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1. Chemicals and materials

All chemicals were commercial and used without further purification unless otherwise
stated. Sodium tetrachloropalladate, benzylacetone and other related reagents were
purchased from Aladdin Chemical Co Ltd (Shanghai, China) and McLean Biochemical
Technology Co Ltd (Shanghai, China). NADH-dependent medium-chain alcohol
dehydrogenase (ADHa) from Rhodococcus ruber is used.
2. Characterization

Powder X-ray diffraction (PXRD) patterns were recorded using Bruker AXS DS. Fourier
transform infrared spectra (FT-IR) were obtained on Bruker VECTOR22 spectrometer
using KBr as reference. X-ray photoelectron spectroscopy (XPS) was performed by
Thermo Scientific K-Alpha X-ray photoelectron spectrometer. The microstructure was
characterized by transmission electron microscope (TEM, FEI Talos F200S) and (Spectra
Ultra) Double Cs-Corrected TEM (JEM-ARM300F). The contents of Pd were quantified
by an Agilent 5110 inductively coupled plasma optical emission spectrometry (ICP-OES).
NMR spectra were recorded using a Bruker AV 400 spectrometer. Pd K-edge analysis was
performed with Si (111) crystal monochromators at the BL14W1 beamlines at the Shanghai
Synchrotron Radiation Facility (SSRF) (Shanghai, China). Before the analysis at the
beamline, samples were pressed into thin sheets with 1 cm in diameter and sealed using
Kapton tape film. The XAFS spectra were recorded at room temperature using a 4-channel
Silicon Drift Detector (SDD) Bruker 5040. Pd K-edge extended X-ray absorption fine
structure (EXAFS) spectra were recorded in fluorescence mode. Negligible changes in the
line-shape and peak position of Pd K-edge XANES spectra were observed between two
scans taken for a specific sample. The XAFS spectra of these standard samples (Pd-foil and
PdO) were recorded in transmission mode. The spectra were processed and analyzed by
the software codes Athena and Artemis. The conversion and enantiomeric excess were

determined by HPLC analysis.



3. Methods for sample preparation

The catalyst was added to pre-cooled 2.5% glutaraldehyde in 1.5 mL centrifuge tubes
and fixed at 4 °C for 12-24 h, then washed three times using PBS. It was dehydrated using
a gradient of 30%, 50%, 70%, 80%, and 95% acetone (15 min each), followed by two 20-
minute treatments with 100% acetone. The catalyst was sonicated, homogenized, and then
placed on copper mesh for TEM and spherical aberration electron microscopy

characterization. Transmission electron microscopy of biological sections was further

embedded and sectioned. Other characterizations (ICP-OES, XRD. XPS. FT-IR etc.)

were made directly using lyophilized catalyst powders.
4. Enzyme expression
The gene encoding of the alcohol dehydrogenase (ADHa)/amine dehydrogenase
(AmDH)/monoamine oxidase (MAQO) were inserted into expressing vector pET-28a (+),
and the recombinant plasmids were transformed into E. coli BL21 (DE3) as the host
organism for heterologous expression. Recombinant E. coli BL21 (DE3) strain was
cultured in 10 mL LB media containing 50 pg/mL ampicillin (final concentration) at 37 °C
and 180 rpm overnight. Next, 0.5 mL preculture was inoculated into a shake flask
containing 50 mL TB media with 50 pg/mL ampicillin, cultured at 37 °C and 180 rpm until
the optical density (ODeoo) reached 0.6-0.8. The expression of the enzyme was induced by
the addition of 0.5 mM IPTG (final concentration) and performed at 24 h at 20 °C. Then,
the cells were harvested by centrifugation (5000 rpm, 4 °C, 10 min) and washed several
times with precooling potassium phosphate buffer (50 mM, pH 7.5).
5. Preparation of SA-Pdx@cell-ADHa
SA-Pdx@cell-ADHa were synthesized by biodeposition and in-situ reduction of sodium
tetrachloropalladate on cells. Cells (cell-ADHa, 20 mg/mL) were fully resuspended in PBS
(50 mM, pH 7.5), then NaPdCls (0.06/0.125/0.25/0.5/1/1.5/2/2.5/3/3.5/4 mM) aqueous
solution was added and the mixture was shaken in a water bath shaker (180 rpm, 30 °C) for
3 h. Then, an appropriate amount of NaBH4 was added for 2 min of reduction. Subsequently,
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SA-Pdx@cell-ADHa was obtained by centrifugation (7500 rpm, 4 °C, 5 min) and washed
three times with pre-cooled PBS, stored at -20 °C.
6. Preparation of Sii@SA-Pdx@cell-ADHa

The silica coated SA-Pdx@cell-ADHa catalysts (Sit@SA-Pdx@cell-ADHa) were
prepared as follows: Firstly, SA-Pdx@cell-ADHa (2 g) was resuspend sufficiently in 100
mL PBS buffer solution (50 mM, pH=7.5). Subsequently, Tetraethyl orthosilicate (TEOS)
(90 mM) was added and hydrolyzed for 20 min before slow dropwise addition of 3-
aminopropyltriethoxysilane (APTES) (11.25/ 22.5/45/90 mM). The mixture continued to be
shaken at 30 °C for 1 h. Then, Sit@SA-Pdx@cell-ADHa was harvested by centrifugation

(7500 rpm, 4 °C, 5 min) and washed three times with pre-cooled PBS, stored at -20 °C.

7. Procedure for C=0 bond reduction over SA-Pdx@cell-ADHa
0] OH

©/\)\ SA-Pd,@cell-ADHa,NAD* (j/\/k
Solvent, T o

The benzylacetone (50 mM) was dissolved in 2 mL PBS buffer (50 mM, pH 7.5)
containing 100 mg SA-Pdx@cell-ADHa, NAD" (15 mM), i-PrOH (15%, v/v). The reaction

mixture was shaken at a 40 °C incubator for 2 h. After the reaction finished, the solution

was extracted using hexane (3 x 10 mL). The products were determined by HPLC analysis.

8. Procedure for the fully asymmetric reduction of enones over SA-Pdx@cell-ADHa
0] OH

X SA-Pd,@cell-ADHa
RE NADT L RE
= - =

The reaction was conducted in a dry Schlenk tubes, the corresponding enones (50
mM/10 mM) was dissolved in 2 mL PBS buffer (50 mM, pH 7.5) containing 100 mg SA-
Pdi@cell-ADHa, NAD" (15 mM), i-PrOH (15%, v/v ).The reaction mixture was stirred at

40 °C for 2 h under the hydrogen atmosphere. After the reaction finished, the solid catalyst

was recovered by centrifugation, while the filtrate was extracted with hexane (3 x 10 mL).

The products were determined by HPLC or GC analysis.



9. Procedure for the synthesis of racemic alcohols

O NaBH,4 OH
R)J\ 0°C R)\

A solution of corresponding ketone (100 mM) was first cooled in ethanol to 0 °C.
Solid NaBH4 (120 mM) was then added to the reaction mixture over the course of 1 h. The
suspension was stirred at 0 °C for an additional hour. To quench the excess NaBH4, a
saturated aqueous solution of NH4Cl was added dropwise. Once the quenching was
complete, the mixture was poured into a separatory funnel containing water (100 mL). The
organic phase was extracted with dichloromethane (CH>Cl>, 3 x 30 mL). The combined
organic layers were washed with brine (50 mL), and then dried over MgSOs. After filtering
the combined organic layers, the solvent was removed under reduced pressure. Finally, the
crude reaction mixture was purified by column chromatography on silica gel, using mixture

of hexane and EtOAc (80:20) as the eluent.

10. Procedure for stability tests
Thermal stability test: The catalysts Sizs@SA-Pdoo7@cell-ADHa, SA-Pdoor@cell-

ADHa and Pd/C +free cell-ADHa system were incubated at 70 °C for a certain period of

time, and an appropriate amount of them was taken out after an interval of 6 h, which was
used in the general procedure for fully asymmetric reduction of enones, and the relative
catalytic activities with the initial catalysts were detected.

pH stability test: Sizs@SA-Pdoo7@cell-ADHa, SA-Pdo.97@cell-ADHa and Pd/C catalysts
+free cell-ADHa system were incubated in buffer solutions at pH 5 and pH 11 for a certain
period of time, and an appropriate amount of the catalysts was removed after a certain time
interval to be used in the general procedure for the fully asymmetric reduction of ketene
and examined for the catalytic activity in comparison with that of the initial catalysts.
catalytic activity with respect to the initial catalyst.

Mechanical stability test: Si7¢@SA-Pdoo7@cell-ADHa, SA-Pdo 97@cell-ADHa and Pd/C
catalysts +free cell-ADHa were stirred vigorously at 1800 rpm for a period of time, and
equal amounts of the catalysts were removed at intervals to be used in a general procedure
for the fully asymmetric reduction of enones and tested for their relative catalytic activity

compared to that of the initial catalyst. catalytic activity with respect to the initial catalyst.



Storage stability test: Sizs@SA-Pdo.g7@cell-ADHa, SA-Pdo.o7@cell-ADHa were stored
at -20 °C, and equal amounts of the catalysts were removed at intervals to be used in the
general procedure for the fully asymmetric reduction of alkenones and tested for their
relative catalytic activity to that of the initial catalysts.
11. Procedure for reusability test

Trans-benzylideneacetone (50 mmol), catalyst, isopropanol (15%, v/v), NAD", and
PBS (1.7 mL) were added to a dry Schlenk tube and the reaction mixture was stirred at a
temperature of 40 °C under a hydrogen atmosphere for 2 h. Upon completion of the
reaction, the catalyst was recovered by centrifugation and washed twice with PBS to

proceed to the next cycle. The supernatant was extracted using hexane and the relative

activity of the catalyst after each cycle was detected by liquid chromatography.

12. The synthesis of chiral amines from enones catalyzed by SA-Pd@cell-AmDH

The reaction was carried out in a dry Schlenk tube by dissolving trans-

benzylideneacetone in 2 mL of NH4C1l/NH3-H>O buffer (2 M, pH = 10) containing 100 mg
of SA-Pd@cell-ADHa, NAD" (0.4% eq.), GDH, and glucose, and stirred the mixture for 2
hat40 °Cunder hydrogen gas. After the reaction finished, the solid catalyst was recovered
by centrifugation and the filtrate was extracted with ethyl acetate (3 x 10 mL). The

products were quantitatively analyzed by GC analysis.

13. Deracemisation progress of 1-phenyl-1,2,3,4-tetrahydroisoquinoline by SA-
Pd@cell-MAO
1-phenyl-1,2,3,4-tetrahydroisoquinoline (PTQ) (10 mM), SA-Pd@cell-MAO were
added to a 25 mL Schlenk tube containing 4.5 mL of PBS (100 mM, pH=7.5) and 0.5 mL
of iso-octane, and the oxidation process was carried out in an open-mouth reaction for 6 h

at 35 °C. The air in the reaction vials was then expelled by a vacuum pump, and a balloon

was connected to provide hydrogen gas for the reaction. The reduction process was carried

out at 35 °C for 6 h. The oxidation and reduction processes were repeated five times. The

reaction was centrifuged and extracted with the supernatant of methyl tert-butyl ether, and

the yields and ee values were determined by HPLC analysis.



14. Preparation of SA-Au@cell and the catalytic reduction of p-nitrophenol
SA-Au@cell were synthesized by biodeposition and in-situ reduction of sodium
tetrachloropalladate on cells. Cells were fully resuspended in PBS (50 mM, pH 7.5), then
HAuCl4 aqueous solution (1 mM) was added and the mixture was shaken in a water bath
shaker (180 rpm, 30 °C) for 3 h. Then, an appropriate amount of NaBH4 was added for 2
min of reduction. Subsequently, SA-Au@cel was obtained by centrifugation (7500 rpm,
4 °C, 5 min) and washed three times with pre-cooled PBS. Then, kinetic experiments for
the reduction of p-nitrophenol (p-NP) were conducted in a 4 mL quartz cuvette using a
UV-vis spectrophotometer. In brief, 200 mg of SA-Au@cell, 2.7 mL of water, 100 pL of
0.2 M p-NP, and newly prepared 150 uL. of NaBH4 (0.1 M) were mixed in the 4 mL quartz
cuvette. The progress of the reaction was monitored by tracking the change in p-NP peak

intensity at 400 nm over time.



Figure S1. STEM, HAADF-STEM and elemental mapping images for the SA-Au, 72@cell catalyst.

10



SA-AUZ.72@C9"
- -
0

Absorbance (a.u.)

6h

| |
400 450 500

Wavelength (nm)

= |
300 350

Figure S2. UV spertrum of SA-Au, n@cell catalyzing the formation of p-aminophenol from p-nitrophenol.

11



Figure S3. The HAADF-STEM image (i) and the elemental mapping images (ii-vi) of SA-Pdo.o7@cell-ADHa.
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Figure S4. The FT-IR spectra of cell-ADHa, SA-Pdy ¢7@cell-ADHa and Sizs@SA-Pdo.o7@cell-ADHa.
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Figure S5. STEM images for the integrated catalysts prepared using various concentrations of Na,PdCls.
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Figure S6. High-resolution (a) Nls and (b) P2p XPS spectra of cell-ADHa, SA-Pdy¢;@cell-ADHa and
Pdss1@cell-ADHa.
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Figure S7. Reaction process curves for the (a) SA-Pdoss@cell-ADHa and (b) SA-Pdo.97@cell-ADHa.
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Figure S9. The biological transmission electron microscope (Bio-TEM) and elemental mapping images for
the SA-Pdo ss@cell-ADHa cross-section.
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Figure S10. The optimization of reaction conditions for one-pot cascade catalyzed enone hydrogenation of
SA-Pdog7@cell-ADHa.
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Figure S11. The TEM images of the (a) Sizs@SA-Pdo.o7@cell-ADHa after 18 cycles and (b) SA-Pdg.o7@cell-
ADHa after 6 cycles.
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Table S1. Palladium content of catalysts.

Addition of Na;PdCl4 Pd content Catalysts name
(mM) (Wt%)

0.0625 0.06 SA-Pdj.os@cell-ADHa
0.125 0.18 SA-Pdj.is@cell-ADHa
0.25 0.46 SA-Pdo4s@cell-ADHa
0.5 0.74 SA-Pdy s@cell-ADHa
1 0.97 SA-Pdo.g7@cell-ADHa
1.25 1.54 SA-Pd, ss@cell-ADHa
1.5 2.46 SA-Pd; ss@cell-ADHa
2 2.96 SA-Pdaes@cell-ADHa
2.5 3.57 SA-Pd; s;@cell-ADHa
3 4.12 SA-Pds 1x@cell-ADHa

3.5 4.98 Pdsos@cell-ADHa

4 561 Pds ¢1@cell-ADHa

21



Table S2. Performances of various single atom Pd catalyst preparation.

SAC Catalyst Carrier Precursor Temperature [°C] Pd [wt%] Ref
This
SA-Pd@cell-ADHa E.coli cell Na,PdCly r.t. 4.12
work
Pd1/ND@G ND@G Pd(NO)3 100 0.11 !
Pd/MVF MVF PdClL, 60 1.11 2
Pd/TiO, TiO, H,PdCl4 350 0.0475 3
Pd/TiO-anatase TiO»-anatase Pd(NH3)4(NO3)2 400 0.0125 4
Pd1/TiOo(EG— .
. TiO, H,PdCl4 1.t 1.5 5
stabilized)
Pd-NC NC H,PdCly4 900 2.95 6
1Pd/ceria-800* Calcined-CeO; HsNsO;Pd* 800 1 7
Nitrogen-doped
Pd1/N-graphene Na,PdCly 800 2.91 8
graphene
Pdo.033/TP-TTA/SiO2 TP-TTA/SiO; Pd(CH3CN)Cl, 200 0.033 o
Pd1/NOC/ALO3 NOC/ALO3 Na,PdCl4 400 0.41 10
Pd-SAs/3ADOM-CeO, 3DOM-CeO, (NH4),PdCl4 450 1.76 i
Pd;/a-MoC a-MoC Pd(NO:3), 700 5 12
enzyme—pluronic
Pd;/CALB-P . PdCl, r.t. 4.0 13
conjugate
SA-Pd@GS G. sulfurreducens PdANO;-2H,0 30 0.2 14
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Table S3. EXAFS fitting parameters at the Pd K-edge for various samples.

Sample shell CN* R(A)’ o} (A% AEy(eV)? | Rfactor

Pd foil Pd-Pd 12* | 2.733+£0.002 | 0.0051+£0.0002 | 1.7+£0.3 | 0.0021

Pd-O | 4.2+0.3 | 2.071+0.002 | 0.0010+0.0008 | 4.3+0.5

PdO Pd-Pd | 3.6+0.5 | 3.022+0.001 0.0057
0.0034+0.0008 | -1.1+0.4

Pd-Pd | 8.2+1.2 | 3.413+0.001

SA-Pdog7@cell-

Pd-O | 3.5+0.4 | 2.044+0.012 | 0.0029+0.0016 | 3.7£1.6 | 0.0111
ADHa

N is the coordination number; R is interatomic distance; o? is Debye-Waller factor; AE) is edge-energy shift;

R factor is a measure of the goodness of the fitting. Error bounds that characterize the structural parameters

obtained by EXAFS spectroscopy were estimated as N+20%; R+1%; ¢2+20%; AEo+20%.
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NMR data

on HNMR (600 MHz, DMSO-ds) 3 7.26 (t, J = 7.7 Hz, 2H), 7.21 = 7.17 (m,
2H), 7.15 (td,J=7.3, 1.4 Hz, 1H), 4.45 (d,/=4.8 Hz, 1H), 3.59 (dh, J=11.2,
5.9 Hz, 1H), 2.61 (dddd, J=56.1, 13.6, 9.6, 6.4 Hz, 2H), 1.66 — 1.54 (m, 2H),
1.08 (d,J= 6.1 Hz, 3H). *C NMR (151 MHz, DMSO-ds) & 142.94, 128.70, 128.68, 125.96, 65.70,
41.36, 32.06, 24.07. HPLC conditions: CHIRALCEL®OD-H (cellulose  tris(3,5-

dimethylphenylcarbamate) coated on silica gel); mobile phase, n-hexane/ isopropyl alcohol (99/5);

flow rate, 1 mL/min; column temperature 30 °C.

OH 'HNMR (400 MHz, Chloroform-d) § 7.25 (d, J= 1.9 Hz, 1H), 7.23 (d, J
/©/\)\ = 1.7 Hz, 1H), 7.16 — 7.13 (m, 1H), 7.12 (s, 1H), 3.81 (g, J= 6.3 Hz, 1H),

o 2.68 (ddq, J = 30.2, 14.4, 8.0 Hz, 2H), 1.73 (ddd, J = 14.5, 9.3, 3.2 Hz,
2H), 1.42 (s, 1H), 1.22 (dd, J = 6.2, 1.6 Hz, 3H). 3C NMR (101 MHz, Chloroform-d) 8 140.53,
131.52, 129.77, 128.49, 67.32, 40.69, 31.46, 23.72. HPLC conditions: CHIRALCEL®OD-H

(cellulose tris(3,5-dimethylphenylcarbamate) coated on silica gel); mobile phase, n-hexane/

isopropyl alcohol (99/1); flow rate, 1 mL/min; column temperature 30 °C.

OH 'HNMR (400 MHz, Chloroform-d) & 7.40 (dd, J= 8.2, 1.7 Hz, 2H), 7.11

—7.04 (m, 2H), 3.81 (h, J= 6.4 Hz, 1H), 2.66 (ddt, J=30.2, 13.3, 7.7 Hz,

Br 2H), 1.79 - 1.69 (m, 2H), 1.23 (dd, J = 6.2, 1.5 Hz, 3H). 13C NMR (101
MHz, Chloroform-d) & 141.04, 131.43, 130.19, 119.52, 67.31, 40.62, 31.52, 23.74. HPLC
conditions: CHIRALCEL®OD-H (cellulose tris(3,5-dimethylphenylcarbamate) coated on silica
gel); mobile phase, n-hexane/ isopropyl alcohol (99/1); flow rate, 1 mL/min; column temperature

30 °C.
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OH 'HNMR (400 MHz, Chloroform-d) & 7.24 (s, 1H), 6.22 (s, 1H), 5.94 (d, J =
0

C 3.2 Hz, 1H), 3.77 (q, J = 6.3 Hz, 1H), 2.70 (d, J= 7.7 Hz, 1H), 2.66 (d, J= 8.0

Hz, 1H), 1.72 (q, J = 7.9 Hz, 2H), 1.41 (s, 1H), 1.16 (d, J = 6.2 Hz, 3H). 1*C
NMR (101 MHz, Chloroform-d) 6 155.79, 140.93, 110.15, 104.90, 67.35, 37.37, 24.35, 23.51.
HPLC conditions: CHIRALCEL®OD-H (cellulose tris(3,5-dimethylphenylcarbamate) coated on
silica gel); mobile phase, n-hexane/ isopropyl alcohol (99/1); flow rate, 1 mL/min; column

temperature 30 °C.

OH 'HNMR (400 MHz, Chloroform-d) & 7.14 (dd, J = 5.1, 1.2 Hz, 1H), 6.94 (dd,
S

\ | J=5.1, 3.4 Hz, 1H), 6.84 (dd, /= 3.4, 1.0 Hz, 1H), 3.89 (h, /= 6.2 Hz, 1H),

2.97 (tq, J = 16.0, 8.2, 7.7 Hz, 2H), 1.94 — 1.79 (m, 2H), 1.26 (d, /= 6.2 Hz,
3H). 3C NMR (101 MHz, Chloroform-d) & 144.92, 126.79, 124.24, 123.05, 67.24, 41.00, 26.23,
23.69, 23.62. HPLC conditions: CHIRALCEL®OD-H (cellulose tris(3,5-dimethylphenylcarbamate)
coated on silica gel); mobile phase, n-hexane/ isopropyl alcohol (99/1); flow rate, 1 mL/min;

column temperature 30 °C.

NH, 'H NMR (600 MHz, DMSO-de) & 7.26 (t, J = 7.6 Hz, 2H), 7.21 — 7.18 (m,

2H), 7.15 (t, J = 7.3 Hz, 1H), 2.73 (q, J = 6.3 Hz, 1H), 2.65 — 2.55 (m, 2H),

1.51 (dtd, J=9.3, 6.8, 3.3 Hz, 3H), 0.99 (d, J = 6.3 Hz, 3H). *C NMR (151

MHz, DMSO-ds) & 143.04, 128.68, 128.67, 125.95, 46.43, 42.22, 32.59, 24.60. GC conditions:
Agilgent CP-Chirasil Dex CB (df = 0.25 um, 0.32 mm i.d. X 25 m); carrier gas, N, (flow 30
mL/min); injection temp, 280 °C; initial column temperature 100 °C, then progress rate, 5 °C/min;

final column temperature, 200 °C.
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"H NMR (600 MHz, DMSO-ds) & 7.30 (t, J= 7.5 Hz, 2H), 7.25 (d, J= 7.5 Hz, 3H),

O N 715-7.10 (m, 1H), 7.09 (t, J= 7.3 Hz, 1H), 7.02 — 6.96 (m, 1H), 6.62 (d, J=7.7
O Hz, 1H),4.97 (s, 1H), 3.12—-3.06 (m, 1H), 2.95 - 2.86 (m, 2H), 2.81 —2.68 (m, 2H).

BC NMR (151 MHz, DMSO-ds) & 139.30, 129.32, 129.24, 128.47, 127.97, 127.27,

125.65, 39.57, 29.72. HPLC conditions: CHIRALPAK®AD (amylose tris(3,5-
dimethylphenylcarbamate)coated on silica gel); mobile phase, n-hexane/ isopropyl alcohol (99/5);

flow rate, 1 mL/min; column temperature 30 °C.
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GC traces for products
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