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Supplementary Note 1: The RANGE architecture

As illustrated in Fig. 1 of the main text, the RANGE architecture combines a local message-passing
with an aggregation of all the network nodes into a master node M , followed by a broadcasting that
redistributes the collected information back into the single nodes, effectively realizing long-range
message-passing. The details on the aggregation and broadcast phases are provided below.

1.1 Aggregation

Since a multi-head attention system is implemented, master nodes funnel information into L d-
dimensional spaces: the information stored in each subspace is concatenated into a h-dimensional
vector so that Ld = h. The aggregated embedding is

H(t) = σ

(
∥Ll=1

∑
i

α̂l
iA

l
V h̃

(t)
i

)
, (1)

where H(t) ∈ Rh is the embedding of M , σ is an element-wise non-linear activation, ∥Ll=1 represents
the concatenation operator, Al

V : Rh → Rd is a learnable matrix, and h̃
(t)
i refers to the i-th node

embedding after a local message-passing iteration. Based on the conventional implementation of
additive self-attention1,2, the weight α̂l

i of embedding i and head l is defined as:

αl
i = (al)⊤LeakyReLU(Al

QH
(t−1) + Al

Kh̃
(t)
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EEi) (2)

α̂l
i = Softmax(αl

i) =
expαl

i∑
j expα

l
j

. (3)

Here, Al
Q, A

l
K : Rh → Rd and Al

E : Rf → Rd are learnable matrices and al ∈ Rd is a learnable
vector. The query projection matrices Al

Q always act on the previous virtual node embedding
H(t−1). The edge features between master node and the graph nodes, denoted as a function of
their respective distances Ei = RBF(ri), are carefully designed to extend the standard radial basis
expansion and accommodate non-bounded distances without introducing a cutoff. We achieve
this by scaling the distances between M and the graph nodes by their maximum

ri =
||xi −XM ||

maxj ||xj −XM ||
∈ [0, 1], (4)

where xi denotes the position of node i and XM is the position of the master node, 1
N

∑
i xi. The

new distances are then transformed into edge features via radial basis expansion. This allows for
complete transferability of the trained network across different system sizes.

1.2 Broadcast

In order to update the embeddings of the base graph with the aggregated information while re-
taining learned short-range interactions, we opted to include self-loops in the attention mechanism
as follows:

h
(t+1)
i = MLP

(
∥Ll=1

(
β̂l
i,selfB

l
V,self h̃

(t)
i + β̂l

iB
l
VH

l(t)
))

, (5)
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where Bl
V,self : Rh → Rd and Bl

V : Rd → Rd; the latter operates on each l-th head representation
Hl(t) separately, mantaining their independence. The attention weights are obtained with a slight
modification of Eq. (2), by defining

βl
i,self = (bl)⊤LeakyReLU(Bl

Qh̃
(t)
i +Bl

K,self h̃
(t)
i )

βl
i = (bl)⊤LeakyReLU(Bl

Qh̃
(t)
i +Bl

KH
l(t) +Bl

EEi);
(6)

these are then normalized using Softmax, as defined in Eq. (3), to obtain the final attention weights
β̂l
i,self and β̂l

i. A Multi-layered Perceptron (MLP) mixes the contributions from different heads at
the end of the broadcast phase, effectively integrating different classes of non-local interactions.
Remarkably, this method enables transfer of information across the system with a computational
complexity that scales linearly with the number of nodes in the input graph. This is particularly
advantageous when considering predictions on large systems, as it represents an improvement over
standard FFT-based methods used for the treatment of long range interactions (e.g. Particle Mesh
Ewald in the context of molecular dynamics), whose N logN scaling might represent a bottleneck
during simulations of large molecules. While we considered a single master node in the description
above, this design limits the amount of relevant global information that can be aggregated without
loss, thereby constraining the scalability of the model. In the following section, we will address this
limitation by introducing multiple master nodes, adapting the model to tasks where the number
of nodes varies significantly across the dataset.

1.3 Spatial scalability

When several master nodes NM with indices I ∈ {1 . . . NM} are employed, each one is initialized
with a different embedding H

(0)
I , and Eqs. (1) and (2) become, respectively,

H
(t)
I = σ

(
∥Ll=1

∑
i

αl
iIA

l
V hi

)
(7)

and
αl
iI = (al)⊤LeakyReLU(Al

QH
(t−1)
I + Al

Khi + Al
EEiI). (8)

In this context, the edge features EiI can be master node-dependent but, in order to maximize
parameter sharing without sacrificing performances, the same edge features are allocated for all
master nodes. Similarly, the broadcast phase can be generalized to the case of multiple master
nodes. Each d-dimensional portion of the output vector h

(t+1)
i can select from multiple global

representations, and Eq. (5) and the second of Eq. (6) become, respectively,

h
(t+1)
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and
βl
iI = (bl)⊤LeakyReLU(Bl

Qh̃
(t)
i +Bl

KH
l(t)
I +Bl

EEiI). (10)

After normalizing, a regularization parameter

λI ∈

{
{1} if I = 1

[0, 1) if I > 1,
(11)
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biased on the system size, rescales the contribution from each master node during broadcast by:

ΛI(n) = λ
γ(n)
I (12)

γ(n) = (1 + aI)|max[0, (1− n)] + tanh(bI)min[1, n]|. (13)

Here, aI and bI are positive trainable parameters, and n = (N − Nmin)/(Nmax − Nmin) is the
normalized number of nodes in the graph, with Nmin and Nmax being the minimum and maximum
number of nodes present in the dataset during training, respectively. While the scalar λ1 is
designed always to ensure at least one fully activated master node, the intensity of all the λI ̸=1

is controlled by the factor γ(n) as a function of the system size n. Intuitively, γ(n) should a)
decrease with n, following the intuition that larger molecules need larger capacity per head, and
b) always be greater than zero. Given these requirements, we opted for the parametric function
in Eq. (13), enforcing γ(n) > 1 for small molecules and γ(n) < 1 for large molecules, with the
values aI and bI controlling this behavior. Finally, the broadcast attention weights are rescaled as
follows:

β̂l
iI ← ΛI(n)β̂

l
iI for I ∈ {1 . . . NM}. (14)

Approaches as the one delineated in Eq. (14), which aim at regularizing the overall usage of a
given node in the trained model, are theoretically motivated3 and have been proven effective in
real word scenarios4.

1.4 Application to equivariant models

Typically, SE(3)-equivariant MLFFs are designed considering 1) an invariant features represen-
tation, and 2) a set of high-order equivariant features; a mixing step is often implemented to
exchange information between the two representations5–8. The RANGE aggregation and broad-
cast procedures, as defined in Eq. (1) and Eq. (5), cannot be directly applied to SE(3)-equivariant
features due to the presence of nonlinear transformations. In agreement to other designs9,10, we
transfer long-range information via the invariant features and possibly propagate it to the equiv-
ariant embeddings via the mixing step in the baseline model. While it is possible to explicitly
incorporate higher-order equivariant features in the aggregation-broadcast scheme, this design
choice maximizes computational efficiency and enables modularity in RANGE.

Supplementary Note 2: Datasets

All the models reported in the main manuscript have been trained on energies and forces of
configurations extracted from the QM7-X11, AQM12, and MD2213 atomic datasets. The labels
are calculated at the DFT level of theory, with either the PBE or PBE0 exchange-correlation
functional. All datasets include explicit treatment of van der Waals interactions, that are pre-
dominantly long-range, via many-body dispersion (MBD)14–17.

2.1 QM7-X

The QM7-X dataset comprises 42 physicochemical properties calculated for ∼ 4.2 millions equi-
librium and non-equilibrium structures of organic molecules with up to 23 atoms. These cover the
set of elements that is the most predominant in biomolecules, that is H, C, N, O, S, Cl. In order to
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better represent the effect of long-range interactions, a subset of QM7-X encompassing structures
with more than 20 atoms was selected to train and validate the different models. The reduced
dataset contains approximately 200 000 different structures, with 99% of all pairwise distances
below 7Å and an average of 3.4± 1.3Å.

2.2 AQM

The Aquamarine dataset contains over 40 global and local physicochemical properties of ∼ 60 000
low- and high-energy conformers of 1 653 molecules with up to 92 atoms, both in gas phase
and implicit water12. In our tests, we only considered the gas phase version of the dataset and we
further filtered out all structures with less than 30 atoms. This selection led to ∼ 52 000 structures
with mean pairwise distance of 6 ± 3Å. Approximately 65% of all pairwise distances are below
7Å, 83% are below 9Å and 95% are below 12Å.

2.3 DHA

We selected the portion of the MD22 dataset associated to the Docosahexaenoic Acid (DHA), a
lipid of biological interest composed of 56 atoms. Atomic and molecular properties are reported
for ∼ 70 000 structures. The mean pairwise distance between the atoms of each molecule in the
dataset is 6± 3Å with 63% of them below 7Å, 81% below 9Å and 94% below 12Å.

Supplementary Note 3: Model training

All the models where trained using the combined force and energy loss:

L = α
N∑
i=1

|Ei − E(Xi; θ)|2 +
N∑
i=1

|Fi +∇E(Xi; θ)|2. (15)

Here, N is the number of molecules, Ei and Fi are the potential energy and forces acting on
the i-th molecule. E(Xi; θ) and ∇E(Xi; θ) are energy and forces predicted by the model, that
depend on the network parameters θ. Finally, α is a scalar value controlling the relative numerical
weight between force and energy contribution. A term that acts specifically on the parameters
that regulate the activation of multiple master nodes is introduced in the loss function as

Lreg =
∑
I

δ|λI + aI + bI |, (16)

where the scalar δ was set to 2.0 during all the trainings. All models were trained on the QM7-X
and AQM datasets for 200 epochs, while the training on the DHA dataset was extended to 500
epochs. The AdamW18 optimizer was used in all training, with initial learning rate of 0.0001 and
a weight decay of 0.01. For the first 125 epochs, α was set to 0.01, and subsequently increased
to 0.1. A linear scheduler was used with a gamma factor of 0.8 and learning rate step size of
19 for optimizing the model parameters, 6 for the regularization parameter λI , and 8 for the
parameters aI and bI . In order to scale different parameter groups with different step sizes, we
employed a custom implementation of the standard LinearLR class in the PyTorch library19.
Model hyperparameters are reported in Supplementary Table 1 and Supplementary Table 2.
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Supplementary Table 1: Training hyperparameters. Neural network hyper-
parameters used for all baseline models and their RANGE counterparts.

Training setup

Hidden channels (H) 512
Number of Filters (L) 512
Interaction Blocks (T ) 3
Activation tanh
Cutoff function CosineCutoff
Distance Expansion Basis Gaussian RBF20

Master node RBF dimension 7
Output Network MLP, 2 layers, [128,64] features
Output Prediction energy, forces
Attention heads 16

Supplementary Table 2: Radial basis expansion. Dimension of the radial basis
expansion used in all baseline models and their RANGE counterparts for different
cutoff radii.

Radius (Å) Number of RBF Number of RBF
SchNet PaiNN

4.0 27 -
5.0 33 20
7.0 47 28
9.0 60 36
12.0 80 48

3.1 Timing

All time measurements were performed considering the mean training time averaged over 200
epoch. To ensure accurate and reliable evaluation of this metric, all time measurements were
performed in a controlled environment: a compute node with 4 NVIDIA RTX A6000-ADA GPUs
isolated from the main compute cluster and a refrigerating system were reserved for this work in
order to avoid slow downs due to over-warming. Temperature and power were constantly measured
for every GPU during training as indicators of the experiments’ stability. The goodness of the
experimental setting is confirmed further by the low relative errors reported in Supplementary
Tables 3 and 4.

Supplementary Note 4: Simulation details

All-atom simulations of DHA were conducted using a SchNet+RANGE model with a baseline
cutoff of 5.0Å, 3 master nodes, and 16 attention heads for stability analysis. Each simulation
was run for 16 ns using a Langevin integrator at 300K, with a timestep of 2 fs. To gather robust
statistics on the conformational space exploration by each model, 20 parallel simulations were
performed. Supplementary Fig. 4 presents the time series of the radius of gyration during the
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Supplementary Figure 1: Accuracy dependence on message-passing cut-
off. The MAE on the predicted energy of the AQM dataset is reported for a) SchNet
and b) PaiNN, and the same models with the RANGE extension, as a function of
the message-passing cutoff. All the reported values are averaged on 4 models inde-
pendently trained with different dataset seeds.

simulations. Notably, the model successfully explored a diverse range of DHA conformations,
spanning compact and extended states.

Supplementary Note 5: Interpretation and singular value de-
composition analysis

For each configuration in the validation set of DHA, VDHA, two N dimensional vector, containing
aggregation and broadcast weights of the master node with λ1 = 1 during the last interaction
block, are stored as matrix rows to analyze the attention patterns of the RANGE model. The two
matrices of size |VDHA|×N are decomposed in singular values for every attention head separately.
Supplementary Fig. 5 shows the results for aggregation and broadcast. Singular values within
each matrix are normalized with respect to their maximum, highlighted in red. A single, dominant
pattern associated to an N -dimensional principal component emerges, and its coefficients can be
mapped onto the molecular graph with a color index (Supplementary Fig. 6).
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Supplementary Figure 2: MAE of the regularized and non-regularized
RANGE model. Energy MAE of the regularized and non-regularized RANGE
models with different number of master nodes are reported for the a) QM7-X and b)
AQM datasets. The gray line represents the lowest MAE achieved by the baseline
model upon increasing the message-passing cutoff. All the reported values are aver-
aged on 4 models independently trained with different dataset seeds.

Supplementary Figure 3: Magnitude of the regularization. Comparison of
mean molecular broadcast attention weights between the non-regularized and reg-
ularized SchNet+RANGE model with 3 master nodes on the AQM dataset. The
regularized model effectively reduces the relevance of nodes 1 and 2, mitigating the
redundancy observed in the non-regularized model, for the smallest samples in the
validation set.
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Supplementary Table 3: Accuracy and training time on QM7-X, AQM,
and DHA datasets. Accuracy and training time are reported for different SchNet
models, and the RANGE model with varying number of master nodes M (1, 2, and
3). Non regularized RANGE models are indicated as RANGE-NR. All the reported
values are averaged on 4 models independently trained with different dataset seeds.
The best results are in bold lettering.

Model MAE energy MAE forces Training time
[meV] [meV/Å] [min/epoch]

QM7-X

Baseline 4 Å 39.2± 1.8 51.4± 0.1 0.809± 0.002
Baseline 5 Å 34.6± 1.3 47.3± 0.1 0.993± 0.003
Baseline 7 Å 33± 2 45.0± 0.2 1.123± 0.002
Baseline 9 Å 30.5± 0.8 43.9± 0.2 1.131± 0.002
RANGE 4 Å (1xM) 24.4± 1.4 33.3± 0.4 1.243± 0.005
RANGE 4 Å (2xM) 22.3± 0.4 32.73± 0.12 1.316± 0.005
RANGE 4 Å (3xM) 22.6± 0.6 32.57± 0.14 1.391± 0.004
RANGE-NR 4Å (2xM) 25± 3 33.4± 0.3 1.32± 0.01
RANGE-NR 4Å (3xM) 23.9± 1.3 33.6± 0.4 1.40± 0.02

AQM

Baseline 5 Å 46.6± 1.1 20.3± 0.2 0.831± 0.002
Baseline 7 Å 41± 3 18.6± 0.2 1.257± 0.002
Baseline 9 Å 39.0± 1.4 18.6± 0.3 1.550± 0.002
Baseline 12 Å 39.7± 1.4 18.7± 0.3 1.791± 0.003
RANGE 5 Å (1xM) 29.9± 0.8 13.6± 0.3 1.212± 0.005
RANGE 5 Å (2xM) 29.5± 0.4 13.4± 0.4 1.250± 0.006
RANGE 5 Å (3xM) 27.8± 1.4 12.9± 0.4 1.284± 0.006
RANGE-NR 5Å (2xM) 32± 2 14.4± 0.7 1.241± 0.002
RANGE-NR 5Å (3xM) 36.4± 1.5 15.1± 0.3 1.267± 0.005

DHA

Baseline 5 Å 34.9± 0.3 40.9± 0.3 -
Baseline 7 Å 28.2± 0.3 37.2± 0.2 -
Baseline 9 Å 25.1± 0.1 36.2± 0.1 -
Baseline 12 Å 23.1± 0.4 36.0± 0.2 -
RANGE 5 Å (1xM) 16.6± 0.3 26.6± 0.1 -
RANGE 5 Å (2xM) 16.00± 0.08 26.0± 0.1 -
RANGE 5 Å (3xM) 15.7± 0.4 25.7± 0.2 -
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Supplementary Table 4: Accuracy and training time of SchNet+RANGE
and PaiNN+RANGE on the AQM dataset. Accuracy and training time are
reported for different SchNet and PaiNN models, and their RANGE-corrected vari-
ants. All the reported values are averaged on 4 models independently trained with
different dataset seeds. The best results are in bold lettering.

Model MAE energy MAE forces Training time
[meV] [meV/Å] [min/epoch]

Sc
hN

et

Baseline 5 Å 46.6± 1.1 20.3± 0.2 0.831± 0.002
Baseline 7 Å 41± 3 18.6± 0.2 1.257± 0.002
Baseline 9Å 39.0± 1.4 18.6± 0.3 1.550± 0.002
Baseline 12Å 39.7± 1.4 18.7± 0.3 1.791± 0.003
RANGE 5 Å 27.8± 1.4 12.9± 0.4 1.284± 0.006
RANGE 7 Å 28± 2 12.7± 0.3 1.692± 0.017
RANGE 9 Å 27.0± 0.4 12.9± 0.3 1.971± 0.011
RANGE 12 Å 28.5± 1.5 13.5± 0.3 1.971± 0.011

P
ai

N
N

Baseline 5 Å 24.5± 0.7 8.92± 0.14 3.103± 0.005
Baseline 7 Å 21.2± 0.4 8.59± 0.14 4.705± 0.006
Baseline 9 Å 22± 2 8.7± 0.3 5.6± 0.4
Baseline 12Å 20.4± 0.2 8.62± 0.12 6.692± 0.003
RANGE 5 Å 19.5± 0.5 7.68± 0.17 3.71± 0.01
RANGE 7 Å 18.7± 0.7 7.30± 0.06 5.28± 0.01
RANGE 9 Å 19.1± 0.5 7.26± 0.18 6.422± 0.008
RANGE 12 Å 19.1± 0.4 7.47± 0.17 7.24± 0.02
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