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Fig. S1 TGA plots of UiO-66-NH2 and OCBs@Fe3O4@UiO-66-SH

Table S1 Comparison of adsorption capacity of adsorbents reported for Au(III) adsorption in the literature with the adsorption capacity of our adsorbent 
	Adsorbents 
	Adsorption capacity (mg/g) 
	Adsorption
conditions 
	Eq time 
	Ref.

	N-containing polymer (Zn based-MOP) 
	 1073  
	pH 3.23, 25 ◦C 
	350 min at
279 mg/L 
	[1]

	Metal-organic polymer
(Cu-based-MOP) 
	1317 
	pH 4.48, 25 ◦C 
	400 min at
53 mg/L 
	[2]

	2,5-TP (Zn-MOF)
	1253 
	pH 7, 25 ◦C 
	16 h at 300 mg/L 
	[3]

	S,N-rich MOF1
	1891
3680 
	pH 2.57, 25 ◦C
pH 2.57, 55 ◦C 
	8 min at 9.6 mg/L
180 min at 93 mg/L 
	[4]

	CoFe2O4@S–CoWO4
	1049 
	pH 3, 25 ◦C 
	10 h at 100 mg/L
	[5]

	M-Cu- BDC- NH2 2
	1184   
	pH 3, 25 ◦C 
	5 min at100 mg/L
	[6]

	DB18C6-HCP3 
	1667 
	pH = 11, 25 ◦C 
	40 min   
	[7]

	OCBS@Fe3O4@UiO-66-SH
	1587
	adsorbent dose = 10 mg; solution volume= 30 mL, pH= 6 at 50  
	40 min      
	present work


1 Cr-based MOF with adenine and 4,4′-thiodiphenol as organic ligands 
2 BDC-NH2: 2-amino-1,4-benzenedicarboxylic acid 
3 Cross-linked dibenzo-18-crown-6 (DB18C6) and dibenzo-24-crown-8 (DB24C8)   

 Adsorption equilibrium isotherms
Different models are available to describe the adsorption process, including the Langmuir isotherm, which assumes that only one layer is formed on the adsorbent surface and no further adsorption occurs after the formation of this layer. Furthermore, this model assumes that the adsorbed molecules do not move across the surface and that the adsorption occurs on a homogeneous surface with a finite number of identical sites with constant adsorption energy [8–10]. The Langmuir isotherm is presented as following equation:
	
	(1)


Symbols qm (mg/g), KL (L/mg), Ce (mg/L), and qe (mg/g) represent the maximum adsorption capacity, Langmuir constant, equilibrium concentration, and adsorbed solute quantity, respectively [11]. The graph’s slope and intercept can help calculate qm and KL by plotting 1/qe against 1/Ce and analyzing the outcomes.
[bookmark: _Hlk170197636]Freundlich adsorption isotherm is another model for adsorption, in which it is assumed that the surface is heterogeneous and there are sites with different energies (exponential distribution). Its linear form is expressed as [12]:
	
	(2)


In this regard, KF is the Freundlich constant and shows the maximum amount of material that can be adsorbed on the unit mass of the adsorbent. Freundlich exponent (n) shows the intensity of the absorption process, values higher than 1 indicate strong absorption, and n between 0 and 1 indicates weak absorption. At n > 1, the absorption increases rapidly with increasing adsorbent concentration, suggesting the presence of pores or gaps in the adsorbent surface that can accommodate several adsorbent molecules [9, 13, 14]. 
The Temkin isotherm is another mathematical model that takes into account the interactions between adsorbate molecules. According to this model, the heat of adsorption decreases linearly with increasing surface coverage due to adsorbate-adsorbate interactions decreasing the adsorption energy [10, 15]. Its linear form is denoted as: 
	  
	(3)


In this equation, B (in J/mol) is the heat of absorption, A (L/g) is the Tamkin isotherm constant, which is related to the maximum adsorption capacity and Ce is the equailibrium concentration  [16]. Fig. S2 illustrates the linear plots of the Langmuir, Freundlich, and Temkin isotherm theories for describing the Au(III) adsorption onto the OCBS@Fe3O4@UiO-66-SH adsorbent and Table S2 presents the mentioned model parameters.
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Fig. S2 Linear plots of isotherm models of (a) Langmuir (b) Freundlich, and (c) Temkin for Au(III) adsorption onto OCBS@Fe3O4@UiO-66-SH adsorbent.  

Table S2 The parameters of the Langmuir, Freundlich, and Temkin isotherms for the Au(III) adsorption onto the OCBS@Fe3O4@UiO-66-SH adsorbent 
	Model
	Parameter
	Value

	Langmuir
	qm (mg.g)
	1587.30

	
	KL (L/mg)
	0.0252

	
	R2
	0.9959

	Freundlich
	KF (mg/g. L1/n mg-1/n)
	164.21

	
	n
	5.534

	
	R2
	0.9064

	Temkin  
	A  (J/mol)
	0.3760

	
	B (L/mg)
	335.86

	
	R2
	0.8968


 
In the Langmuir model, a qm value of 0.1587 mg Au(III) per gram of adsorbent was obtained, showing a small difference (3%) between the theoretical and experimental value for qm (1536 mg/g). This slight difference confirms that the model describes the experimental conditions well. Using the Langmuir model, KL was calculated to be 0.0252 L/mg, which is small and indicates a weak association between the adsorbent and adsorbed molecules. The correlation coefficient (R2 = 0.9959) shows excellent correlation with the experimental data.
In the Freundlich equation, the value of KF (164.21 mg/g. L1/n mg-1/n) shows that this adsorbent has a high capacity to adsorb the desired substance. The value of n (5.534) expresses the adsorption process’s strength and the adsorbent’s high tendency to adsorb Au(III) ions. The results of the Freundlich model show that the absorption process is robust  [17]. Compared to the Langmuir model, its R2 score of 0.9064 indicates that it is less capable of explaining experimental data. 
For Temkin model,  A = 0.3760 J/mol value expresses this system’s maximum adsorption energy and the value of B = 335.86 L/mg indicates the heat of adsorption [18]. The experimental results align with the Temkin isotherm model with an R2 value of 0.8968.
Upon comparing models, it is evident that the Langmuir model, boasting the highest R2 value, is the most suitable for interpreting the experimental data. The evidence suggests that a monolayer adsorption mechanism accurately explains the adsorption process, with minimal interactions among the adsorbed molecules.
Adsorption kinetic study
[bookmark: _Hlk170197772]Blanchard et al. pioneered the pseudo-second-order (PSO) kinetic model in 1984, commonly used alongside the pseudo-first-order (PFO) model to describe adsorption kinetics, with Coleman et al. later endorsing it [19]. In 1956, this model was considered suitable for predicting time-dependent heavy metal adsroption by clinoptilolite [20]. PFO implies a clear correlation between the site occupancy percentage and the quantity of empty binding sites. The PSO model assumes the number of sites available and the adsorption rate are closely linked [21]. PFO and PSO modesl have the following mathematical expressions:
	
	(4)

	
	(5)


The equilibrium adsorption capacity is shown by qe (mg/g) in the PFO model, while the rate constant is represented by k1 (min-1). In this case, qe is the equilibrium adsorption capacity, k2 is the rate constant (g/mg.min), and qt is the adsorption quantity at time t (in mg/g).
The intraparticle diffusion (ID) model is used to describe the adsorption process in cases where the diffusion of the adsorbate into the pores of the adsorbent is the rate-limiting step of the adsorption process. In other words, it is applied when the rate of movement of the analyte within the pores is much slower than the rate of its adsorption onto the surface of the adsorbent [21]. The model is represented as:
	
	(6)


The C is a constant related to the thickness of the boundary layer in this formula, the more pronounced the impact of the boundary layer. The expression qt gives the absorption at time t, while kI (mg/g.min0.5) expresses the intraparticle diffusion rate constant [22, 23]. Fig. S3 and Table S3 provide diagrams of PFO, PSO, and ID kinetic models for Au(III) adsorption on OCBS@Fe3O4@UiO-66-SH adsorbent and their determined values.
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Fig. S3 Plots of (a) PFO, (b) PSO kinetic models, and (c) ID model for Au(III) adsorption onto OCBS@Fe3O4@UiO-66-SH adsorbent.

Table S3 PFO, PDO, and ID kinetic models for Au(III) adsorption onto OCBS@Fe3O4@UiO-66-SH adsorbent
	[bookmark: _Hlk179715642]Model
	Parameter
	Value

	PFO 
	k1 (min-1)
	0.1324

	
	qe (mg/g)
	1564.5

	
	R2
	0.9976

	PSO 
	k2 (g/mg.min)
	0.0009

	
	qe (mg/g)
	1111.1

	
	R2
	0.9797

	ID
	C 
	149.3

	
	kI (mg/g.min0.5)
	108.42

	
	R2
	0.8656



The PFO model possesses a robust correlation with the results of experiments, as evidenced by its high R2 of 0.9976. The model’s calculated qe, 1564.5 mg/g, is close to the experimental value (1587 mg/g) and shows only 1% difference. A model that so accurately represents adsorption kinetics has demonstrated that the time spent occupying an adsorption site is directly correlated with the number of available unoccupied sites. The adsorption process progresses reasonably quickly, reflected by the rate constant (k1) of 0.1324 min-1. The adsorbent has a high affinity for the active sites [24, 25]. The kinetic model also shows a high PSO’ R2 of 0.9797, lower than the PFO model. Also, the calculated qe (1111.1 mg/g) significantly deviates from the experimental qe (1587 mg/g). This idea justifies the claim that other elements influencing the absorption process include particle penetration and adsorbent surface renewal [26–28]. The PFO model, show casing a rate constant of 0.1324 min-1, effectively depicts our adsorption kinetics, outperforming the PSO model with a rate constant of 0.0009 g/mg.min.
Conversely, the ID model has the lowest R2 (0.8656), which indicates a low fit with the experimental data compared to other models. This low correlation demonstrates that the intraparticle diffusion model may not adequately describe adsorption kinetics. It refers to the movement of adsorbent molecules through the pores of the adsorbent material and is usually not the only factor influencing the adsorption rate [29]. 
 The strong correlation between the calculated and observed qe values and the good R2 value suggests that the adsorbent molecules’ interaction with surface sites is consistent with the core tenets of the PFO model.

Thermodynamic Parameters 
The surface adsorption process’s thermodynamic properties reveal the process’s order and direction. The Gibbs free energy of adsorption (ΔG°) indicates the spontaneity of the adsorption process at constant temperature and pressure. When ΔG° is negative (ΔG° < 0), the adsorption process is spontaneous, meaning it will occur without any external energy input. Conversely, when ΔG° is positive (ΔG° > 0), the adsorption process is non-spontaneous and requires energy input to proceed [30]. The adsorption enthalpy (ΔH°) represents the energy change in the surface adsorbed system. When ΔH° is positive and has a large magnitude, it indicates a strong attraction between the adsorbate and adsorbent. The adsorption exothermic is the opposite. The entropy of adsorption (ΔS°) needs to show us what order or disorder changed when the adsorbent molecules were adsorbed on the surface. In cases where ΔG° is negative, a positive ΔS° indicates that after the adsorption of adsorbate molecules on the surface, there is sufficient disorder for their distribution on the surface, and this contributes to the spontaneity of the adsorption process [31, 32]. In adsorption studies, the change in Gibbs energy ΔG° is calculated as:
	
	     (7)


in which
	
	     (8)


In which,  is distribution constant defined as [33–35]:
	
	   (9)


In this equation, Ce and Cad represent the equilibrium concentration of the solute in the solution and the concentration of the adsorbed solute at equilibrium, R (8.314 J/mol.K) is gas constant, T  is absolute temperature (in kelvins), ΔH° represents energy changes, and ΔS° represents entropy changes. Equation 10 may be used to calculate the values of ΔH° and ΔS° by examining the slope and intercept of the graph that plots the equilibrium constant's natural logarithm (ln Kd) versus temperature reciprocal (1/T). Exploring Au(III) adsorption at different temperatures reveals intriguing thermodynamic insights in Table S4 and Fig. S4, where lnKd is plotted against 1/T for analysis.
[image: ]
Fig. S4 The plot of ln (Kd) vs. 1/T.




Table S4 Adsorption thermodynamic parameters 
	T (K)
	Kd
	ΔG°
(kJ/mol)
	ΔH° 
(kJ/mol)
	ΔS° 
(J/mol.K)

	298
	2.71
	-2.48
	1.55
	13.52

	308
	2.78
	-2.61
	
	

	318
	2.82
	-2.75
	
	

	323
	2.85
	-2.81
	
	



The adsorption enthalpy value (ΔH° = 1.55 kJ/mol) is positive, and this indicates the endothermicity of the surface adsorption process [36]. The spontaneous adsorption process is evidenced by the negative ΔG° values recorded within the temperature range of 298 K to 323 K.  Increasing temperature leads to more negative ΔG° values, indicating that higher temperatures facilitate more favorable adsorption by providing enough energy for molecules to overcome activation barriers and adhere to the adsorbent surface, aligning with the process’s endothermic nature [37]. Moreover, positive ΔS° (13.52 J/mol·K) indicates the distribution of molecules on the adsorbent surface after the surface adsorption process [38]
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