10

11

12

13

-
IS

15

=

6

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

RASP Supplemental Information

Ian K. Gingerich™*”, Brittany A. Goods?, and H. Robert Frost""

1Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
2Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
*Corresponding authors: ian.gingerich.gr@dartmouth.edu, rob.frost@dartmouth.edu

Contents

L Supplemental Methods|

[1.1 Efficient numerical methods and data structures utilized by RASP|
1.2 Adjusted Rand Index calculation|
[L3 CHAOS score calculationl o o o v i it e e
4 Moran’s T calculationl e
1.5 Real world data preprocessing]. e e
[1.6 Simulated dataset processing| e e

2 Supplemental Results|

List of Figures

I Extended Data Fig.1).
[2 Extended Data Fig.2[.
13 Extended Data Fig.3[.
|4 Extended Data Fig. 4
5 Extended Data Fig. 5
|6 Extended Data Fig.6]
{7 Extended Data Fig.7]
18 Extended Data Fig.8
[9 Extended Data Fig.9[.
10 Extended Data Fig.10]
11 Extended Data Fig.11]
12 Extended Data Fig.12]
13 Extended Data Fig.13]
14 Extended Data Fig.14]
15 Extended Data Fig.15]
16 Extended Data Fig.16|
17 Extended Data Fig.17
18 Extended Data Fig.18

List of Algorithms

(I Randomized SVDI.
2 KD-Tree Constructionl
B Brld G =1 KD-Trcd

O OO NNN

12
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

W

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7

78

[4 query_ball_point|. 5
[5 local density]. o e 6
6 CHAOS Functionl o . o o o e 7
[7 1-Nearest Neighbor Function| 7
3 Moran’s T Calculation]l e 8

1 Supplemental Methods

1.1 Efficient numerical methods and data structures utilized by RASP

Randomized PCA/SVD

The RASP algorithm depends on randomized principal component analysis (rPCA)|[1] to perform computationally
efficient dimensionality reduction on the gene expression data. For the Python version of RASP, this is imple-
mented using the sklearn (version 1.5.2) package|2], which has an option for randomized PCA when calling the
PCA() function. For the R version of RASP, this is implemented using the rpca function in the rsvd package
(version 1.0.5) [1]. This randomized approach builds on the impressive results from the field of randomized numer-
ical linear algebra (RNLA)[3| and allows an approximate reduced rank embedding to be computed for very large
datasets at a computational cost that is orders-of-magnitude faster than can be achieved using non-stochastic trun-
cated PCA implementations. Randomized PCA is implemented using a randomized singular value decomposition
(rSVD) , which includes the following key steps (see Algorithm [1] for a detailed description):

e Random sampling: Generate a random projection matrix that reduces the dimensions of the original data
while preserving its structure.

e Compute a non-stochastic SVD on the random embedding: Perform a standard deterministic SVD
on this lower-dimensional representation of the data.

e Generate an approximate SVD for the full matrix: The results of the smaller SVD are used to
generate an approximate truncated SVD for the original matrix.

K-dimensional tree (KD-Tree) operations

The RASP method also relies on the use of the KD-Tree data structure for organizing spatial coordinates in k-
dimensional space for fast range or nearest neighbor searches. Construction of the KD-Tree structure is detailed in
Algorithm 2| For the Python version of RASP, this algorithm is implemented using the KDTree function provided
by the Scipy package [4] (version 1.14.1). For the R version of RASP, this algorithm is implemented using the
nn2 function from the RANN package (version 2.6.2).

The KD-Tree structure can be described at a high-level as follows:

e Node Structure: Each node N contains:

— A point p € R*: representing the location in k-dimensional space.

— Left child Nig and right child Nygne: representing subtrees corresponding to the divided space.

e Partitioning: The space is partitioned based on the median point along the chosen dimension d (where d
cycles through dimensions 1,2,..., k):

— If the current dimension is d, nodes are divided into left and right subtrees based on whether their
points have coordinates less than or greater than the median along dimension d.

Algorithm 1 Randomized SVD

Inputs:

e Matrix A (size m xn): the input data matrix.

e Integer k: the number of significant singular values to retain.

e Integer p: oversampling parameter (to improve accuracy).
Outputs:
e Matrix Uy (size m x k): left singular vectors.
e Matrix S; (size k x k): diagonal matrix of singular values.
e Matrix V; (size n x k): right singular vectors.
Notation:
e Matrix () (size m X r): random projection matrix.

e Matrix Y (size m X r): projected matrix Af).

e Matrices () and R: orthonormal basis and upper triangular matrix from QR decomposition.

e Matrix B (size r Xn): matrix after projection onto Q).

1:r=k+p > Dimension of the random projection

N

distribution over a specified range.

return Uy, S, Vi

Generate a random matrix () (size n X 7r) > Entries sampled from a Gaussian or uniform

3: Y=A4-Q > Project original matrix
4: [Q,R] + QR(Y) > QR decomposition
5: B=QT - A > Form smaller matrix
6: [Up, Sy, V3] < SVD(B) > Compute SVD of B
7: U, =Q- Uy > Form left singular vectors
8: Sk =Sp[l:k,1:k] > Retain top k singular values
90: Ve =Vp[1:k,] > Retain top k right singular vectors

79

80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

e Recursive Construction: This process continues recursively for each subtree until a specified stopping
condition is met (e.g., a maximum number of points in a leaf node).

Algorithm 2 KD-Tree Construction

Inputs:

e Set of points P: a list of points in RF

e Integer depth: current depth in the tree (or dimension to split on)
Outputs:

e Node N: root of the constructed KD-Tree

N.eft < KD-Tree(P[0 : median|,depth + 1)
N.right «+ KD-Tree(P[median + 1 : end], depth + 1)
return N > Return the constructed node

1: if size of P is O then return None > Base case: no points to construct a node
2: k < number of dimensions

3: aris depth mod k > Choose axis for this level
4: Sort points P along the chosen axis

5: median < |size(P)/2] > Find median index
6: N < new node pPmedian > Create a node at the median
7:

8:

The KD-Tree is used to calculate the sparse distance matrix leveraged for spatial smoothing. The KD-Tree can
be queried to find distances to all neighbors within a specified distance, or find all distances to K-nearest-neighbors,
see Build distance matrix from KD-Tree3l

The KD-Tree is also used when performing local cell density calculations. The SciPy function query_ball_point ()
is used to identify all points that fall within a specified radius r of a given point. The nn2 function is used for this
purpose in the R version of RASP. These functions exploit the KD-Tree’s partitioning to quickly find neighboring
points without needing to check every point in the dataset. For each point, the density is computed as the number
of neighboring points found divided by the volume of the neighborhood. In a two-dimensional space, the volume
is calculated using the area of a circle with radius r (i.e., 7r?). This formula ensures that the density reflects the
spatial distribution of points around each queried point. See local_density ()| and query_ball_point (Of]

1.2 Adjusted Rand Index calculation

For the ovary, breast cancer, DLPFC, and simulated datasets we compared the identified spatial domains or
cell type annotations directly to the ground truth labels using the adjusted rand index (ARI)[5] by using the
adjusted_rand_score function from the sklearn package (version 1.5.2) and ad justedRandIndex from the mclust
library (6.1.1) in the R version of RASP. Mathematically, the ARI is defined as:
S (PSS (D]G)
ARI 1 a; b, a; b, n
5| ()+5 (D] (D (D]/G)
Where:

e 1 is the total number of elements (e.g., cells in spatial domains or annotations).

e n;; is the number of elements that are in cluster 4 in the first partition and in cluster j in the second partition.

a; is the number of elements in cluster ¢ of the first partition.

b; is the number of elements in cluster j of the second partition.

(g) is the binomial coefficient, representing the number of ways to choose 2 elements from n, calculated as:

(3) -

4

Algorithm 3 Build distance matrix from KD-Tree
Inputs:

e Set of points P: a list of points in R*
e Integer k: number of nearest neighbors to consider for KNN (if used, k£ > 0)
e Float e: maximum distance threshold (if used, € > 0)
Outputs:
e Sparse distance matrix D: a structure holding non-zero distances

: T < KD-Tree(P) > Construct the KD-Tree from points

. Initialize an empty sparse matrix D

: for each point p; € P do

if £ > 0 then > Only kNN specified
neighbors « kNN search(T, p;, k)

else if ¢ > 0 then > Only distance threshold specified
neighbors <+ range_search(T, p;, €)

else
continue > Skip this point if neither KNN nor threshold is specified

© X NPT Ry

H
@

for each neighbor p; in neighbors do
d + Distance(p;, p;) > Calculate distance
if k> 0ord<ethen
Add the distance d to the sparse matrix D at position (i, 7)

[
W o

return D > Return the sparse distance matrix

Algorithm 4 query_ball_point
Inputs:

e tree: the constructed KD-Tree
e Point p: the center point for the search
e Float r: radius for searching neighbors
Qutputs:
e List indices: indices of points within the radius r

Initialize an empty list indices
function QUERY_BALL POINT(tree, p,)
neighbors < search within radius(tree,p,r) > Search KD-Tree for neighbors
for each neighbor n € neighbors do
if Distance(p,n) < 7 then

Append the index of m to indices
return indices

D O W N

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Algorithm 5 local_density

Inputs:

e Set of coordinates coords: a list of points in R”

e Float neighborhood_size: radius for density calculation
Outputs:

e List densities: density values for each point in coords

m-(neighborhood_size)?
densities +=density

1: tree < KD-Tree(coords) > Construct the KD-Tree from coordinates
2: Initialize an empty list densities

3: for each point p € coords do

4: indices <— query_ball_point(tree, p, neighborhood_size) > Find neighbors within radius
5: density Len(indices) > Calculate density
6:

return densities > Return the list of densities

The ARI formula adjusts for the chance similarity between clusters by considering both pairwise agreements and
disagreements. The numerator counts the agreements, and the denominator normalizes the score, yielding an
index that ranges between -1 (no agreement) and 1 (perfect agreement), with 0 indicating random labeling.

1.3 CHAOS score calculation

The spatial continuity and compactness of each clustering result is quantified by the CHAOS|6] score in place of
the ARI. For the olfactory bulb dataset, the CHAOS score is used in place of ARI to access cluster quality and is
detailed in Algorithm [6] The CHAOS score is based on the distances between points in a given cluster and their
nearest neighbors, capturing how spatially compact the clusters are. The CHAOS score provides a measure of how
spatially coherent the clusters are, with lower values indicating tighter and more compact clusters. The CHAOS
score can be described at a high-level as follows:

e Standardize Locations: the location data is standardized such that each spatial coordinate has zero mean
and unit variance.

e 1-Nearest Neighbor Calculation: For each point a in cluster, we calculate the Euclidean distance to its
nearest neighbor within the cluster. This is done by constructing a 1-Nearest Neighbor (INN) graph. See
Algorithm [7] for details.

e Compute Cluster Distances: For each cluster we sum the 1NN distances over all points in the cluster.

e CHAOS Score Calculation: The CHAOS score is then computed as the average 1NN distance across all
clusters, weighted by the number of points in each cluster.

1.4 Moran’s I calculation

The spatial autocorrelation of each cluster is quantified using Moran’s I[7], which assesses the degree of clustering of
similar values across a spatial distribution, with positive values indicating clustering of similar values and negative
values indicating dispersion. For the olfactory bulb dataset, Moran’s I value is used in place of ARI to access
cluster quality. The assignment of clusters is based on the proximity of spatial coordinates derived from k-nearest
neighbors (kNN). The Moran’s I statistic calculation is detailed in Algorithm

1.5 Real world data preprocessing

Mouse Ovary: The dataset was provided directly by the authors [§8] and was already preprocessed. RASP was
applied directly to the AnnData object provided. Briefly, processing included cell segmentation (CellPose and

Algorithm 6 CHAOS Function

Inputs:

e clusterlabel: Array of cluster labels for each data point.

e [: Array of spatial locations corresponding to each data point.

Outputs:

D D wWw N

e CHAOS: The CHAOS score, representing the spatial compactness and continuity of the
clusters.

NAs < indices where isna(clusterlabel) > Identify indices of NA (null) values in cluster
labels.
if length(NAs) > 0 then
clusterlabel < delete(clusterlabel,NAs) > Remove NA values from cluster label array.
L < delete(L,NAs) > Remove corresponding locations for deleted cluster labels.
L < scale(L) > Standardize location data for better numerical stability.

unique_labels < unique(clusterlabel) > Extract unique cluster labels from the cluster label
array.

dist_val < zeros(length(unique_labels)) > Initialize an array to hold distance values for
each unique cluster.

8: for each cluster k € unique_labels do

10:
11:

12:
13:

14:
15:
16:

Ly < L[clusterlabel == k| > Extract locations corresponding to cluster k.
if Lj; has only one point then
Continue > Skip cluster if it consists of only one point.

for each index i € [0,1length(Ly) — 1] do
results[i| - £fx_1NN(i, L) > Compute the nearest neighbor distance for point at index 1.

dist_val[count] < sum(results) > Sum the INN distances for points in cluster k.
dist_val - dist_val[no NaN values] > Remove any NaN values from the distance array.
Return CHAOSé—:mHg%%ziz;:imeD > Compute and return the average CHAOS score.

Algorithm 7 1-Nearest Neighbor Function

Inputs:

e i: Index of the point for which to compute the nearest neighbor.

e Li: Array of spatial locations corresponding to points in the cluster.

Outputs:

e di1: Euclidean distance from point at index 7 to its nearest neighbor within the cluster.

: distances < pairwise_distance([Lg[i]], L) > Compute distance between the point at index ¢ and

all points in L.

2: nearest_neighbor < copy(distances) > Create a copy of the distances to sort them.
3: nearest neighbor < partition(nearest neighbor, 1) > Partially sort distances such that the

1st nearest neighbor distance is in the correct position.
return d;; < nearest_neighbor|0, 1] > Return the distance to the nearest neighbor.

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

Algorithm 8 Moran’s I Calculation
Inputs:

e (: Set of clusters in the dataset.
e [: Array of spatial coordinates corresponding to each data point in the dataset.
e Y: Vector of values assigned to each point based on their cluster.
e k: Number of nearest neighbors for kNN graph construction.
Outputs:

e /: Moran’s I statistic, representing the degree of spatial autocorrelation.

1: w < KNN(L,k) > Construct kNN graph where w represents the weight matrix of the neighbors.

2: for each point ¢ in the dataset do

3: for each neighbor j in w do

4: if j is one of the k nearest neighbors of ¢ then

5: wij < 1 > Assign weight of 1 for neighbor j.

6: else

7: wij <0 > Assign weight of O if not a neighbor.

8: Y «+ %Zi\ile > Calculate the mean of the values in vector Y.

N N N V.

9: I+ S Xjfvj\’zlwij : Zi:lzgifﬁ?ﬁ;;)%iy) > Compute [using the provided formula.

return [> Return the calculated Moran’s I statistic.

MER1in)[9, 10] for the acquisition of cell and transcript data. Cells with fewer than 10 transcript counts were
excluded from further analysis to ensure data quality. Data was log-normalized, scaled, PCA was performed,
neighborhood identification, and cell clusterings calculated. To determine the cell type for each cluster, transcript
counts were compiled for each gene across clusters, focusing on known markers within the top 10 identified
transcripts. Differential expression analysis was conducted using Seurat v3 in R, allowing the identification of
specific markers associated with each Leiden cluster. Additionally, visualization of spatial regions was achieved
using Squidpy [11] in conjunction with the AnnData [12] and Scanpy [13] libraries.

DLPFC: We downloaded the raw DLPFC data (slide #151673) from the spatialLIBD website (http://

research.libd.org/spatialLIBD/index.html). The dataset was loaded into R using Seurat’s CreateSeuratObject
function with themin.cells = 20 and min.features = 20 parameters. Data were processed using the SCTransform
pipeline with the following parameters: variable.features.n = NULL, variable.features.rv.th = 1.3,return.onl

= FALSE. Data were then converted to the hbad file format using SeuratDisk package’s SaveH5Seurat and
Convert functions to be processed via RASP in Python.

Mouse Olfactory bulb: The dataset was downloaded from the SEDR publication GitHub repository [14]
(https://github.com/JinmiaoChenLab/SEDR_analyses/tree/master/data). Data were processed in Python
using Scanpy unless otherwise specified. The standard processing pipeline was run, including the following
functions: calculate_qc metrics, filter_genes with min cells = 50, highly variable_genes with flavor =
‘seurat’, normalize total, and loglp. The processed data were then analyzed using RASP.

Breast Cancer: We downloaded the Breast cancer Xenium dataset from the SubcellularSpatialData R
package via ExperimentHub, dataset # EH8567, sample ID 'IDC’ (https://www.bioconductor.org/packages/
release/data/experiment/html/SubcellularSpatialData.html)). Transcripts at each subcellular location were
assigned to cells using the tx2spe function with bin = ’cell’. The resulting SingleCellExperiment object was
converted to a Seurat object, and then converted to an .h5ad file using SeuratDisk package’s SaveH5Seurat and
Convert functions. Downstream analysis was done in Python using the Scanpy and Squidpy packages. Mito-

chondrial, ribosomal, and hemoglobin genes identified with the var names.str.startswith("MT-") ,var_names.str.star

commands, quality control metrics where calculated with the calculate qc metrics command, and data were
filtered using the filter _cells command where min genes = 20 and min_cells = 3. The filtered data were then
log normalized and the top 3000 most highly variable genes where identified using the highly variable_genes

http://research.libd.org/spatialLIBD/index.html
http://research.libd.org/spatialLIBD/index.html
http://research.libd.org/spatialLIBD/index.html
https://github.com/JinmiaoChenLab/SEDR_analyses/tree/master/data
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html

158

159

160

161

162

163

164

165

function with favor = “seurat’. The processed data were then analyzed using RASP.

Table 1: Datasets used for RASP evaluation

Platform Tissue Organism n cell/n location n genes Ground truth annotation?
MERFISH Ovary Mouse 43,038 228 True
Stereo-Seq Brain (Olfactory bulb) Mouse 19,109 14,367 False
10x Xenium Breast cancer Human 565,916 541 True
10x Visium Brain (DLPFC) Human 3,638 15,124 True
SRTsim Simulation 1 NaN 10,000 150 True
SRTsim Simulation 2 NaN 10,000 150 True

1.6 Simulated dataset processing

Raw simulated count data were processed in Python using the Scanpy and Squidpy packages. Count matrices
were normalized to medial total counts using the pp.normalize_total command, logarithmized with the pp.loglp
command and variable genes identified using the pp.highly _variable_genes function, all with default parameters.
The processed data were then analyzed using RASP. Note: for testing the SpatialPCA algorithm on the simulated
data, the raw simulated count matrix was processed via Seurat’s SCTransform pipeline with default parameters,
as per the packages recommendation.

Table 2: Parameter Selection

Parameter
Name

Algorithm Type

Range Default

Description

Recommendations

n_components rSVD

n_oversamples rSVD

int

int

5-100

2-10

20

10

Number of compo-
nents to keep.

Corresponds to the
additional number of
random vectors to
sample the range of
X to ensure proper
conditioning.

For spatial domain detec-
tion, use a range of 5 — 20
PCs to capture larger do-
mains. For clustering tasks
with higher resolution or
heterogeneity, users may
want to increase this pa-
rameter to a range of 30 —
60. Note that increased
components will increase
runtime.

Default is recommended
for most situations.
Smaller number can im-
prove speed but negatively
impact approximation
quality. Users might want
to increase this parameter
up to 2k — Tlcomponents
where k is the effective
rank, for large matrices,
noisy problems,
ces with slowly decaying
spectrum, or to increase
precision accuracy.

matri-

Continued on next page

Parameter Algorithm Type Range Default Description Recommendations
Name
power_
iteration_ rSVD string auto, auto Power iteration nor- Default is recommended.
normalizer QR, malizer for random-
LU, ized SVD solver.
none
threshold RASP int 1-200 10 Corresponds to the For larger spatial domains
kNN threshold used and tissue sections, a larger
to calculate the smoothing threshold be-
sparse distance ma- tween 50 and 100 is rec-
trix used for spatial ommended. For high-
smoothing. resolution cell type tasks,
kNNs between 3 and 10
are recommended. Users
should incorporate a priori
knowledge of tissue struc-
ture.
n_neighbors RASP int 5-50 10 Number of kNN Default of 10 is recom-
when constructing mended.
a NN graph of the
smoothed principal
components, used
by the clustering
algorithms.
n_clusters RASP int inf 10 The number of clus- -
ters identified by the
clustering algorithm.
covariates RASP string, nan None Specification of ad- Users can include addi-
list ditional covariates, tional features to incor-

should be in the
adata.obs slot of the
adata object.

porate into the reduction
and clustering step such as
the number of counts (li-
brary size), cellular den-
sity, chromatin accessibil-
ity, or protein abundance
measures. Incorporation
of these features should be
tested against the RNA
alone and results compared
with CHAOS score and
Moran’s I.

10

Continued on next page

Parameter
Name

Algorithm Type

Range Default

Description

Recommendations

covariate_

kNN

cluster_
algorithm

ground_
truth_
labels

RASP

Clustering

Clustering

int, 1-200 None
list
string walktrap,Jouvain
meclust,
lou-
vain,
leiden

string nan None

If covariates are
included, covariate
smoothing is the
kNN threshold to
use for smoothing
the additional fea-
ture(s), or threshold
to calculate local
density. This can be
the same or different
than the smoothing
threshold feature.

Clustering algorithm
utilized by RASP.

Name of the ground
truth labels in the
adata.obs slot.

If users are adding lo-
cal cell density as a co-
variate, then a different
smoothing threshold is rec-
ommended than that used
for the RNA smoothing.
For other covariates, keep-
ing the same smoothing
threshold as the RNA is
recommended.

Clustering is largely de-
pendent on the tissue
type and structure users
are hoping to identify.
The walktrap algorithm
works well for large, ho-
mogeneous structures,
and evenly spaced spots
such as 10x Visium, but
has a large computational
cost that
time with larger datasets.
Mclust utilizes GMM and
generally performs con-
sistently across all tissue
types but is sensitive to
the model type being
fit. See the ’model_type’
parameter. Louvain and
Leiden algorithms outper-
form the other methods
for high-resolution or het-
erogeneous labeling tasks
such as identifying cell
types or small interspersed
tissue domains.

increases run-

If the dataset is anno-
tated, users can specify the
data slot of the annota-
tions and test the accuracy
of RASP predictions. Used
for benchmarking,.

11

Continued on next page

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

Parameter Algorithm Type Range Default Description Recommendations
Name

model_type Mclust string See EEE Corresponds to Generallyy, EEE has the
mclust- the GMM used by best performance on ST
Mod- mclust. data.
el-
Names
for
avail-
able
model

types

2 Supplemental Results

2.1 A note on Moran’s I and CHAOS score

Many publications utilize Moran’s I and the CHAOS score as measures of cluster quality in the absence of ground
truth annotations, where calculating the ARI is not feasible. This study employs these metrics for assessing the
olfactory bulb dataset. To this end, we visualized both Moran’s I and CHAOS score over varying kNN thresholds
from 1 to 50, and for 8 values ranging from 0 to 2 (see Extended Data Fig. 2, 4, 5, and 7).

Across all datasets analyzed, the scores exhibited a similar trend: for small 5 values between 0 and 1, as the
kNN threshold increased, the Moran’s I value rose logarithmically, while the CHAOS score decayed exponentially.
In contrast, for larger 8 values from 1 to 2, the trends persisted but with lower Moran’s I values and higher CHAOS
scores being observed. Notably, in the case of the ovary dataset, both the CHAOS and Moran’s I values remained
invariant to changes in the kNN threshold when 3 exceeded 1, with scores in the other datasets trending towards
little to no change as well.

Additionally, we visualized the relationship between ARI and Moran’s I, as well as between ARI and CHAOS
score for all datasets with available ground truth annotations. Interestingly, for the DLPFC and ovary datasets, we
found that Moran’s I and ARI were negatively correlated (see Extended Data Fig. 1,3). In contrast, the CHAOS
score was positively correlated with ARI in the ovary dataset, regardless of the clustering algorithm used. However,
in the DLPFC dataset, only the Louvain and Leiden clustering methods demonstrated a positive association with
the CHAOS score, while Walktrap and MCLust did not exhibit such a relationship.

These results underscore both the importance and the limited utility of CHAOS score and Moran’s I in assessing
cluster quality. Moreover, they suggest that the specific clustering task—such as distinguishing between cell types
versus spatial domain annotations—and the choice of clustering algorithm will significantly impact the usefulness
of these two metrics in evaluating cluster quality.

References

1. Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. Randomized Matrix Decompositions using R.
Journal of Statistical Software 89. 1SSN: 1548-7660. arXiv: 1608 .02148[stat]. http://arxiv.org/abs/
1608.02148/ (2024) (2019).

2. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12,
2825-2830. http://jmlr.org/papers/vi2/pedregosalia.html (2011).

3. Martinsson, P.-G. & Tropp, J. A. Randomized numerical linear algebra: Foundations and algorithms. Acta
Numerica 29, 403-572. 1SSN: 0962-4929, 1474-0508. https : // www . cambridge . org/ core / journals /
acta-numerica/article/randomized-numerical - linear - algebra- foundations-and-algorithms/
4486926746CFF4547F42A2996C7DCO9C (2024) (May 2020).

12

https://arxiv.org/abs/1608.02148 [stat]
http://arxiv.org/abs/1608.02148
http://arxiv.org/abs/1608.02148
http://arxiv.org/abs/1608.02148
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C

B: 0.0 B: 0.25 B: 0.5

0.7

0.6 Cluster Algorithm
' o walktrap .o wes® 0 o
051 irlclust v Soee e s
—_ louvain od
204{ % o leiden L ercs an tele,
0.3 S 2

0.2
0.1 _—

0.7
0.6 o %00 wg o> . o _ %0
0 L
054 sos : S, o . : .
50.4 :
03
02
0.1

0.7 — = - - =
051 0% Soaothe "4 s | e PSR D AL R Chd| . o
204
0.3
0.2
0.1
B 0 10 20 KNI\?O 40 50 0 10 20 KNI\:I;O 40 50 0 10 20 K 30 40 50

0.2

01 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 07

0.016
0.015
0014

80.013

50012
0011
0.010

0.009

01 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 07

Extended Data Fig. 1: Mouse Ovary supplement 1. A: ARI values plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct § value. B: Moran’s I and CHAOS
values plotted against ARI value, colors indicate clustering algorithm. Lines represent robust linear regression
best fit.

13

B: 0.0

[T P L P YL

Cluster Algorithm
mclust
* louvain
e leiden

-
Mo

e

B:0.25
YT I LACEL hh L hdd

e

B: 0.75

p:1.25

0.015

0.014
8
0013
jant
Soon
0.011

0.010

0.015

0.014
%}
g0.013
=
UO.OIZ

0.011

0.010

0.015
0.014

20013

£

Z 0012
0.011
0.010

Extended Data Fig. 2:
threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct 5 value.

10 20 30 40 50

10 20 30 40 50

'

< o o e ce e
e S T X E T DR R AL S

e,

L TR T SRR T Rt X A) 1

* ot
. ".‘.'.-'.-,..- ¢q
.
.

B:0.75

B: 1.0

p:1.25

e
ediraay
. .Qﬂ oo '.k.

.

0 10 20 30 40 50

KNN

10 20 30 40 50
KNN

0 10 20 30 40 50
KNN

Mouse Ovary supplement 2. A: Moran’s I statistic plotted against kNN distance

B: CHAOS

score plotted against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a

distinct 3 value.

14

A B: 0.0 B:0.25 B:0.5

0.6 .
0.5
&
204
03
02
B: 1.0 B:1.25
.
SS
B R
. .:. w, ;5':‘,':»;‘- 2 .;_--.-...; .

B: 1.5 B:1.75

& 0.4

1.0
0.9
=08
8
‘50.7
=06 Cluster Algorithm -
o walktrap
0.5 mclust
e louvain
0.4 o leiden .
L[]
02 03 04 05 06 02 03 04 05 06 02 03 04 05 06 02 03 04 05 06
ARI ARI ARI ARI
0.068 .
0.067 ud
0.066
wn 0.065
L] . L]
%0‘064 s ° .
T 0.063 .o . :
0.062 a.’ Y)
0.061 o
°abes
0.060
02 03 04 05 06 02 03 04 05 06
ARI ARI

Extended Data Fig. 3: DLPFC supplement 1. A: ARI values plotted against kNN distance threshold. Colors
indicate clustering algorithm, each subplot corresponds to a distinct 8 value. B: Moran’s I and CHAOS values
plotted against ARI value, colors indicate clustering algorithm. Lines represent robust linear regression best fit.

15

B: 0.0

B:0.25

B: 0.5

. © 0y o 0008 L
B et L
(e

Cluster Algorithm
o walktrap
mclust
« louvain

leiden

g PN NN e

. ,W;'::\/.‘o'i-’v*.-‘s::?aﬂfa‘.%*\—

B:0.75

B: 1.0

B:1.25

. w_.-.m‘i."»a-'.-.w"m}‘x
ot

wovet AN SN P g
¥

IRCIRpE Wy vy ':‘ﬁ;\’d:.&-’o‘-\:‘{"-.w__' A
o ..':..u (]

B: 1.5

B: 1.75

§ 0.6

..‘-.\,_,.g.;,:yj&fmmn@:e.
R e

iy

A A

o
D b g
2

oo o, oe

0.068
0.067
0.066

8 0.065

< 0.064

©0.063
0.062
0.061
0.060

0.068
0.067
0.066

8 0.065

< 0.064

©0.063
0.062
0.061
0.060

0.068
0.067
0.066

8 0.065

< 0.064

©0.063
0.062
0.061
0.060

Extended Data Fig. 4: DLPFC supplement 2. A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct 5 value. B: CHAOS score plotted
against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct £

value.

10 20 30 40 50
KNN

B: 0.0

0 10 20 30 40 50

KNN
B:0.25

0 10 20 30 40 50

KNN
B: 0.5

o
3

.
R I . -
OS2 Sopee b

o
‘amnane * o i aamamanaiue

.o &, .
P et oo P e y

Gascds raansLTans @re

B:0.75

B: 1.0

°s . +
T eetne v umemar s

fe. e

B: 2.0

.. . .

® . .

S e iy %, + = .
LR R OO
ea st v

R

o o %eba s a”

0 10 20 30 40 50

KNN

0 10 20 30 40 50

KNN

16

0 10 20 30 40 50

ee esb 2000

Moran's |

N Cluster Algorithm i .

mclust
0.2 * louvain
o leiden .

o B:0.75 B: 1.0 B: 1.25

Moran's |
o,
:]

o
.

-
s
‘

.
J
o
.

.
e
.

o B: 1.5 B: 1.75 B: 2.0

154
>
B

Moran's |
.
.
.
.

=1
'S
.
.
oo
.
.
.
.
.
.
.
.

(=1
o
.
.
“e
.
o
.
.
.
.
.
.
%
o
.
.
.
é
.

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.030
0.028
£ 0.026
<
= 0.024 :
@] .
0.022{ %
0.020{ e, %,

.
X’ N e
0.018 SUX LT S P PR e S ewe et S R R TR RewY "“‘\%\t‘.w\\\'.-,\'-\v-

B:0.75 B: 1.0 B:1.25
0.0304 2 : :

0.028
80.026 :
= 0,024 -
o v e,

0.022 ¢

: LN
0.020 o Tlea,,

.-'-‘.'.'_‘,:n_. .
0.018 i

.

B: 1.5 B: 1.75 B:2.0
0.030{ < - ;

0.028
£ 0.026 S
< Wne N ®ed ool
L:) 0.024- Tosase FEEPN
0.022 2402229
0.020-
0.018

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
KNN KNN KNN

Extended Data Fig. 5: Olfactory bulb supplement. A: Moran’s I statistic plotted against kNN distance
threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct S value. B: CHAOS

score plotted against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a
distinct 3 value.

17

0.6 o s823%,

04 . I

ARI

0.2
0.1
0.0 . |
=0.1

B:1.25

0.6
05 - .
04 .
03 I
02 et
0.1
0.0

-0.1

ARI

B: 1.5

B:1.75

B: 2.0

0.6
0.5
0.4

021 .. '3 vyt s
0.14
0.0
—0.1

Cluster Algorithm
mclust
- louvain
« leiden

0.4

0.2

120

-0.1 00 01 02 03 04 05 0.6
ARI

0.00425
0.00400
0.00375

0.00350

CHAOS

0.00325

0.00300

0.00275

0.00250

-0.1 0.0

02 03
ARI

04 05 06 -0.1 0.0 0.1

02 0.
ARI

3 04 05 06

-0.1 0.0 0.1 02 03 04 05 0.6
ARI

-0.1 0.0 0.1

02 03 04 05 06
ARI

-0.1 00 0.1

02 03 04 05
ARI

0.6

Extended Data Fig. 6: Xenium supplement 1. A: ARI values plotted against kNN distance threshold. Colors
indicate clustering algorithm, each subplot corresponds to a distinct 8 value. B: Moran’s I and CHAOS values
plotted against ARI value, colors indicate clustering algorithm.

18

:0.0 :0.25 : 0.5
A o - : :

09f ..t - ’
§07] o
S061, S

0.5 L . Cluster Algorithm

lust
0.4 - Touyain
03 leiden

0.2

B:0.75 B: 1.0 B: 1.25

1.0 Y

0.9 el . .
208{ - et

§07{ <. =1
S06] o0 . :
0.5 " %

04
03
0.2

'

B: 1.5 B: 1.75 B:2.0

1.0
0.9
708
05{ .t A LS RS S PR SRS S |
04
03
02

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
KNN KNN KNN

B B: 0.0 B:0.25 B: 0.5

0.0042] -
© 0.0040
2
£ 0.0038
©0.0036

0.0034

0.0032{ -

0.0030 L)

S3evetrsevscbissses ef33esecvsrtaelBosione S8 gesceevsbseniee

B: 0.75 B: 1.0 B:1.25

0.0042] -
© 0.0040 ".
g
Z00038] % s MR U D
“ 0.0036 LR SAPYEEI TE
0.0034 = & e,
0.0032 et
0.0030

0.0042 ' W e . -
©0.0040] o o0 s . SERE AR “ie . . H
2 v fesies Teee 1.° LI . ® . :
Z0.0038 - 3
©0.0036
0.0034
0.0032
0.0030

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
KNN KNN KNN

Extended Data Fig. 7: Xenium supplement 2. A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct S value. B: CHAOS score plotted
against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct
value. Lines represent robust linear regression best fit.

19

A

Ground Truth (ARI

RASP

:0.78)

@

=
z

3

10'

Runtime relative to PCA
=

205
<

=05

<
0.4
0.3
0.2

0.8
0.7
0.6

205

<
0.4
0.3
0.2

SEDR
(ARI: 0.51)

SpatialPCA
ARI: 0.44)

Bt

@ Cluster 1 ®Cluster 3 @ Cluster 5 Cluster 7
@ Cluster 2 @ Cluster 4 = Cluster 6 © Cluster 8

Cluster Algorithm L]
mclust « leiden
« louvain « walktrap
(8
] []
L] [] L]
oo . . ®
... L]
< N o
hat = Q) A & g
QQ & 65,§° &yg" X é\?}
SEDR GraphST SpatialPCA BASS STAGATE < S
B: 0.0 B: 0.25 B: 0.5
B0.75 B10 B 125
BI.5 B:1.75 2.0
Cluster Algorithm
mclust
« louvain
« leiden
« walktrap
LS e e —
0 20 40 60 80 100 120 O 20 40 60 80 120 0 20 40 60 80 100 120
KNN KNN KNN

Extended Data Fig. 8: Simulation 1 (Stripes) A: Ground truth annotations (left) and corresponding spatial
domains identified by RASP, PCA, and other methods. B: Quantification of runtime for all methods compared to
normal PCA. C: Quantification of ARI for all methods, different colors indicate the clustering algorithm used to
assign labels. Interquartile range and median ARI values at default RASP parameters (kNN =15-30, 8 = 0.25)
is shown, along with maximum ARI values achieved by RASP. D: ARI values for RASP evaluated on 100 Stripe
replicates plotted against kNN, each subplot represents a distinct § value. Colored line represents the median,

shaded colors indicate the interquartile range. Colors correspond to clustering algorithm.

20

A
1.0
0.9
—~0.8

»

‘0.7
g

S0.6
0.5
0.4
0.3
0.2
1.0
0.9

—0.8

»

‘=0.7
g

0.6
= 0.5
0.4
0.3
0.2
1.0
0.9
—~0.8

»

‘=07
g

S0.6
0.5
0.4
0.3
0.2

B

0.0350
0.0325
§ 0.0300
£0.0275
©0.0250
0.0225
0.0200

0.0175

0.0350
0.0325
S o
Zo.
©0.0250
0.0225
0.0200

0.0175

0.0350
0.0325
g
o
©0.0250
0.0225
0.0200
0.0175

B: 0.0 B:0.25 B: 0.5
Cluster Algorithm
mclust
+ louvain
+ leiden
« walktrap
B0.75 B-1.0 B125
M N ———
B: 1.5 B: 1.75 B:2.0
AN — e A e e — N ————
W S AN IS e ™ e A A
0 20 40 60 80 100 120 0O 20 40 60 80 100 120 0O 20 40 60 80 100 120
KNN KNN KNN
B: 0.0 B:0.25 B: 0.5
_—
B0.75 B 1.0 B1.25
\\‘.__—‘ =
B 1.5 B: 1.75 B:2.0
- — =’ e “ .
Cluster Algorithm
mclust
+ louvain
« leiden
« walktrap
0 20 40 60 80 100 120 O 20 40 60 80 100 120 0 20 40 60 80 100 120
KNN KNN KNN

Extended Data Fig. 9: Simulation 1 (Stripes) A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct S value. B: CHAOS score plotted
against kNN distance threshold. Colored line represents the median, shaded colors indicate the interquartile range.
Colors correspond to clustering algorithm, each subplot corresponds to a distinct 8 value.

21

B=0.0

B=0.25

B=05

1.0
= 0.8
£0.6
=}
=04
0.2
0.0

B=0.75

p=1.25

1.0
=08
-
£06
=]
=04
0.2
0.0

L

B=175

1.0
—0.8
-
£0.6
=]
=04
0.2
0.0

Cluster Algorithm
mclust
« louvain
« leiden
« walktrap

<

0.040
©» 0.
S oo
s
0.025
0.020
0.015

0.040
©0.035
L§)0.030

0.025

0.020

0.015

0.040
w2 ().
S oo
%
0.025
0.020
0.015

Extended Data Fig. 10: Simulation 1 (Stripes) A: Bivariate kernel density estimate of Moran’s I statistic
against ARI. Colors indicate clustering algorithm, each subplot corresponds to a distinct 8 value. B: Bivariate
kernel density estiamte of CHAOS score plotted against ARI. Colors indicate clustering algorithm, each subplot

0.0 0.2 0.4 0.6 0.8
ARI

B=0.0

0.0

0.2 0.4 0.6 0.8
ARI

B=025

0.0

0.2 0.4 0.6 0.8
ARI

B=0.5

B=0.75

B=125

A

N

B=1.75

B=2.0

/7 |

N

\ Cluster Algorithm
ust

louvain

o leiden

« walktrap

0.0 0.2 0.4 0.6 0.8
ARI

0.0

0.2 0.4 0.6 0.8
ARI

0.0

0.2 0.4 0.6 0.8
ARI

corresponds to a distinct 8 value. Lines represent robust linear regression best fit.

22

A Ground Truth

3 ARy i
GraphST
ARI: 0.19)
W

B 10° © Cluster 1 ®Cluster 3 @ Cluster 5 Cluster 7
@ Cluster 2 @ Cluster4 = Cluster 6 © Cluster 8
< 10*
g I [] ® Cluster Algorithm
e mclust
5 10 « louvain
E leiden
;‘i 10 PY « walktrap
23
£ []
g0 o % “ e %
& e ®
10"
S S had
10° @?3 & cf&& & & Q»Y?% -<§0
RASP SEDR GraphST SpatialPCA BASS STAGATE & &N &
B:0.0 B:0.25 B:0.5

Cluster Algorithm
mclust
« louvain
« leiden
walktrap

B:0.75 B:1.0

0 20 40 60 8 100 120 0 20 40 60 8 100 120 0 20 40 60 80 100 120
KNN KNN KNN

Extended Data Fig. 11: Simulation 2 (Dots) A: Ground truth annotations (left) and corresponding spatial
domains identified by RASP, PCA, and other methods. B: Quantification of runtime for all methods compared
to normal PCA. C: Quantification of ARI for all methods, different colors indicate the clustering algorithm used
to assign labels. Interquartile range and median ARI values at default RASP parameters (kNN =3-20, g = 2)
is shown, along with maximum ARI values achieved by RASP. D: ARI values for RASP evaluated on 100 Dot
replicates plotted against kNN, each subplot represents a distinct 8 value. Colors indicate clustering algorithm.

23

Cluster Algorithm
mclust
« louvain
« leiden
« walktrap

B:0.25

B0.75

e

B125

B1.75

AN A rf AT~

WAANAYPAAMAMAMAANAAN A

PN AN AAALA NN Nyt

0.0375
0.0350
£, 0.0325
2 0.0300
T0.0275
0.0250
0.0225
0.0200
0.0175
0.0375
0.0350
£, 0.0325
2 0.0300
L0.0275
0.0250
0.0225
0.0200
0.0175
0.0375
0.0350
£, 0.0325
2 0.0300
L0.0275
0.0250
0.0225
0.0200
0.0175

0 20 40 60 80
KNN

100

B:0.0

Cluster Algorithm
mclust
« louvain
o leiden
« walktrap

120 0 20 40 60 80

100
KNN

B:0.25

120 0 20 40 60 80

100 120

KNN

B:1.25

B 175

A A

0 20 40 60 80
KNN

100

120 0 20 40 60 80

100
KNN

120 0 20 40 60 80

100 120

KNN

Extended Data Fig. 12: Simulation 2 (Dots) A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct 8 value. B: CHAOS score plotted
against kNN distance threshold. Colored line represents the median, shaded colors indicate the interquartile range.
Colors correspond to clustering algorithm, each subplot corresponds to a distinct 3 value.

24

B:0.0

B:025

p:05

'\

Cluster Algorithm
mclust
« louvain
« leiden
« walktrap

/

B:0.75

B:125

M

|

B:1.75

B:2.0

0.035

0.030

CHAOS

0.025

0.020

0.035

0.030

CHAOS

0.025

0.020

0.035

0.030

CHAOS

0.025

0.020

p:0.0

B:0.25

p:0.5

Cluster Algorithm
mclust
«+ louvain
« leiden
« walktrap

e —

\

A

B:0.75

B:1.0

B:125

/

B:1.75

B:2.0

/

0.0 0.2

0.0 0.2 04 06 08
ARI

04

. 0.6
ARI

0.8

Extended Data Fig. 13: Simulation 2 (Dots) A: Bivariate kernel density estimate of Moran’s I statistic against
ARI. Colors indicate clustering algorithm, each subplot corresponds to a distinct § value. B: Bivariate kernel den-
sity estiamte of CHAOS score plotted against ARI. Colors indicate clustering algorithm, each subplot corresponds
to a distinct S value. Lines represent robust linear regression best fit.

25

Beta: 0.0 Beta: 0.25 Beta: 0.5
D A
SRV ST PO P R ST
. . g < . ., % .l
o, ¢ . Ceatet R A RN AN 0T e e e
204 . L7 - .
03 > °
0.2 I ol .. 00%0 076" %y
0.1 .
Beta: 0.75 Beta: 1.0 Beta: 1.25
0.8
0.7
0.6
=z 0.5 o % e e
< 0.4 NIH:.W;':»’J:‘%." ;..,-\..-.... ‘,:r e 1
0N eeenepesW VNS . .'Ot-w.‘: Se . . . ®%6n000c0 o
8; o ATt it stery | 1 N s et et
0.1
Beta: 1.5 Beta: 1.75 Beta: 2.0
0.8
Cluster Algorithm
0.7 mclugs_t
0.6 « louvain
0.5 + leiden
=V « walktrap
< 0.4
o sty J LA P . Sy tes . .
8‘; T e st cminine, N o el st eoantage M"‘\ R e L OT P STE SE W
0.1
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Number of PCs Number of PCs Number of PCs
B Beta: 0.0 Beta: 0.25 Beta: 0.5

. . "“ .
R R
% ° .o

. .

.
S e ad e,
) 3 soegs .
/PN S o,

Beta: 0.75 Beta: 1.0 Beta: 1.25
0.8 o®° 00%4%0000°090205% 000000 %00g000 .-.o0'-,'-....O-u.....,.o.o..om-. r 0009%0%%4900%04, %00t 0.
0.6 DA o > . .
<04{ . - o ot — e,
LY F . e v . ° . l.
0.2 A P ar AR AR O R TR AT e T AT by SRS AT
0.0
Beta: 1.5 Beta: 1.75 Beta: 2.0
08 o "a.'-..."..'..-l..“.o-,'u.'o.... M '-.'o.-'..c'.u...u..-...m.'-.-.--, M 00000 00000040400 00% 00 %00s00%0 %00 ¢
. . Cluster Algorithm
0.6 . . mclust
= . . :0_13vam
D « leiden
R . Soe « walktrap
00
0.24 = o OO TP R O R - T
POSPSEFN PR L KLY WO TR T AR BT S TR XRAT
0.0.

10 20 30 40 50 60
Number of PCs

Extended Data Fig. 14: PC sensitivity (simulated data) A: ARI values plotted against number of PCs utilized
by RASP for the Stripes dataset. Colors indicate clustering algorithm, each subplot corresponds to a distinct 3
value. B: ARI values plotted against number of PCs utilized by RASP for the Dots dataset. Colors indicate

10 40 50 60

20 30
Number of PCs

clustering algorithm, each subplot corresponds to a distinct 8 value.

26

10 20 30 40 50 60
Number of PCs

Breast cancer
Cluster Algorithm
t

| L . {o_lzjvain
0.6 *."‘:M I . v%lﬁ{lrap
204| —— AR
03 : iy
021 ¢
e
0.1].°
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Number of Principal Components Number of Principal Components Number of Principal Components
B
TMSB10
”
-_—
1.00 200 35
5 PCs
—_—
02 09 14 frrpsoens
10 PCs

—_—
100 250 45

1.00 2.50 4.00

Extended Data Fig. 15: PC Sensitivity Analysis. A: ARI values plotted against number of PCs utilized by
RASP for the DLPFC (left), Mouse ovary (middle) and Human breast cancer (right) datasets. Colors indicate
clustering algorithm. B: Reduced rank reconstructed gene signatures for TIMSB10 (left), Lhegr (middle), and
LUM (right) at increasing ranks.

27

A B=0.0 B=10 B=2.0
0.2 0.2 0.2

1.0 ; s

08 0.1 0.1 0.1

L]
bo - s

206 0.0 = 0.0 e 004> |
) 2 4 2 4 2 4
o
Z 04

0.2

0.0 B"" D 60001 SebetbbEes abe Ylte ¢ o D—— e T T T Il- o W ee @O o wm wm @

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Distance (um) Distance (um) Distance (um)

B B=0.0 B=1.0 B=2.0

PC1

PC2

PC3

PC4

PC5

PC6

Extended Data Fig. 16: Effects of inverse weighting on PCs at various values. A: Inverse weight values
plotted against real world distances (um) for § = 0, 8 = 1, and 5 = 2. B: First six PCs for the mouse ovary
dataset visualized spatially on the tissue, smoothed by inverse distances exponentiated by 0 (left), 1 (middle) and
2(right).

28

A =0.0 =0.25 =05

0 4 02 1 i 02 1 i 02 1
_ 1 _
0 0.1 i 01 14 i 0.1
0
15}
0.0 1 0.0 1 0.0
0.6 ‘ - ‘]
2 0 5 0 5 0 5
i)
o
3
04 -] I
02 E E
0.0 1 ap W S esiI®m G & J B P eI ® G i P eI G o
B=07s B=10 B=125
10 4 02 1 i 02 1 1o 02 1
0.1 1 0.1 1 0.1
08 14 o : .
' o]
0.0 A 0.0 A 0.0
0.6 ‘ - ‘]
2 0 5 0 5 0 5
i)
o
z
04 : :
02 E E
0.0 1 - e memi ® e ® g - e ® e © E - Hem s 8 ©
B=15 B=175 =20
e 02 1 le 02 1 le 02 T
0.1 A 0.1 A 0.1
08 : :
o
0.0 - 0.0 4 00 119
06 T T 1 1 T 1 1 T 1
2 0 5 0 5 0 5
i)
g
04 E E
02 E :
0.0 1 o 9 SHeEmI® @ o E - P esIw @ o - - P esmIw e o
0 20 40 0 20 40 0 20 40
Distance (um) Distance (um) Distance (um)

Extended Data Fig. 17: Inverse weights at different 5 values. A: Inverse weight values plotted against real
world distances (um) at various values of

29

A B C

ARI
PCl PC2 PC3 PC4 00010203 040506
- ‘ ‘
Euclidean,
Inverse
Distance
Euclidean,
gaussian
Euclidean,
quadratic
Manbhattan,
Inverse
Distance
Manhattan,
gaussian
Manbhattan,
uadtratic @ pca
q @ Euclidean, inverse squared
@ Euclidean, gaussian
@ Euclidean, quadratic
® Manhattan inverse squared
© Manbhattan, gaussian
Manhattan, quadratic

Extended Data Fig. 18: Differential distance measurements and distance weights applied to Human
breast cancer dataset. A: Normal and spatially smoothed PCs 1-4 visualized spatially on the tissue. B:
RASP-identified domains from the different distance and weighting schemes presented in A. C: Kernel density
estimates of the first 4 normal and spatially smoothed PCs. Colors indicate distance and weighting schemes, as
shown in A. D: Quantification of domain detection by ARI score for the regions identified in B.

30

198

199

200

201

202

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

10.

11.

12.

13.

14.

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods
17. Publisher: Nature Publishing Group, 261-272. 1SSN: 1548-7105. https://www.nature.com/articles/
s41592-019-0686-2| (2024) (Mar. 2020).

Hubert, L. & Arabie, P. Comparing partitions. Journal of Classification 2, 193—218. 1SSN: 1432-1343. https:
//doi .org/10.1007/BF01908075 (2024) (Dec. 1, 1985).

Alexandrov, T. & Bartels, A. Testing for presence of known and unknown molecules in imaging mass spectrom-
etry. Bioinformatics 29, 2335-2342. 1SSN: 1367-4803. https://doi.org/10.1093/bioinformatics/btt388
(2024) (Sept. 15, 2013).

Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37. Publisher: [Oxford University
Press, Biometrika Trust|, 17-23. 1SSN: 0006-3444. https://www. jstor.org/stable/2332142 (2024) (1950).

Huang, R. et al. Single-cell and spatiotemporal profile of ovulation in the mouse ovary Pages: 2024.05.20.594719
Section: New Results. June 5, 2024. https://www.biorxiv.org/content/10.1101/2024.05.20.594719v4
(2024).

Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular seg-
mentation. Nature Methods 18. Publisher: Nature Publishing Group, 100-106. 1SSN: 1548-7105. https :
//www.nature.com/articles/s41592-020-01018-x/ (2024) (Jan. 2021).

Dalsasso, E., Rambour, C., Trouvé, N. & Thome, N. MERLIN-Seg: Self-supervised despeckling for label-
efficient semantic segmentation. Computer Vision and Image Understanding 241, 103940. 1sSN: 1077-3142.
https://www.sciencedirect.com/science/article/pii/S1077314224000213 (2024) (Apr. 1, 2024).

Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nature
Biotechnology 40. Number: 3 Publisher: Nature Publishing Group, 308—-318. 1SSN: 1546-1696. https://www.
nature.com/articles/s41587-021-01182-1 (2023) (Mar. 2022).

Virshup, 1., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: Access and store annotated data
matrices. Journal of Open Source Software 9, 4371. 1SSN: 2475-9066. https://joss.theoj.org/papers/
10.21105/joss. 04371/ (2024) (Sept. 16, 2024).

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome
Biology 19, 15. 1sSN: 1474-760X. https://doi.org/10.1186/s13059-017-1382-0 (2024) (Feb. 6, 2018).

Chen, S. et al. Integration of spatial and single-cell data across modalities with weakly linked features.
Nature Biotechnology. Publisher: Nature Publishing Group, 1-11. 1ssN: 1546-1696. https://www.nature.
com/articles/s41587-023-01935-0 (2024) (Sept. 7, 2023).

31

https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1093/bioinformatics/btt388
https://www.jstor.org/stable/2332142
https://www.biorxiv.org/content/10.1101/2024.05.20.594719v4
https://www.nature.com/articles/s41592-020-01018-x
https://www.nature.com/articles/s41592-020-01018-x
https://www.nature.com/articles/s41592-020-01018-x
https://www.sciencedirect.com/science/article/pii/S1077314224000213
https://www.nature.com/articles/s41587-021-01182-1
https://www.nature.com/articles/s41587-021-01182-1
https://www.nature.com/articles/s41587-021-01182-1
https://joss.theoj.org/papers/10.21105/joss.04371
https://joss.theoj.org/papers/10.21105/joss.04371
https://joss.theoj.org/papers/10.21105/joss.04371
https://doi.org/10.1186/s13059-017-1382-0
https://www.nature.com/articles/s41587-023-01935-0
https://www.nature.com/articles/s41587-023-01935-0
https://www.nature.com/articles/s41587-023-01935-0

	Supplemental Methods
	Efficient numerical methods and data structures utilized by RASP
	Adjusted Rand Index calculation
	CHAOS score calculation
	Moran's I calculation
	Real world data preprocessing
	Simulated dataset processing

	Supplemental Results
	A note on Moran's I and CHAOS score

