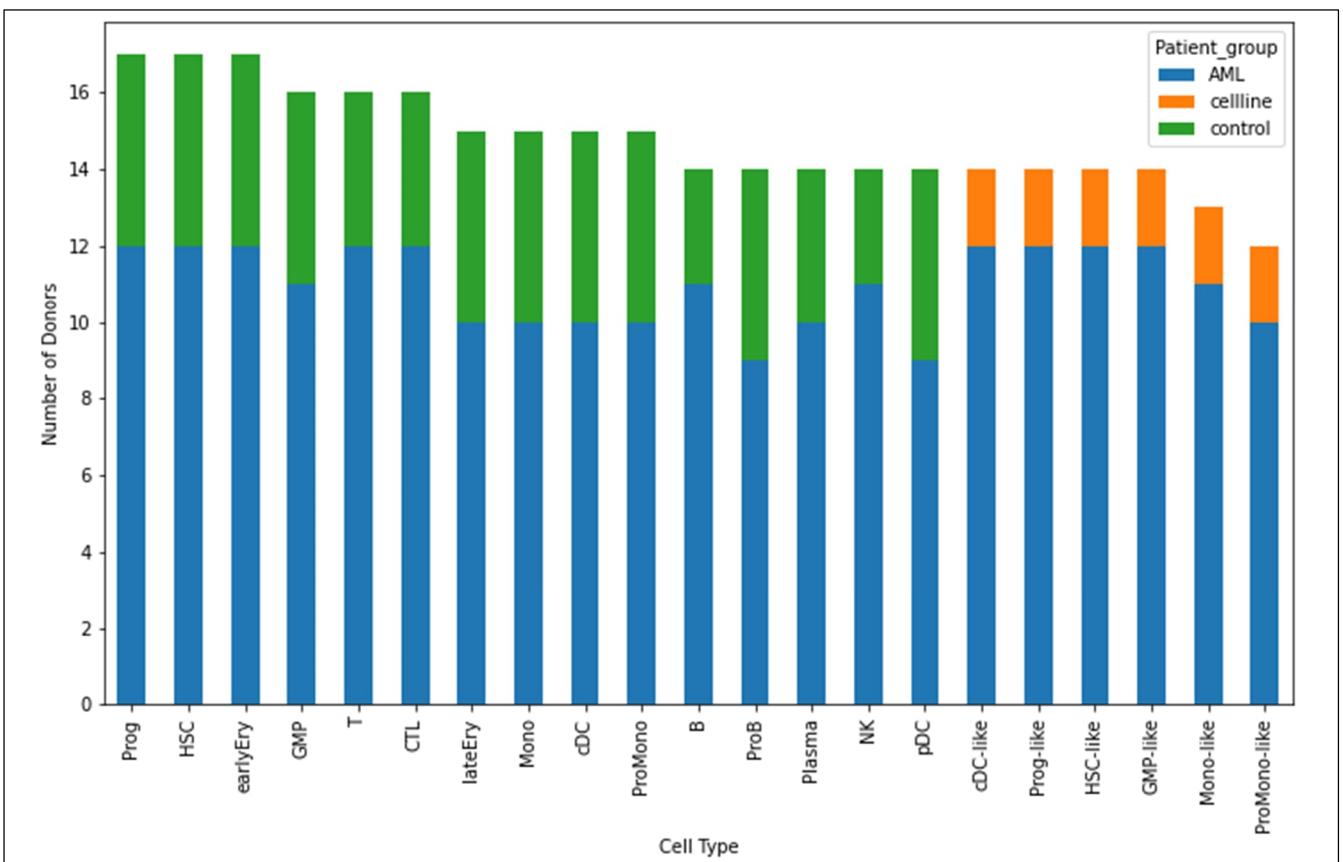


Fig. S2: AML dataset demonstrates intrinsic cell type-donor confounding. This stacked bar plot shows the number of donors for each cell type (y-axis), grouped by patient group, with cell types displayed along the x-axis. The colors indicate the donor patient group.

193 **3.2. Hyperparameter Optimization (HPO) for AEC and scMEDAL-
194 FEC models**

195 Hyperparameter optimization (HPO) was conducted per dataset to tune the parameters using the
196 held-out validation data (not used for model training). This tuning adjusts the weights of the
197 reconstruction, adversarial, classification (cell type for scMEDAL-FE and batch for scMEDAL-RE), and
198 Kullback–Leibler divergence loss function terms so that they are on a similar scale, allowing all terms to
199 guide the model fitting, and optimizing performance on the validation data. The winning parameters are
200 shown in **Tables S2-S4**. However, when cell type information is available from an external source (as
201 described in Section 2.7 of the main paper) this can be used to further guide hyperparameter tuning. In
202 this scenario, the ASW for cell type can be used to further refine the loss function weights. Both batch
203 and cell-type ASW on the AEC and scMEDAL-FEC models can be evaluated during the training for 500
204 epochs with early stopping, prioritizing the cell-type ASW. **Table S6** illustrates how the ASW scores for
205 both batch and cell type separability can vary somewhat for different values of the weights assigned to
206 the reconstruction loss (measured with mean squared error), adversarial loss, and classification loss of
207 the cell type labels y , while the selected (winning) parameters are in boldface.
208

Table S6. Average Silhouette Width (ASW) scores for batch and cell type separability of the AML dataset (mean across 5 folds). Hyperparameter Optimization (HPO) selection of reconstruction loss λ_{recon} and classification loss λ_y weights using validation data. Adversarial loss weight $\lambda_A = 1$ for all models.

	λ_{recon}	λ_y	ASW (batch)			ASW (cell type)		
			mean	95% CI		mean	95% CI	
AEC	1	0.1	-0.43	-0.52	-0.34	-0.15	-0.23	-0.06
	10		-0.37	-0.44	-0.31	-0.11	-0.20	-0.02
	100		-0.28	-0.34	-0.23	0.03	-0.04	0.10
scMEDAL-FEC	500	1	-0.33	-0.35	-0.31	-0.10	-0.13	-0.06
	1500	1	-0.30	-0.37	-0.24	-0.05	-0.08	-0.02
	1500	2	-0.33	-0.40	-0.26	-0.07	-0.11	-0.04
	2000	2	-0.31	-0.33	-0.28	-0.07	-0.13	-0.01

209

210 **3.3. Supplementary results for scMEDAL-FE and scMEDAL-RE
211 models**

212 **3.3.1. CH and 1/DB scores**

213 In **Tables S7-S9**, scores are shown from the Calinski-Harabasz (CH) clustering index and the
214 reciprocal of the Davies-Bouldin (DB) clustering index (1/DB), as these complement the primary metric,
215 ASW, used in the main paper. These scores confirm the ASW results. In particular, the scMEDAL-RE
216 subnetwork consistently captures batch specific information as designed, demonstrating significantly
217 more batch information (higher scores) than any of the other models, as measured with both the CH and
218 1/DB indices, across all three datasets (4th row, first 2 columns of **Tables S7-S9**). Meanwhile, the
219 scMEDAL-FE subnetwork substantially suppresses batch specific information, demonstrating much
220 lower CH scores (less batch contamination) than the baseline model (PCA) in all three datasets (3rd row,
221 2nd column of **Tables S7-S9**). In terms of preserving cell type information, across all datasets, the
222 scMEDAL-FE subnetwork outperforms the baseline model (PCA) and scMEDAL-RE (by design) with
223 higher scores in the 1/DB metric (rows 1,3,4 of 3rd column) and performs comparably well to the AE model
224 in the CH metric (rows 2,3 of 4th column of **Tables S7-S9**).
225

Table S7. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **Healthy Heart dataset**, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
PCA (Baseline)	0.02	0.01	0.03	148.65	145.33	151.98	0.13	0.10	0.15	1502.74	1456.79	1548.69
AE	0.02	0.02	0.02	70.49	51.09	89.90	0.22	0.10	0.33	1712.76	1405.70	2019.83
scMEDAL-FE	0.02	0.01	0.02	61.38	38.74	84.03	0.19	0.13	0.24	1984.01	1078.08	2889.95
scMEDAL-RE	0.56	0.17	0.94	2555.27	544.02	4566.51	0.06	0.04	0.08	224.76	66.19	383.34

226

Table S8. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **ASD dataset**, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
PCA (Baseline)	0.03	0.02	0.03	32.67	32.06	33.28	0.18	0.15	0.21	9089.94	8906.86	9273.02
AE	0.02	0.02	0.03	23.72	20.74	26.69	0.78	0.71	0.85	9863.14	8673.06	11053.22
scMEDAL-FE	0.02	0.02	0.03	19.43	14.12	24.74	0.32	0.15	0.49	9631.75	8052.25	11211.25
scMEDAL-RE	0.16	-0.09	0.40	2423.99	-3510.80	8358.77	0.03	0.01	0.04	749.41	-261.64	1760.45

227

Table S9. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **AML dataset**, using PCA, AE, scMEDAL-FE, and scMEDAL-RE models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
PCA (Baseline)	0.06	0.05	0.07	156.52	154.20	158.84	0.14	0.12	0.16	2560.96	2482.14	2639.79
AE	0.07	0.07	0.08	189.78	169.23	210.32	0.28	0.24	0.32	1956.48	1779.39	2133.58
scMEDAL-FE	0.07	0.06	0.09	80.63	69.88	91.37	0.19	0.09	0.29	1493.43	1353.85	1633.01
scMEDAL-RE	0.37	0.07	0.67	63228.21	9245.17	117211.25	0.07	0.05	0.09	114.73	69.53	159.94

228

229 3.3.2. Random Effects subnetwork (scMEDAL-RE) latent spaces

230

231 **Figs.** S3–S5 show the scMEDAL-RE latent spaces through UMAP visualizations. We observe that the
232 batches (colored) are visibly apparent across all datasets. This further confirms the high degree of
233 batch separability attainable by the scMEDAL-RE subnetwork, which is as designed, because its
234 purpose is to model the batch effects.

235

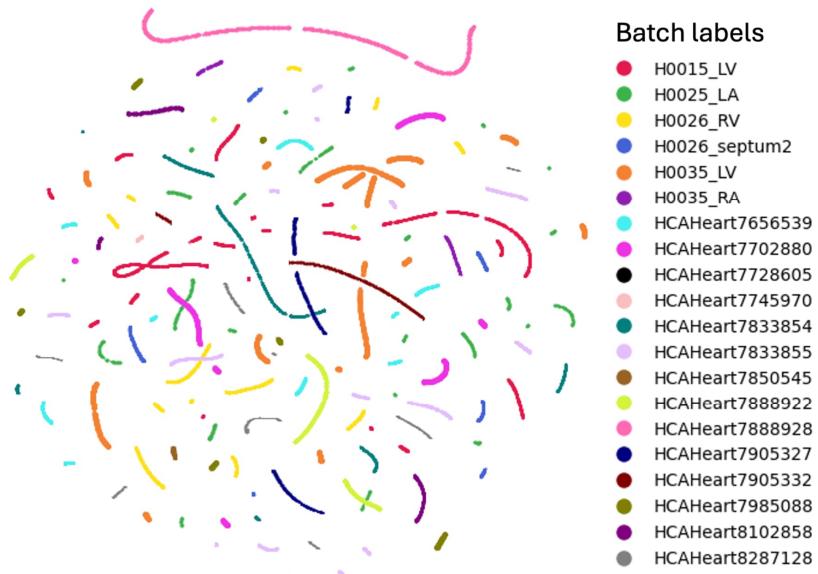


Fig. S3: scMEDAL-RE separates cells from different batches in the Healthy Heart dataset. UMAP visualization of scMEDAL-RE latent components, representing 44,987 cells from 20 selected batches (out of 147 total). Colors indicate different batches, demonstrating the separation of cells by batch in the scMEDAL-RE latent space.

236
237

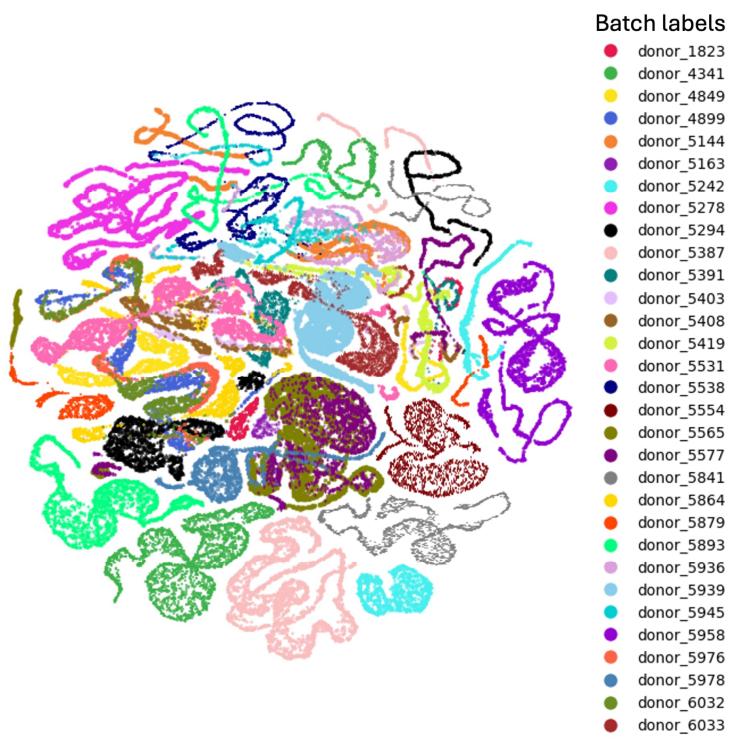


Fig. S4: scMEDAL-RE separates cells from different donors in the ASD dataset. UMAP visualization of scMEDAL-RE latent components, representing 62,735 cells from 31 donors. Colors indicate different donors, demonstrating the separation of cells by donors in the scMEDAL-RE latent space.

238
239
240

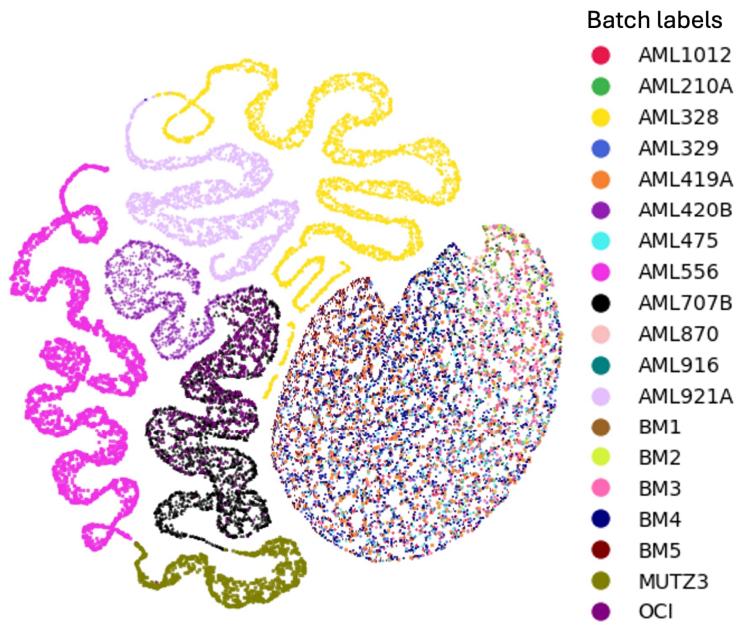


Fig. S5: scMEDAL-RE separates cells from cellines, AML and healthy donors in the AML dataset. Latent spaces from 23,050 cells from the AML dataset latent spaces obtained with scMEDAL-RE. UMAP applied to the scMEDAL-RE latent space.

241
242

243 **3.3.3. Training and validation curves**

244 **Figs.** S6-S8 present the training and validation curves, for the AE, scMEDAL-FE, and scMEDAL-RE
245 models in all three datasets. For scMEDAL-FE, the total loss is calculated as the reconstruction loss
246 minus the adversarial loss, with each component scaled by its respective weight. In the scMEDAL-RE
247 curves, the left axis displays the reconstruction loss and total loss, while the right axis shows: the latent
248 cluster loss classifying a cell's batch and the Kullback-Leibler divergence (KLD) loss. Also shown is the
249 total loss, which is computed as the sum of the reconstruction loss, latent cluster loss, and KLD loss,
250 each adjusted by their respective weights. We observe that through all models, no one term dominates.
251 Instead the individual terms have values in similar ranges and can contribute effectively to the overall
252 loss, thereby guiding the model fitting.

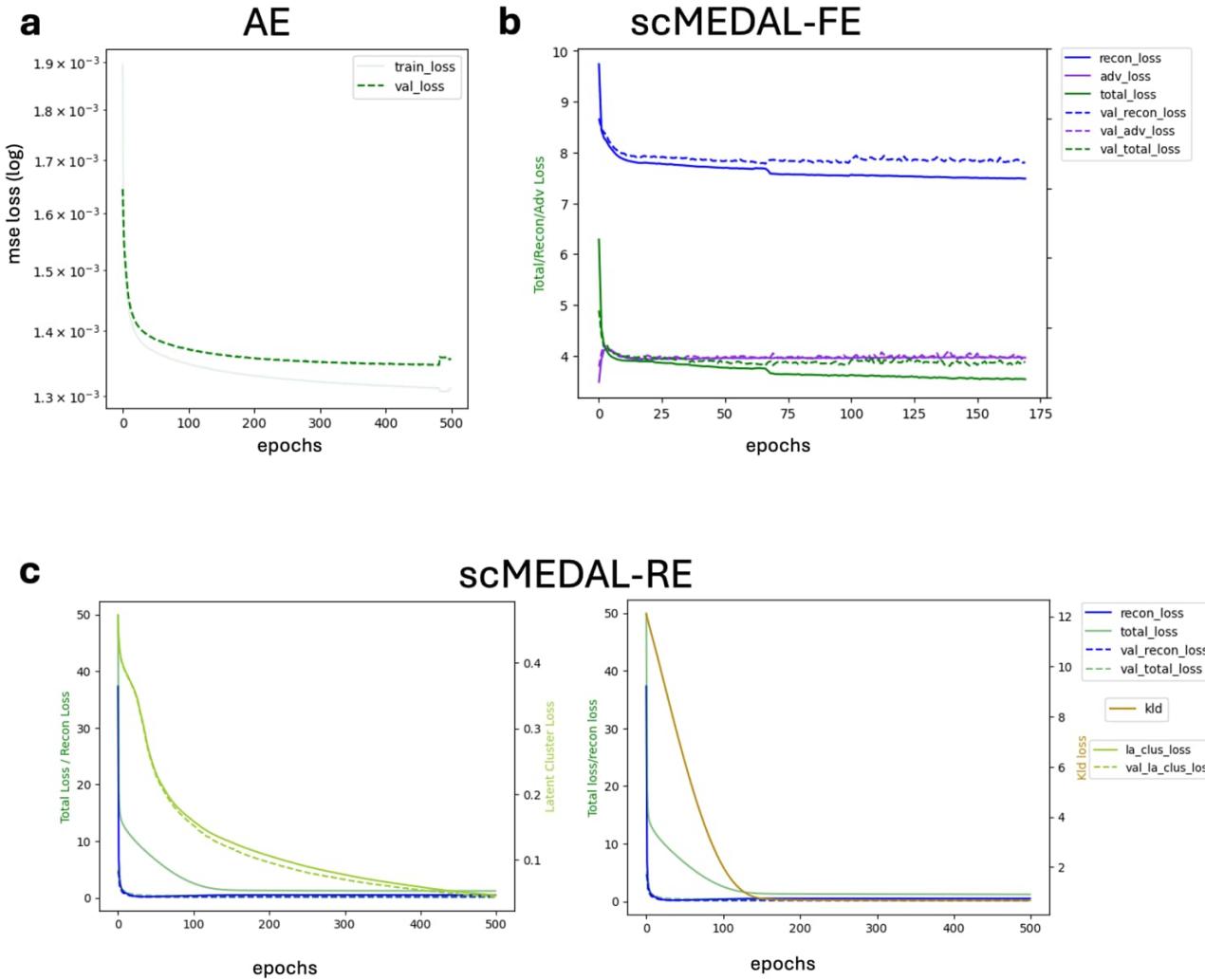


Fig. S6: Training and validation curves for the Healthy Heart dataset. Individual loss terms (see legend) maintain a similar scale throughout training. Training and validation curves adjusted by weights for **a** AE, **b** scMEDAL-FE (total loss = reconstruction loss - adversarial loss), and **c** scMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster loss).

253
254
255
256
257
258
259
260
261
262
263
264

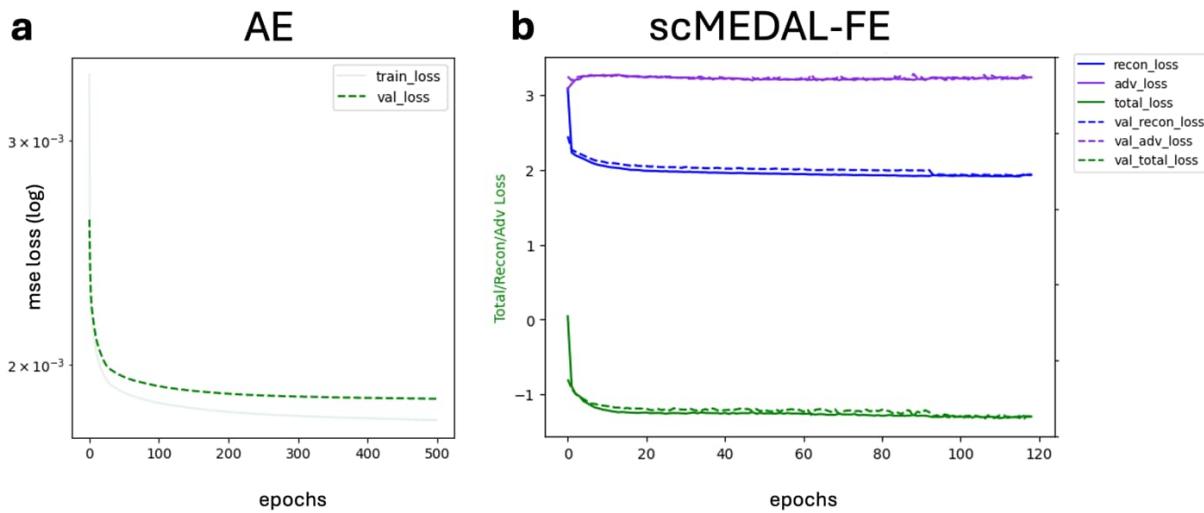
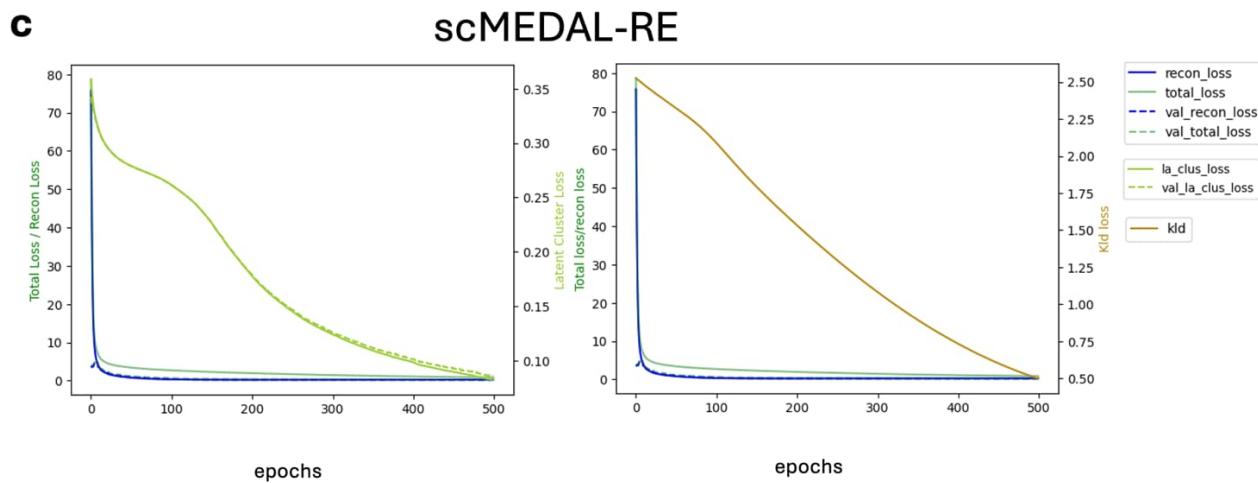
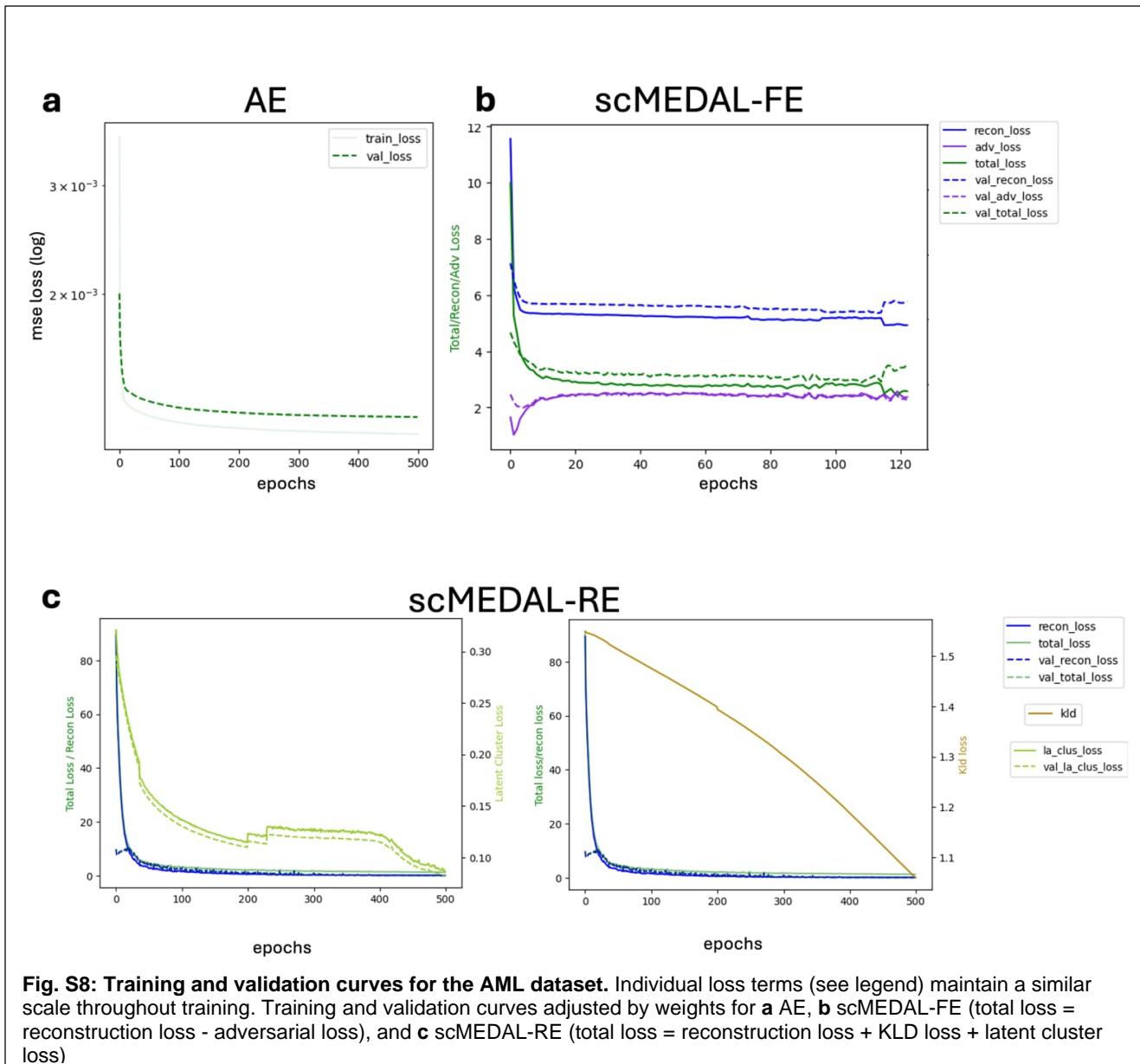


Fig. S7: Training and validation curves for the ASD dataset. Individual loss terms (see legend) maintain a similar scale throughout training. Training and validation curves adjusted by weights for **a** AE, **b** scMEDAL-FE (total loss = reconstruction loss - adversarial loss), and **c** scMEDAL-RE (total loss = reconstruction loss + KLD loss + latent cluster loss)

265
266
267
268
269
270
271
272
273



274

275 **3.4. Supplementary results for scMEDAL-FEC and AEC models**

276 **3.4.1. CH and 1/DB scores**

277 In **Tables S10-S12** scores that complement the primary metric, ASW, are shown, including the
278 Calinski-Harabasz (CH) clustering index and the reciprocal of the Davies-Bouldin (DB) clustering index
279 (1/DB). These results further corroborate the ASW results in Section 2.7 of the main paper. The
280 scMEDAL-FEC subnetwork substantially suppresses batch specific information, demonstrating lower CH
281 scores (less batch contamination) than the AEC in all three datasets (rows 1,2 of the 2nd column of **Tables**
282 S10-S12). In terms of preserving cell type information, both models perform admirably and similarly,
283 including in their CH scores for the ASD and AML datasets (4th column of **Tables S11-S12**) and the 1/DB
284 score for the Healthy Heart dataset (3rd column of **Table S10**). As described in the main paper (Section
285 2.7) the UMAP latent space visualizations provide a more nuanced view including additional comparative
286 performance benefits of scMEDAL-FEC over the AEC model across datasets.

Table S10. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **Healthy Heart dataset**, using AEC and scMEDAL-FEC models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
AEC	0.02	0.01	0.03	48.29	15.26	81.32	0.23	0.06	0.41	5563.96	2833.93	8293.99
scMEDAL-FEC	0.02	0.01	0.02	41.39	27.01	55.77	0.21	0.04	0.38	3750.68	2318.16	5183.19

287

Table S11. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **ASD dataset**, using AEC and scMEDAL-FEC models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
AEC	0.02	0.01	0.03	20.06	14.48	25.64	0.73	0.51	0.95	10631.01	5846.41	15415.61
scMEDAL-FEC	0.02	0.01	0.02	12.72	7.40	18.03	0.34	0.18	0.50	9911.04	8726.06	11096.02

Table S12. 1/DB and CH scores (Mean and 95% CI across 5 folds) for batch and cell type separability in the latent spaces of the **AML dataset**, using AEC and scMEDAL-FEC models.

	batch						cell type					
	1/DB			CH			1/DB			CH		
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
AEC	0.08	0.04	0.12	142.75	81.95	203.54	0.17	0.09	0.25	2159.15	1216.68	3101.61
scMEDAL-FEC	0.06	0.04	0.07	87.24	70.03	104.45	0.18	0.10	0.25	2065.85	1301.67	2830.04

288

289 3.4.2. Average training and validation curves for AEC and scMEDAL- 290 FE across 5 folds in the Healthy Heart, ASD, and AML datasets

291 **Figs.** S9-S11 present the training and validation curves, for the AEC and scMEDAL-FEC models in
292 the three datasets. For the AEC model, the total loss is calculated as the sum of the reconstruction loss
293 and the cell type classification loss. For scMEDAL-FEC, the total loss is calculated as the sum of the
294 reconstruction loss and the cell type classification loss minus the adversarial loss. We observe that in all
295 cases the individual terms have similar value ranges and contribute effectively to the total loss.

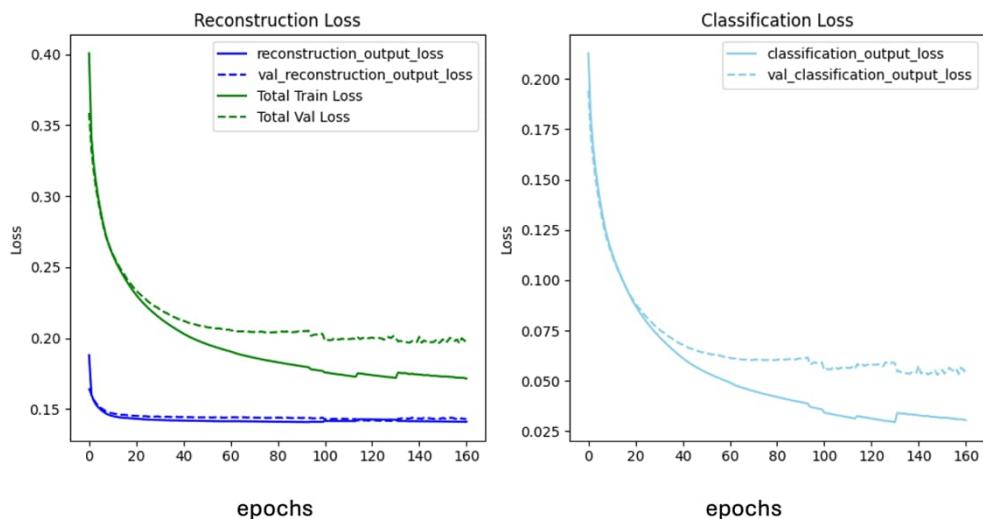
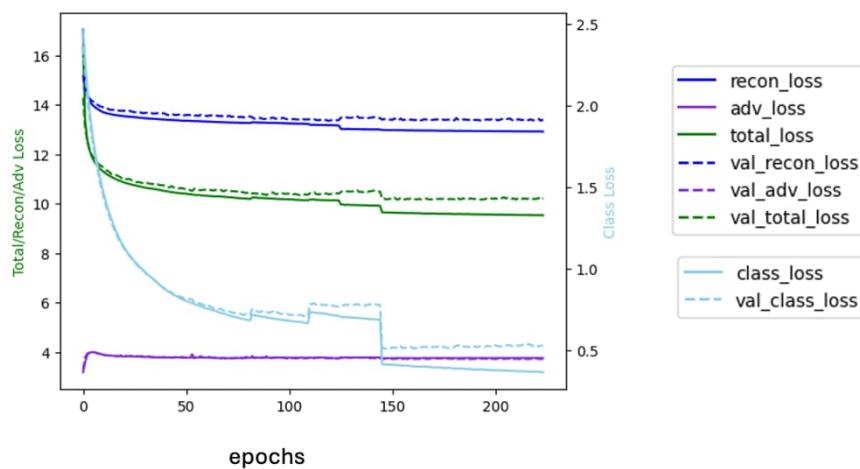
a AEC**b scMEDAL-FEC**

Fig. S9: The training and validation curves for the Healthy Heart dataset demonstrate that the weight-adjusted individual loss terms effectively balance their contributions to the total loss. Training and validation curves for the Healthy Heart dataset for **a** AEC and **b** scMEDAL-FEC models.

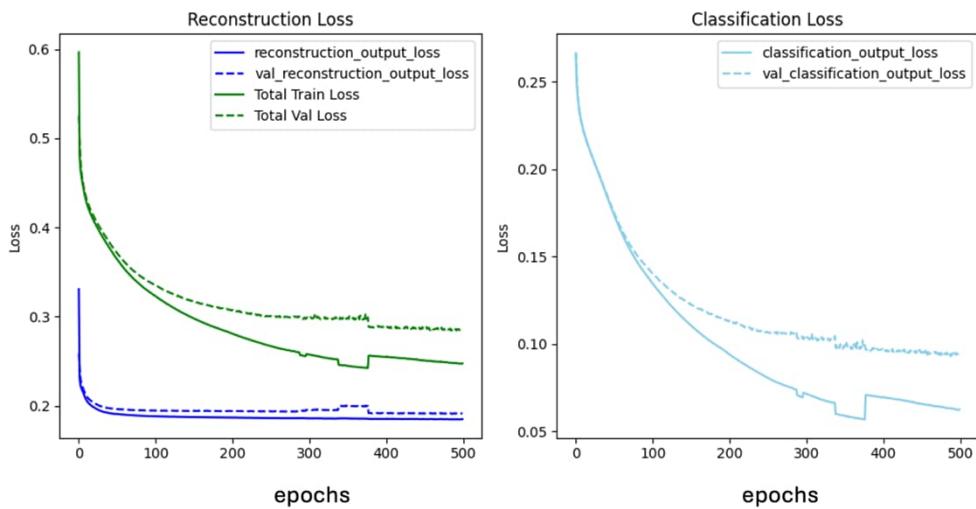
296

297

298

299

a AEC



b scMEDAL-FEC

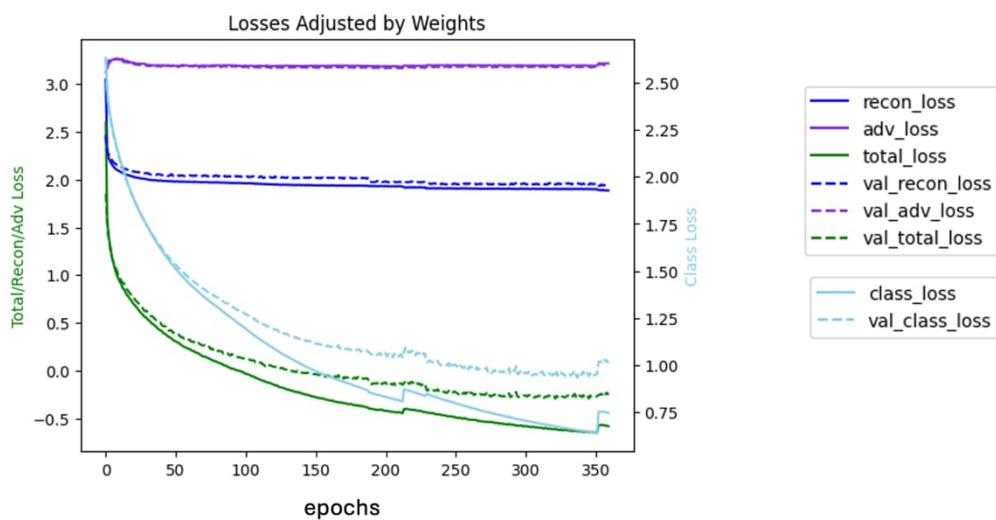
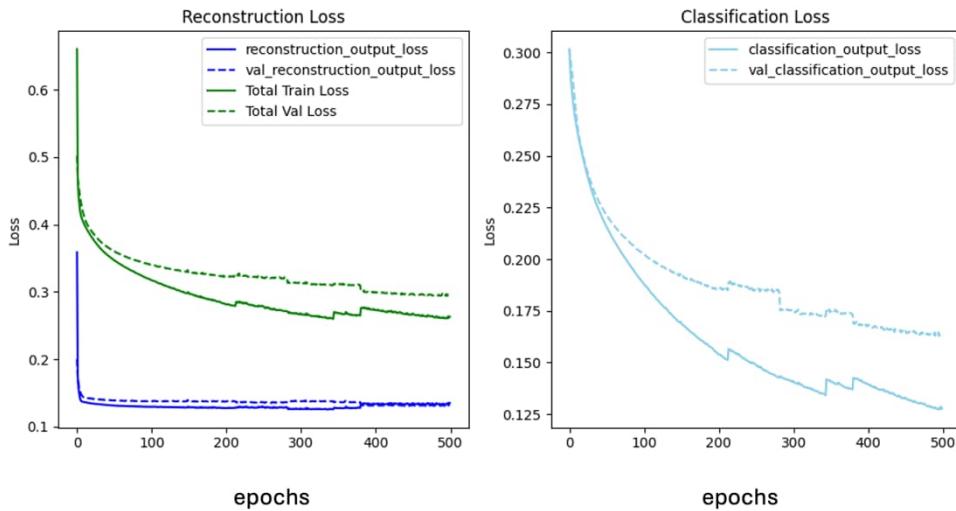


Fig. S10: The training and validation curves for the ASD dataset demonstrate that the weight-adjusted individual loss terms effectively balance their contributions to the total loss. Training and validation curves for the ASD dataset for **a** AEC and **b** scMEDAL-FEC models.

300
301
302
303
304
305
306
307
308
309

a AEC



b scMEDAL-FEC

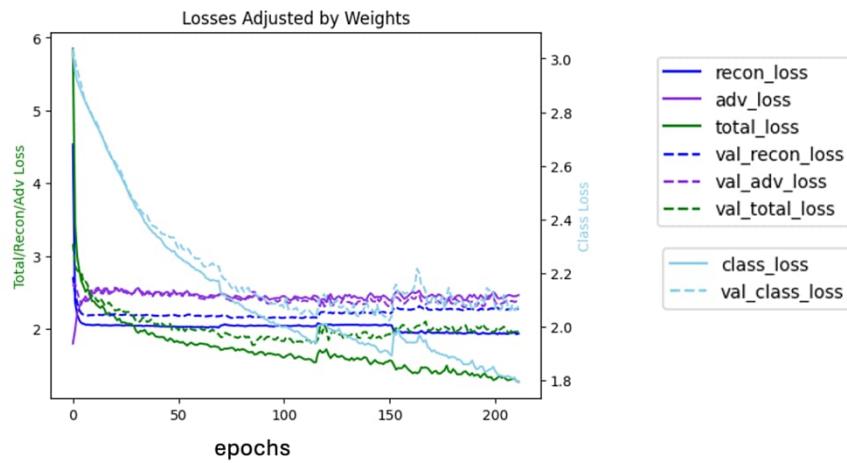


Fig. S11: The training and validation curves for the AML dataset demonstrate that the weight-adjusted individual loss terms effectively balance their contributions to the total loss. Training and validation curves for the AML dataset for **a** AEC and **b** scMEDAL-FEC models.

310

311 3.5. Significant genes from the genomaps for AML versus 312 controls and ASD versus controls

313 Table S13 presents the statistics for significant genes related to ASD, identified using the scMEDAL-
314 RE projection of the same 300 L2/3 cells across 15 ASD donors and then across 16 control (typically
315 developing) donors. Statistical analysis of the gene expression between these groups was conducted
316 using linear mixed-effects models implemented in Statsmodels¹⁴. A total of 230 genes were identified as

317 significantly associated with ASD ($p_{slope} < 0.05$). Statistics for these ASD-relevant genes are illustrated
 318 below. The full list of all ASD mapped genomap genes is available in Supplementary Data 1.
 319

genes	pixel_i	pixel_j	intercept	p-val intercept	95% CI (intercept)	slope (control)	p-val slope	95% CI (slope)
CNR1	1	1	0.3946	0.0048	0.1206 0.6686	-0.7758	0.0001	-1.1572 -0.3944
MYO1E	5	15	-0.2923	0.0752	-0.6144 0.0297	0.6037	0.0083	0.1554 1.052
CYP27A1	4	27	-0.2552	0.0801	-0.541 0.0306	0.5158	0.0111	0.118 0.9136
KCNJ10	48	15	-0.3308	0.1317	-0.761 0.0993	0.6454	0.0346	0.0466 1.2441
THBS1	17	34	-0.1595	0.0946	-0.3465 0.0275	0.2753	0.0382	0.015 0.5356
NOTCH3	5	34	-0.259	0.147	-0.6091 0.0911	0.5295	0.0332	0.0422 1.0167
IL1R1	40	15	-0.1641	0.1696	-0.3984 0.0701	0.3533	0.0337	0.0272 0.6793
COL4A1	17	3	-0.3247	0.0165	-0.5901 0.0593	0.6232	0.0009	0.2538 0.9926
TGM2	10	11	-0.2724	0.1728	-0.664 0.1192	0.5951	0.0324	0.05 1.1402
FGF2	49	16	-0.3256	0.149	-0.7678 0.1167	0.6917	0.0277	0.0761 1.3072

339
 340 **Table S14** presents the statistics for significant genes related to AML. These are identified by a Mann-
 341 Whitney U test performed on the same set of 300 monocytes projected with scMEDAL-RE onto 12 AML
 342 donors and then onto 5 healthy control subjects. Averages from the AML subjects and the control
 343 (healthy) subjects were computed for each set of 300 monocytes, and *stats* module from SciPy¹³ was
 344 used to conduct the Mann-Whitney U test to identify gene expression differences between these groups.
 345 In total, 358 genes were found to have significantly different expression levels ($p < 0.05$). The full list of
 346 all AML mapped genomap genes is available in Supplementary Data 1.

Table S14. Statistics for relevant genes associated with AML, identified as significant through a Mann-Whitney U test on the same 300 monocyte Genomap projections from 12 AML scMEDAL-RE analyses and 5 control scMEDAL-RE analyses.

genes	pixel_i	pixel_j	p-val
SH2B3	24	36	0.0023
HERPUD1	3	19	0.0194
PRDM1	2	23	0.0365
MKI67	11	27	0.0365
GATA2	45	46	0.0365
ABCB1	30	43	0.0485
SAMD9L	30	40	0.0194
SERPINA1	4	44	0.0013
SLC11A1	20	28	0.0094
VNN2	17	27	0.0365

4. References

365 1 Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Worth, C. L., Lindberg, E. L., Kanda, M.,
 366 Polanski, K., Heinig, M., Lee, M., Nadelmann, E. R., Roberts, K., Tuck, L., Fasouli, E. S., DeLaughter, D.
 367 M., McDonough, B., Wakimoto, H., Gorham, J. M., Samari, S., Mahbubani, K. T., Saeb-Parsy, K., Patone,
 368 G., Boyle, J. J., Zhang, H., Viveiros, A., Oudit, G. Y., Bayraktar, O. A., Seidman, J. G., Seidman, C. E.,
 369 Noseda, M., Hubner, N. & Teichmann, S. A. Cells of the adult human heart. *Nature* **588**, 466-472 (2020).

370 2 Yu, X., Xu, X., Zhang, J. & Li, X. Batch alignment of single-cell transcriptomics data using deep metric
 371 learning. figshare <https://doi.org/10.6084/m9.figshare.20499630.v2> (2023).

372 3 Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal, N., Rowitch,
 373 D. H. & Kriegstein, A. R. Single-cell genomics identifies cell type-specific molecular changes in autism.
 374 *Science* **364**, 685-689 (2019).

375 4 van Galen, P., Hovestadt, V., Wadsworth Li, M. H., Hughes, T. K., Griffin, G. K., Battaglia, S., Verga, J. A.,
 376 Stephansky, J., Pastika, T. J., Lombardi Story, J., Pinkus, G. S., Pozdnyakova, O., Galinsky, I., Stone, R.
 377 M., Graubert, T. A., Shalek, A. K., Aster, J. C., Lane, A. A. & Bernstein, B. E. Single-Cell RNA-Seq Reveals
 378 AML Hierarchies Relevant to Disease Progression and Immunity. *Cell* **176**, 1265-1281.e1224 (2019).

379 5 Yu, X., Xu, X., Zhang, J. & Li, X. Batch alignment of single-cell transcriptomics data using deep metric
 380 learning. *Nat. Commun.* **14**, 960 (2023).

381 6 Dai, C., Chen, M., Wang, C. & Hao, X. Deconvolution of Bulk Gene Expression Profiles with Single-Cell
 382 Transcriptomics to Develop a Cell Type Composition-Based Prognostic Model for Acute Myeloid Leukemia.
 383 *Front Cell Dev Biol* **9**, 762260 (2021).

384 7 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
 385 Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L.,
 386 Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J.,
 387 Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
 388 Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. TensorFlow: Large-scale machine learning on
 389 heterogeneous systems. *Proc. of 12th USENIX Conference on Operating Systems Design and
 390 Implementation* (2016).

391 8 Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman,
 392 M. & Saurous, R. A. TensorFlow Distributions. arXiv:1711.10604, 2017.

393 9 TensorFlow. *TensorFlow Probability*, <https://www.tensorflow.org/probability> , last accessed 2/12/2025

394 10 Pedregosa, F., Eickenberg, M., Ciuciu, P., Thirion, B. & Gramfort, A. Data-driven HRF estimation for
 395 encoding and decoding models. *Neuroimage* **104**, 209-220 (2015).

396 11 McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension
 397 Reduction. Preprint at <https://doi.org/10.48550/arXiv.1802.03426> (2018).

398 12 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.
 399 *Genome Biol.* **19**, 15 (2018).

400 13 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
 401 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
 402 N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W.,
 403 VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
 404 Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P. & SciPy, C. SciPy 1.0: fundamental
 405 algorithms for scientific computing in Python. *Nat Methods* **17**, 261-272 (2020).

406 14 Seabold, S. & Perktold, J. *Statsmodels: Econometric and Modeling with Python* in *Proc. 9th Python in
 407 Science Conference*. 57-61 (2010).

408 15 Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. *J.
 409 Comput. Appl. Math.* **20**, 53-65 (1987).

410 16 Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. *Commun. Stat. Theory Methods* **3**, 1-27
 411 (1974).

412 17 Davies, D. L. & Bouldin, D. W. A Cluster Separation Measure. *IEEE Trans. Pattern Anal. Mach. Intell.* **1**,
 413 224-227 (1979).

414