
RASP Supplemental Information1

Ian K. Gingerich1,2,*, Brittany A. Goods2, and H. Robert Frost1,*2

1Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA3
2Thayer School of Engineering, Dartmouth College, Hanover, NH, USA4

*Corresponding authors: ian.gingerich.gr@dartmouth.edu, rob.frost@dartmouth.edu5

Contents6

1 Supplemental Methods 27

1.1 Efficient numerical methods and data structures utilized by RASP 28

1.2 Adjusted Rand Index calculation . 49

1.3 CHAOS score calculation . 610

1.4 Moran’s I calculation . 611

1.5 Real world data preprocessing . 612

1.6 Simulated dataset processing . 913

2 Supplemental Results 1214

2.1 A note on Moran’s I and CHAOS score . 1215

List of Figures16

1 Extended Data Fig.1 . 1317

2 Extended Data Fig.2 . 1418

3 Extended Data Fig.3 . 1519

4 Extended Data Fig. 4 . 1620

5 Extended Data Fig. 5 . 1721

6 Extended Data Fig.6 . 1822

7 Extended Data Fig.7 . 1923

8 Extended Data Fig.8 . 2024

9 Extended Data Fig.9 . 2125

10 Extended Data Fig.10 . 2226

11 Extended Data Fig.11 . 2327

12 Extended Data Fig.12 . 2428

13 Extended Data Fig.13 . 2529

14 Extended Data Fig.14 . 2630

15 Extended Data Fig.15 . 2731

16 Extended Data Fig.16 . 2832

17 Extended Data Fig.17 . 2933

18 Extended Data Fig.18 . 3034

List of Algorithms35

1 Randomized SVD . 336

2 KD-Tree Construction . 437

3 Build distance matrix from KD-Tree . 538

1

4 query ball point . 539

5 local density . 640

6 CHAOS Function . 741

7 1-Nearest Neighbor Function . 742

8 Moran’s I Calculation . 843

List of Tables44

1 Datasets used for RASP evaluation . 945

2 Parameter Selection . 946

1 Supplemental Methods47

1.1 Efficient numerical methods and data structures utilized by RASP48

Randomized PCA/SVD49

The RASP algorithm depends on randomized principal component analysis (rPCA)[1] to perform computationally50

efficient dimensionality reduction on the gene expression data. For the Python version of RASP, this is imple-51

mented using the sklearn (version 1.5.2) package[2], which has an option for randomized PCA when calling the52

PCA() function. For the R version of RASP, this is implemented using the rpca function in the rsvd package53

(version 1.0.5) [1]. This randomized approach builds on the impressive results from the field of randomized numer-54

ical linear algebra (RNLA)[3] and allows an approximate reduced rank embedding to be computed for very large55

datasets at a computational cost that is orders-of-magnitude faster than can be achieved using non-stochastic trun-56

cated PCA implementations. Randomized PCA is implemented using a randomized singular value decomposition57

(rSVD) , which includes the following key steps (see Algorithm 1 for a detailed description):58

• Random sampling: Generate a random projection matrix that reduces the dimensions of the original data59

while preserving its structure.60

• Compute a non-stochastic SVD on the random embedding: Perform a standard deterministic SVD61

on this lower-dimensional representation of the data.62

• Generate an approximate SVD for the full matrix: The results of the smaller SVD are used to63

generate an approximate truncated SVD for the original matrix.64

K-dimensional tree (KD-Tree) operations65

The RASP method also relies on the use of the KD-Tree data structure for organizing spatial coordinates in k-66

dimensional space for fast range or nearest neighbor searches. Construction of the KD-Tree structure is detailed in67

Algorithm 2. For the Python version of RASP, this algorithm is implemented using the KDTree function provided68

by the Scipy package [4] (version 1.14.1). For the R version of RASP, this algorithm is implemented using the69

nn2 function from the RANN package (version 2.6.2).70

The KD-Tree structure can be described at a high-level as follows:71

• Node Structure: Each node N contains:72

– A point p ∈ Rk: representing the location in k-dimensional space.73

– Left child Nleft and right child Nright: representing subtrees corresponding to the divided space.74

• Partitioning: The space is partitioned based on the median point along the chosen dimension d (where d75

cycles through dimensions 1, 2, . . . , k):76

– If the current dimension is d, nodes are divided into left and right subtrees based on whether their77

points have coordinates less than or greater than the median along dimension d.78

2

Algorithm 1 Randomized SVD
Inputs:

• Matrix A (size m× n): the input data matrix.

• Integer k: the number of significant singular values to retain.

• Integer p: oversampling parameter (to improve accuracy).

Outputs:

• Matrix Uk (size m× k): left singular vectors.

• Matrix Sk (size k × k): diagonal matrix of singular values.

• Matrix Vk (size n× k): right singular vectors.

Notation:

• Matrix Ω (size n× r): random projection matrix.

• Matrix Y (size m× r): projected matrix AΩ.

• Matrices Q and R: orthonormal basis and upper triangular matrix from QR decomposition.

• Matrix B (size r × n): matrix after projection onto Q.

1: r = k + p ▷ Dimension of the random projection

2: Generate a random matrix Ω (size n× r) ▷ Entries sampled from a Gaussian or uniform

distribution over a specified range.

3: Y = A · Ω ▷ Project original matrix

4: [Q,R]← QR(Y) ▷ QR decomposition

5: B = QT ·A ▷ Form smaller matrix

6: [Ub, Sb, Vb]← SVD(B) ▷ Compute SVD of B
7: Uk = Q · Ub ▷ Form left singular vectors

8: Sk = Sb[1 : k, 1 : k] ▷ Retain top k singular values

9: Vk = Vb[1 : k, :] ▷ Retain top k right singular vectors

return Uk, Sk, Vk

3

• Recursive Construction: This process continues recursively for each subtree until a specified stopping79

condition is met (e.g., a maximum number of points in a leaf node).80

Algorithm 2 KD-Tree Construction
Inputs:

• Set of points P: a list of points in Rk

• Integer depth: current depth in the tree (or dimension to split on)

Outputs:

• Node N: root of the constructed KD-Tree

1: if size of P is 0 then return None ▷ Base case: no points to construct a node

2: k ← number of dimensions

3: axis← depth mod k ▷ Choose axis for this level

4: Sort points P along the chosen axis

5: median← ⌊size(P)/2⌋ ▷ Find median index

6: N ← new node pmedian ▷ Create a node at the median

7: N.left← KD-Tree(P [0 : median], depth+ 1)
8: N.right← KD-Tree(P [median+ 1 : end], depth+ 1)

return N ▷ Return the constructed node

The KD-Tree is used to calculate the sparse distance matrix leveraged for spatial smoothing. The KD-Tree can81

be queried to find distances to all neighbors within a specified distance, or find all distances to K-nearest-neighbors,82

see Build distance matrix from KD-Tree3.83

The KD-Tree is also used when performing local cell density calculations. The SciPy function query ball point()84

is used to identify all points that fall within a specified radius r of a given point. The nn2 function is used for this85

purpose in the R version of RASP. These functions exploit the KD-Tree’s partitioning to quickly find neighboring86

points without needing to check every point in the dataset. For each point, the density is computed as the number87

of neighboring points found divided by the volume of the neighborhood. In a two-dimensional space, the volume88

is calculated using the area of a circle with radius r (i.e., πr2). This formula ensures that the density reflects the89

spatial distribution of points around each queried point. See local density()5 and query ball point()4.90

1.2 Adjusted Rand Index calculation91

For the ovary, breast cancer, DLPFC, and simulated datasets we compared the identified spatial domains or92

cell type annotations directly to the ground truth labels using the adjusted rand index (ARI)[5] by using the93

adjusted rand score function from the sklearn package (version 1.5.2) and adjustedRandIndex from themclust94

library (6.1.1) in the R version of RASP. Mathematically, the ARI is defined as:95

ARI =

∑
ij (

nij
2
)−

[∑
i (

ai
2)

∑
j (

bj
2
)
]
/(n2)

1
2

[∑
i (

ai
2)+

∑
j (

bj
2
)
]
−
[∑

i (
ai
2)

∑
j (

bj
2
)
]
/(n2)

96

Where:97

• n is the total number of elements (e.g., cells in spatial domains or annotations).98

• nij is the number of elements that are in cluster i in the first partition and in cluster j in the second partition.99

• ai is the number of elements in cluster i of the first partition.100

• bj is the number of elements in cluster j of the second partition.101

•
(
n
2

)
is the binomial coefficient, representing the number of ways to choose 2 elements from n, calculated as:102 (

n

2

)
=

n(n− 1)

2

4

Algorithm 3 Build distance matrix from KD-Tree

Inputs:

• Set of points P : a list of points in Rk

• Integer k: number of nearest neighbors to consider for KNN (if used, k > 0)

• Float ϵ: maximum distance threshold (if used, ϵ > 0)

Outputs:

• Sparse distance matrix D: a structure holding non-zero distances

1: T ← KD-Tree(P) ▷ Construct the KD-Tree from points
2: Initialize an empty sparse matrix D
3: for each point pi ∈ P do
4: if k > 0 then ▷ Only kNN specified
5: neighbors← kNN search(T, pi, k)
6: else if ϵ > 0 then ▷ Only distance threshold specified
7: neighbors← range search(T, pi, ϵ)
8: else
9: continue ▷ Skip this point if neither kNN nor threshold is specified

10: for each neighbor pj in neighbors do
11: d← Distance(pi, pj) ▷ Calculate distance
12: if k > 0 or d < ϵ then
13: Add the distance d to the sparse matrix D at position (i, j)

return D ▷ Return the sparse distance matrix

Algorithm 4 query ball point
Inputs:

• tree: the constructed KD-Tree

• Point p: the center point for the search

• Float r: radius for searching neighbors

Outputs:

• List indices: indices of points within the radius r

1: Initialize an empty list indices
2: function query ball point(tree, p, r)

3: neighbors← search within radius(tree, p, r) ▷ Search KD-Tree for neighbors

4: for each neighbor n ∈ neighbors do

5: if Distance(p, n) < r then

6: Append the index of n to indices
return indices

5

Algorithm 5 local density
Inputs:

• Set of coordinates coords: a list of points in Rk

• Float neighborhood size: radius for density calculation

Outputs:

• List densities: density values for each point in coords

1: tree← KD-Tree(coords) ▷ Construct the KD-Tree from coordinates

2: Initialize an empty list densities
3: for each point p ∈ coords do

4: indices← query ball point(tree, p, neighborhood size) ▷ Find neighbors within radius

5: density ← len(indices)
π·(neighborhood size)2

▷ Calculate density

6: densities +=density

return densities ▷ Return the list of densities

The ARI formula adjusts for the chance similarity between clusters by considering both pairwise agreements and103

disagreements. The numerator counts the agreements, and the denominator normalizes the score, yielding an104

index that ranges between -1 (no agreement) and 1 (perfect agreement), with 0 indicating random labeling.105

1.3 CHAOS score calculation106

The spatial continuity and compactness of each clustering result is quantified by the CHAOS[6] score in place of107

the ARI. For the olfactory bulb dataset, the CHAOS score is used in place of ARI to access cluster quality and is108

detailed in Algorithm 6. The CHAOS score is based on the distances between points in a given cluster and their109

nearest neighbors, capturing how spatially compact the clusters are. The CHAOS score provides a measure of how110

spatially coherent the clusters are, with lower values indicating tighter and more compact clusters. The CHAOS111

score can be described at a high-level as follows:112

• Standardize Locations: the location data is standardized such that each spatial coordinate has zero mean113

and unit variance.114

• 1-Nearest Neighbor Calculation: For each point a in cluster, we calculate the Euclidean distance to its115

nearest neighbor within the cluster. This is done by constructing a 1-Nearest Neighbor (1NN) graph. See116

Algorithm 7 for details.117

• Compute Cluster Distances: For each cluster we sum the 1NN distances over all points in the cluster.118

• CHAOS Score Calculation: The CHAOS score is then computed as the average 1NN distance across all119

clusters, weighted by the number of points in each cluster.120

1.4 Moran’s I calculation121

The spatial autocorrelation of each cluster is quantified using Moran’s I[7], which assesses the degree of clustering of122

similar values across a spatial distribution, with positive values indicating clustering of similar values and negative123

values indicating dispersion. For the olfactory bulb dataset, Moran’s I value is used in place of ARI to access124

cluster quality. The assignment of clusters is based on the proximity of spatial coordinates derived from k-nearest125

neighbors (kNN). The Moran’s I statistic calculation is detailed in Algorithm 8126

1.5 Real world data preprocessing127

Mouse Ovary: The dataset was provided directly by the authors [8] and was already preprocessed. RASP was128

applied directly to the AnnData object provided. Briefly, processing included cell segmentation (CellPose and129

6

Algorithm 6 CHAOS Function
Inputs:

• clusterlabel: Array of cluster labels for each data point.

• L: Array of spatial locations corresponding to each data point.

Outputs:

• CHAOS: The CHAOS score, representing the spatial compactness and continuity of the

clusters.

1: NAs← indices where isna(clusterlabel) ▷ Identify indices of NA (null) values in cluster

labels.

2: if length(NAs) > 0 then

3: clusterlabel← delete(clusterlabel,NAs) ▷ Remove NA values from cluster label array.

4: L← delete(L,NAs) ▷ Remove corresponding locations for deleted cluster labels.

5: L← scale(L) ▷ Standardize location data for better numerical stability.

6: unique labels← unique(clusterlabel) ▷ Extract unique cluster labels from the cluster label

array.

7: dist val← zeros(length(unique labels)) ▷ Initialize an array to hold distance values for

each unique cluster.

8: for each cluster k ∈ unique labels do

9: Lk ← L[clusterlabel == k] ▷ Extract locations corresponding to cluster k.
10: if Lk has only one point then

11: Continue ▷ Skip cluster if it consists of only one point.

12: for each index i ∈ [0, length(Lk)− 1] do

13: results[i]← fx 1NN(i, Lk) ▷ Compute the nearest neighbor distance for point at index i.

14: dist val[count]← sum(results) ▷ Sum the 1NN distances for points in cluster k.

15: dist val← dist val[no NaN values] ▷ Remove any NaN values from the distance array.

16: Return CHAOS←
∑

dist val
length(clusterlabel)

▷ Compute and return the average CHAOS score.

Algorithm 7 1-Nearest Neighbor Function
Inputs:

• i: Index of the point for which to compute the nearest neighbor.

• Lk: Array of spatial locations corresponding to points in the cluster.

Outputs:

• di,1: Euclidean distance from point at index i to its nearest neighbor within the cluster.

1: distances← pairwise distance([Lk[i]], Lk) ▷ Compute distance between the point at index i and

all points in Lk.

2: nearest neighbor← copy(distances) ▷ Create a copy of the distances to sort them.

3: nearest neighbor← partition(nearest neighbor, 1) ▷ Partially sort distances such that the

1st nearest neighbor distance is in the correct position.

return di,1 ← nearest neighbor[0, 1] ▷ Return the distance to the nearest neighbor.

7

Algorithm 8 Moran’s I Calculation
Inputs:

• C: Set of clusters in the dataset.

• L: Array of spatial coordinates corresponding to each data point in the dataset.

• Y : Vector of values assigned to each point based on their cluster.

• k: Number of nearest neighbors for kNN graph construction.

Outputs:

• I: Moran’s I statistic, representing the degree of spatial autocorrelation.

1: w ← kNN(L, k) ▷ Construct kNN graph where w represents the weight matrix of the neighbors.

2: for each point i in the dataset do

3: for each neighbor j in w do

4: if j is one of the k nearest neighbors of i then

5: wij ← 1 ▷ Assign weight of 1 for neighbor j.
6: else

7: wij ← 0 ▷ Assign weight of 0 if not a neighbor.

8: Ȳ ← 1
N

∑N
i=1 Yi ▷ Calculate the mean of the values in vector Y .

9: I ← N∑N
i=1

∑N
j=1 wij

·
∑N

i=1

∑N
j=1 wij(Yi−Ȳ)(Yj−Ȳ)∑N

i=1(Yi−Ȳ)2
▷ Compute I using the provided formula.

return I ▷ Return the calculated Moran’s I statistic.

MERlin)[9, 10] for the acquisition of cell and transcript data. Cells with fewer than 10 transcript counts were130

excluded from further analysis to ensure data quality. Data was log-normalized, scaled, PCA was performed,131

neighborhood identification, and cell clusterings calculated. To determine the cell type for each cluster, transcript132

counts were compiled for each gene across clusters, focusing on known markers within the top 10 identified133

transcripts. Differential expression analysis was conducted using Seurat v3 in R, allowing the identification of134

specific markers associated with each Leiden cluster. Additionally, visualization of spatial regions was achieved135

using Squidpy [11] in conjunction with the AnnData [12] and Scanpy [13] libraries.136

DLPFC: We downloaded the raw DLPFC data (slide #151673) from the spatialLIBD website (http://137

research.libd.org/spatialLIBD/index.html). The dataset was loaded intoR using Seurat’s CreateSeuratObject138

function with the min.cells = 20 and min.features = 20 parameters. Data were processed using the SCTransform139

pipeline with the following parameters: variable.features.n = NULL, variable.features.rv.th = 1.3,return.only.var.genes140

= FALSE. Data were then converted to the h5ad file format using SeuratDisk package’s SaveH5Seurat and141

Convert functions to be processed via RASP in Python.142

Mouse Olfactory bulb: The dataset was downloaded from the SEDR publication GitHub repository [14]143

(https://github.com/JinmiaoChenLab/SEDR_analyses/tree/master/data). Data were processed in Python144

using Scanpy unless otherwise specified. The standard processing pipeline was run, including the following145

functions: calculate qc metrics, filter genes with min cells = 50, highly variable genes with flavor =146

’seurat’, normalize total, and log1p. The processed data were then analyzed using RASP.147

Breast Cancer: We downloaded the Breast cancer Xenium dataset from the SubcellularSpatialData R148

package viaExperimentHub, dataset # EH8567, sample ID ’IDC’ (https://www.bioconductor.org/packages/149

release/data/experiment/html/SubcellularSpatialData.html). Transcripts at each subcellular location were150

assigned to cells using the tx2spe function with bin = ’cell’. The resulting SingleCellExperiment object was151

converted to a Seurat object, and then converted to an .h5ad file using SeuratDisk package’s SaveH5Seurat and152

Convert functions. Downstream analysis was done in Python using the Scanpy and Squidpy packages. Mito-153

chondrial, ribosomal, and hemoglobin genes identified with the var names.str.startswith("MT-"),var names.str.startswith("RPS","RPL"),var names.str.startswith("HB[(̂P)]")154

commands, quality control metrics where calculated with the calculate qc metrics command, and data were155

filtered using the filter cells command where min genes = 20 and min cells = 3. The filtered data were then156

log normalized and the top 3000 most highly variable genes where identified using the highly variable genes157

8

http://research.libd.org/spatialLIBD/index.html
http://research.libd.org/spatialLIBD/index.html
http://research.libd.org/spatialLIBD/index.html
https://github.com/JinmiaoChenLab/SEDR_analyses/tree/master/data
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html
https://www.bioconductor.org/packages/release/data/experiment/html/SubcellularSpatialData.html

function with favor = ’seurat’. The processed data were then analyzed using RASP.158

Table 1: Datasets used for RASP evaluation

Platform Tissue Organism n cell/n location n genes Ground truth annotation?

MERFISH Ovary Mouse 43,038 228 True
Stereo-Seq Brain (Olfactory bulb) Mouse 19,109 14,367 False
10x Xenium Breast cancer Human 565,916 541 True
10x Visium Brain (DLPFC) Human 3,638 15,124 True
SRTsim Simulation 1 NaN 10,000 150 True
SRTsim Simulation 2 NaN 10,000 150 True

1.6 Simulated dataset processing159

Raw simulated count data were processed in Python using the Scanpy and Squidpy packages. Count matrices160

were normalized to medial total counts using the pp.normalize total command, logarithmized with the pp.log1p161

command and variable genes identified using the pp.highly variable genes function, all with default parameters.162

The processed data were then analyzed using RASP. Note: for testing the SpatialPCA algorithm on the simulated163

data, the raw simulated count matrix was processed via Seurat’s SCTransform pipeline with default parameters,164

as per the packages recommendation.165

Table 2: Parameter Selection

Parameter
Name

Algorithm Type Range Default Description Recommendations

n components rSVD int 5-100 20 Number of compo-
nents to keep.

For spatial domain detec-
tion, use a range of 5 − 20
PCs to capture larger do-
mains. For clustering tasks
with higher resolution or
heterogeneity, users may
want to increase this pa-
rameter to a range of 30−
60. Note that increased
components will increase
runtime.

n oversamples rSVD int 2-10 10 Corresponds to the
additional number of
random vectors to
sample the range of
X to ensure proper
conditioning.

Default is recommended
for most situations.
Smaller number can im-
prove speed but negatively
impact approximation
quality. Users might want
to increase this parameter
up to 2k − ncomponents

where k is the effective
rank, for large matrices,
noisy problems, matri-
ces with slowly decaying
spectrum, or to increase
precision accuracy.

Continued on next page

9

Parameter
Name

Algorithm Type Range Default Description Recommendations

power
iteration
normalizer

rSVD string auto,
QR,
LU,
none

auto Power iteration nor-
malizer for random-
ized SVD solver.

Default is recommended.

threshold RASP int 1-200 10 Corresponds to the
kNN threshold used
to calculate the
sparse distance ma-
trix used for spatial
smoothing.

For larger spatial domains
and tissue sections, a larger
smoothing threshold be-
tween 50 and 100 is rec-
ommended. For high-
resolution cell type tasks,
kNNs between 3 and 10
are recommended. Users
should incorporate a priori
knowledge of tissue struc-
ture.

n neighbors RASP int 5-50 10 Number of kNN
when constructing
a NN graph of the
smoothed principal
components, used
by the clustering
algorithms.

Default of 10 is recom-
mended.

n clusters RASP int inf 10 The number of clus-
ters identified by the
clustering algorithm.

-

covariates RASP string,
list

nan None Specification of ad-
ditional covariates,
should be in the
adata.obs slot of the
adata object.

Users can include addi-
tional features to incor-
porate into the reduction
and clustering step such as
the number of counts (li-
brary size), cellular den-
sity, chromatin accessibil-
ity, or protein abundance
measures. Incorporation
of these features should be
tested against the RNA
alone and results compared
with CHAOS score and
Moran’s I.

Continued on next page

10

Parameter
Name

Algorithm Type Range Default Description Recommendations

covariate
kNN

RASP int,
list

1-200 None If covariates are
included, covariate
smoothing is the
kNN threshold to
use for smoothing
the additional fea-
ture(s), or threshold
to calculate local
density. This can be
the same or different
than the smoothing
threshold feature.

If users are adding lo-
cal cell density as a co-
variate, then a different
smoothing threshold is rec-
ommended than that used
for the RNA smoothing.
For other covariates, keep-
ing the same smoothing
threshold as the RNA is
recommended.

cluster
algorithm

Clustering string walktrap,
mclust,
lou-
vain,
leiden

louvain Clustering algorithm
utilized by RASP.

Clustering is largely de-
pendent on the tissue
type and structure users
are hoping to identify.
The walktrap algorithm
works well for large, ho-
mogeneous structures,
and evenly spaced spots
such as 10x Visium, but
has a large computational
cost that increases run-
time with larger datasets.
Mclust utilizes GMM and
generally performs con-
sistently across all tissue
types but is sensitive to
the model type being
fit. See the ’model type’
parameter. Louvain and
Leiden algorithms outper-
form the other methods
for high-resolution or het-
erogeneous labeling tasks
such as identifying cell
types or small interspersed
tissue domains.

ground
truth
labels

Clustering string nan None Name of the ground
truth labels in the
adata.obs slot.

If the dataset is anno-
tated, users can specify the
data slot of the annota-
tions and test the accuracy
of RASP predictions. Used
for benchmarking.

Continued on next page

11

Parameter
Name

Algorithm Type Range Default Description Recommendations

model type Mclust string See
mclust-
Mod-
el-
Names
for
avail-
able
model
types

EEE Corresponds to
the GMM used by
mclust.

Generally, EEE has the
best performance on ST
data.

2 Supplemental Results166

2.1 A note on Moran’s I and CHAOS score167

Many publications utilize Moran’s I and the CHAOS score as measures of cluster quality in the absence of ground168

truth annotations, where calculating the ARI is not feasible. This study employs these metrics for assessing the169

olfactory bulb dataset. To this end, we visualized both Moran’s I and CHAOS score over varying kNN thresholds170

from 1 to 50, and for β values ranging from 0 to 2 (see Extended Data Fig. 2, 4, 5, and 7).171

Across all datasets analyzed, the scores exhibited a similar trend: for small β values between 0 and 1, as the172

kNN threshold increased, the Moran’s I value rose logarithmically, while the CHAOS score decayed exponentially.173

In contrast, for larger β values from 1 to 2, the trends persisted but with lower Moran’s I values and higher CHAOS174

scores being observed. Notably, in the case of the ovary dataset, both the CHAOS and Moran’s I values remained175

invariant to changes in the kNN threshold when β exceeded 1, with scores in the other datasets trending towards176

little to no change as well.177

Additionally, we visualized the relationship between ARI and Moran’s I, as well as between ARI and CHAOS178

score for all datasets with available ground truth annotations. Interestingly, for the DLPFC and ovary datasets, we179

found that Moran’s I and ARI were negatively correlated (see Extended Data Fig. 1,3). In contrast, the CHAOS180

score was positively correlated with ARI in the ovary dataset, regardless of the clustering algorithm used. However,181

in the DLPFC dataset, only the Louvain and Leiden clustering methods demonstrated a positive association with182

the CHAOS score, while Walktrap and MCLust did not exhibit such a relationship.183

These results underscore both the importance and the limited utility of CHAOS score and Moran’s I in assessing184

cluster quality. Moreover, they suggest that the specific clustering task—such as distinguishing between cell types185

versus spatial domain annotations—and the choice of clustering algorithm will significantly impact the usefulness186

of these two metrics in evaluating cluster quality.187

References188

1. Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. Randomized Matrix Decompositions using R.189

Journal of Statistical Software 89. issn: 1548-7660. arXiv: 1608.02148[stat]. http://arxiv.org/abs/190

1608.02148 (2024) (2019).191

2. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12,192

2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html (2011).193

3. Martinsson, P.-G. & Tropp, J. A. Randomized numerical linear algebra: Foundations and algorithms. Acta194

Numerica 29, 403–572. issn: 0962-4929, 1474-0508. https : / / www . cambridge . org / core / journals /195

acta- numerica/article/randomized- numerical- linear- algebra- foundations- and- algorithms/196

4486926746CFF4547F42A2996C7DC09C (2024) (May 2020).197

12

https://arxiv.org/abs/1608.02148 [stat]
http://arxiv.org/abs/1608.02148
http://arxiv.org/abs/1608.02148
http://arxiv.org/abs/1608.02148
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C

Extended Data Fig. 1: Mouse Ovary supplement 1. A: ARI values plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: Moran’s I and CHAOS
values plotted against ARI value, colors indicate clustering algorithm. Lines represent robust linear regression
best fit.

13

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
on

ra
n'

s I
β: 0.0 β: 0.25 β: 0.5

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
on

ra
n'

s I

β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
on

ra
n'

s I

β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

0.010

0.011

0.012

0.013

0.014

0.015

C
H

A
O

S

β: 0.0 β: 0.25 β: 0.5

0.010

0.011

0.012

0.013

0.014

0.015
β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.010

0.011

0.012

0.013

0.014

0.015
β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

C
H

A
O

S
C

H
A

O
S

A

B

Cluster Algorithm
mclust
louvain
leiden

Extended Data Fig. 2: Mouse Ovary supplement 2. A: Moran’s I statistic plotted against kNN distance
threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS
score plotted against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a
distinct β value.

14

Extended Data Fig. 3: DLPFC supplement 1. A: ARI values plotted against kNN distance threshold. Colors
indicate clustering algorithm, each subplot corresponds to a distinct β value. B: Moran’s I and CHAOS values
plotted against ARI value, colors indicate clustering algorithm. Lines represent robust linear regression best fit.

15

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

or
an

's
I

β: 0.0 β: 0.25 β: 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
or

an
's

I

β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
or

an
's

I

β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

0.060
0.061
0.062
0.063
0.064
0.065
0.066
0.067
0.068

C
H

A
O

S

β: 0.0 β: 0.25 β: 0.5

0.060
0.061
0.062
0.063
0.064
0.065
0.066
0.067
0.068

C
H

A
O

S

β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.060
0.061
0.062
0.063
0.064
0.065
0.066
0.067
0.068

C
H

A
O

S

β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

Cluster Algorithm
walktrap
mclust
louvain
leiden

A

B

Extended Data Fig. 4: DLPFC supplement 2. A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS score plotted
against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct β
value.

16

0.2

0.4

0.6

0.8

1.0
M

or
an

's
I

β: 0.0 β: 0.25 β: 0.5

0.2

0.4

0.6

0.8

1.0

M
or

an
's

I

β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.2

0.4

0.6

0.8

1.0

M
or

an
's

I

β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

0.018

0.020

0.022

0.024

0.026

0.028

0.030

C
H

A
O

S

β: 0.0 β: 0.25 β: 0.5

0.018

0.020

0.022

0.024

0.026

0.028

0.030

C
H

A
O

S

β: 0.75 β: 1.0 β: 1.25

0 10 20 30 40 50
KNN

0.018

0.020

0.022

0.024

0.026

0.028

0.030

C
H

A
O

S

β: 1.5

0 10 20 30 40 50
KNN

β: 1.75

0 10 20 30 40 50
KNN

β: 2.0

A

B

Cluster Algorithm
mclust
louvain
leiden

Extended Data Fig. 5: Olfactory bulb supplement. A: Moran’s I statistic plotted against kNN distance
threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS
score plotted against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a
distinct β value.

17

Extended Data Fig. 6: Xenium supplement 1. A: ARI values plotted against kNN distance threshold. Colors
indicate clustering algorithm, each subplot corresponds to a distinct β value. B: Moran’s I and CHAOS values
plotted against ARI value, colors indicate clustering algorithm.

18

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I

β: 0.0 β: 0.25 β: 0.5

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I

β: 0.75 β: 1.0 β: 1.25

0 20 40 60 80 100 120
KNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I

β: 1.5

0 20 40 60 80 100 120
KNN

β: 1.75

0 20 40 60 80 100 120
KNN

β: 2.0

0.0030

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

C
H

A
O

S

β: 0.0 β: 0.25 β: 0.5

0.0030

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

C
H

A
O

S

β: 0.75 β: 1.0 β: 1.25

0 20 40 60 80 100 120
KNN

0.0030

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

C
H

A
O

S

β: 1.5

0 20 40 60 80 100 120
KNN

β: 1.75

0 20 40 60 80 100 120
KNN

β: 2.0

Cluster Algorithm
mclust
louvain
leiden

A

B

Extended Data Fig. 7: Xenium supplement 2. A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS score plotted
against kNN distance threshold. Colors indicate clustering algorithm, each subplot corresponds to a distinct β
value. Lines represent robust linear regression best fit.

19

RASP SEDR GraphST SpatialPCA BASS STAGATE

 105

R
un

tim
e

re
la

tiv
e

to
 P

C
A

Ground Truth RASP
(ARI: 0.78)

PCA
(ARI: 0.29)

SEDR
(ARI: 0.51)

GraphST
(ARI: 0.52)

STAGATE
(ARI: 0.48)

BASS
(ARI: 0.84)

SpatialPCA
(ARI: 0.44)

A

B C

D

 104

 103

 102

 101

 100

10-1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β: 0.0 β: 0.25 β: 0.5

0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β: 0.75 β: 1.0 β: 1.25

0 20 40 60 80 100 120
KNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β: 1.5

0 20 40 60 80 100 120

β: 1.75

0 20 40 60 80 100 120

β: 2.0

Cluster Algorithm
mclust
louvain
leiden
walktrap

KNN KNN

RASP
PCA

SEDR

gra
ph

ST

STAGATE

BASS

Spa
tia

lPCA
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

Cluster Algorithm
mclust
louvain

leiden
walktrap

Cluster 1
Cluster 2

Cluster 3
Cluster 4

Cluster 5
Cluster 6

Cluster 7
Cluster 8

Extended Data Fig. 8: Simulation 1 (Stripes) A: Ground truth annotations (left) and corresponding spatial
domains identified by RASP, PCA, and other methods. B: Quantification of runtime for all methods compared to
normal PCA. C: Quantification of ARI for all methods, different colors indicate the clustering algorithm used to
assign labels. Interquartile range and median ARI values at default RASP parameters (kNN =15-30, β = 0.25)
is shown, along with maximum ARI values achieved by RASP. D: ARI values for RASP evaluated on 100 Stripe
replicates plotted against kNN, each subplot represents a distinct β value. Colored line represents the median,
shaded colors indicate the interquartile range. Colors correspond to clustering algorithm.

20

A

B

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I
β: 0.0 β: 0.25 β: 0.5

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I

β: 0.75 β: 1.0 β: 1.25

0 20 40 60 80 100 120
KNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
or

an
’s

 I

β: 1.5

0 20 40 60 80 100 120
KNN

β: 1.75

0 20 40 60 80 100 120
KNN

β: 2.0

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350

C
H

A
O

S

β: 0.0 β: 0.25 β: 0.5

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350

C
H

A
O

S

β: 0.75 β: 1.0 β: 1.25

0 20 40 60 80 100 120
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350

C
H

A
O

S

β: 1.5

0 20 40 60 80 100 120

β: 1.75

0 20 40 60 80 100 120

β: 2.0

KNN KNN KNN

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 9: Simulation 1 (Stripes) A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS score plotted
against kNN distance threshold. Colored line represents the median, shaded colors indicate the interquartile range.
Colors correspond to clustering algorithm, each subplot corresponds to a distinct β value.

21

A

B

0.0

0.2

0.4

0.6

0.8

1.0
M

or
an

’s
 I

β = 0.0 β = 0.25 β = 0.5

0.0

0.2

0.4

0.6

0.8

1.0

M
or

an
’s

 I

β = 0.75 β = 1.0 β = 1.25

0.0 0.2 0.4 0.6 0.8
ARI

0.0

0.2

0.4

0.6

0.8

1.0

M
or

an
’s

 I

β = 1.5

0.0 0.2 0.4 0.6 0.8
ARI

β = 1.75

0.0 0.2 0.4 0.6 0.8
ARI

β = 2.0

0.015

0.020

0.025

0.030

0.035

0.040

C
H

A
O

S

β = 0.0 β = 0.25 β = 0.5

0.015

0.020

0.025

0.030

0.035

0.040

C
H

A
O

S

β = 0.75 β = 1.0 β = 1.25

0.0 0.2 0.4 0.6 0.8
ARI

0.015

0.020

0.025

0.030

0.035

0.040

C
H

A
O

S

β = 1.5

0.0 0.2 0.4 0.6 0.8
ARI

β = 1.75

0.0 0.2 0.4 0.6 0.8
ARI

β = 2.0

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 10: Simulation 1 (Stripes) A: Bivariate kernel density estimate of Moran’s I statistic
against ARI. Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: Bivariate
kernel density estiamte of CHAOS score plotted against ARI. Colors indicate clustering algorithm, each subplot
corresponds to a distinct β value. Lines represent robust linear regression best fit.

22

R
un

tim
e

re
la

tiv
e

to
 P

C
A

Ground Truth RASP
(ARI: 0.91)

PCA
(ARI: 0.89)

SEDR
(ARI: 0.94)

GraphST
(ARI: 0.19)

STAGATE
(ARI: 0.46)

BASS
(ARI: 0.29)

SpatialPCA
(ARI: 0.11)

A

B C

D

 105

 104

 103

 102

 101

 100

10-1

RASP SEDR GraphST SpatialPCA BASS STAGATE RASP
PCA

SEDR

gra
ph

ST

STAGATE

BASS

Spa
tia

lPCA

0.0

0.2

0.4

0.6

0.8
A

R
I

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster 1
Cluster 2

Cluster 3
Cluster 4

Cluster 5
Cluster 6

Cluster 7
Cluster 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β : 0.0 β : 0.25 β : 0.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β : 0.75 β : 1.0 β : 1.25

0 20 40 60 80 100 120
KNN

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

β : 1.5

0 20 40 60 80 100 120
KNN

β : 1.75

0 20 40 60 80 100 120

β : 2.0

KNN

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 11: Simulation 2 (Dots) A: Ground truth annotations (left) and corresponding spatial
domains identified by RASP, PCA, and other methods. B: Quantification of runtime for all methods compared
to normal PCA. C: Quantification of ARI for all methods, different colors indicate the clustering algorithm used
to assign labels. Interquartile range and median ARI values at default RASP parameters (kNN =3-20, β = 2)
is shown, along with maximum ARI values achieved by RASP. D: ARI values for RASP evaluated on 100 Dot
replicates plotted against kNN, each subplot represents a distinct β value. Colors indicate clustering algorithm.

23

A

B

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
or

an
’s

 I

β : 0.0 β : 0.25 β : 0.5

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
or

an
’s

 I

β : 0.75 β : 1.0 β : 1.25

0 20 40 60 80 100 120
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
or

an
’s

 I

β : 1.5

0 20 40 60 80 100 120

β : 1.75

0 20 40 60 80 100 120
KNN

β : 2.0

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375

C
H

A
O

S

β : 0.0 β : 0.25 β : 0.5

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375

C
H

A
O

S

β : 0.75 β : 1.0 β : 1.25

0 20 40 60 80 100 120
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375

C
H

A
O

S

β : 1.5

0 20 40 60 80 100 120

β : 1.75

0 20 40 60 80 100 120

β : 2.0

KNNKNN

KNNKNNKNN

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 12: Simulation 2 (Dots) A: Moran’s I statistic plotted against kNN distance threshold.
Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: CHAOS score plotted
against kNN distance threshold. Colored line represents the median, shaded colors indicate the interquartile range.
Colors correspond to clustering algorithm, each subplot corresponds to a distinct β value.

24

A

B

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
or

an
’s

 I

β : 0.0 β : 0.25 β : 0.5

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
or

an
’s

 I

β : 0.75 β : 1.0 β : 1.25

0.0 0.2 0.4 0.6 0.8 1.0
ARI

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
or

an
’s

 I

β : 1.5

0.0 0.2 0.4 0.6 0.8 1.0
ARI

β : 1.75

0.0 0.2 0.4 0.6 0.8 1.0
ARI

β : 2.0

0.020

0.025

0.030

0.035

C
H

A
O

S

β : 0.0 β : 0.25 β : 0.5

0.020

0.025

0.030

0.035

C
H

A
O

S

β : 0.75 β : 1.0 β : 1.25

0.0 0.2 0.4 0.6 0.8 1.0
ARI

0.020

0.025

0.030

0.035

C
H

A
O

S

β : 1.5

0.0 0.2 0.4 0.6 0.8 1.0
ARI

β : 1.75

0.0 0.2 0.4 0.6 0.8 1.0
ARI

β : 2.0

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 13: Simulation 2 (Dots) A: Bivariate kernel density estimate of Moran’s I statistic against
ARI. Colors indicate clustering algorithm, each subplot corresponds to a distinct β value. B: Bivariate kernel den-
sity estiamte of CHAOS score plotted against ARI. Colors indicate clustering algorithm, each subplot corresponds
to a distinct β value. Lines represent robust linear regression best fit.

25

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I
Beta: 0.0 Beta: 0.25 Beta: 0.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

Beta: 0.75 Beta: 1.0 Beta: 1.25

10 20 30 40 50 60
Number of PCs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
R

I

Beta: 1.5

10 20 30 40 50 60

Beta: 1.75

10 20 30 40 50 60

Beta: 2.0

0.0

0.2

0.4

0.6

0.8

A
R

I

Beta: 0.0 Beta: 0.25 Beta: 0.5

0.0

0.2

0.4

0.6

0.8

A
R

I

Beta: 0.75 Beta: 1.0 Beta: 1.25

10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

A
R

I

Beta: 1.5

10 20 30 40 50 60

Beta: 1.75

10 20 30 40 50 60

Beta: 2.0

Cluster Algorithm
mclust
louvain
leiden
walktrap

Cluster Algorithm
mclust
louvain
leiden
walktrap

Number of PCs Number of PCs

Number of PCs Number of PCs Number of PCs

A

B

Extended Data Fig. 14: PC sensitivity (simulated data) A: ARI values plotted against number of PCs utilized
by RASP for the Stripes dataset. Colors indicate clustering algorithm, each subplot corresponds to a distinct β
value. B: ARI values plotted against number of PCs utilized by RASP for the Dots dataset. Colors indicate
clustering algorithm, each subplot corresponds to a distinct β value.

26

DLPFC Ovary Breast cancer

42.50.50

531

531

63.51

1.20.70.2

1.40.90.2

1.61.00.25

2.01.00.5

TMSB10 Lhcgr LUM

A

B

1 PC

5 PCs

100 PCs

10 PCs

10 20 30 40 50 60
Number of Principal Components

0.35

0.40

0.45

0.50

0.55

0.60

0.65
A

R
I

10 20 30 40 50 60
Number of Principal Components

0.2

0.3

0.4

0.5

0.6

0.7

A
R

I

3.52.001.00

4.52.501.00

4.52.501.00

4.002.501.00

10 20 30 40 50 60
Number of Principal Components

0.1

0.2

0.3

0.4

0.5

0.6

A
R

I

Cluster Algorithm
mclust
louvain
leiden
walktrap

Extended Data Fig. 15: PC Sensitivity Analysis. A: ARI values plotted against number of PCs utilized by
RASP for the DLPFC (left), Mouse ovary (middle) and Human breast cancer (right) datasets. Colors indicate
clustering algorithm. B: Reduced rank reconstructed gene signatures for TIMSB10 (left), Lhgr (middle), and
LUM (right) at increasing ranks.

27

0 10 20 30 40 50
Distance (um)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
ts

β = 0.0

0 10 20 30 40 50
Distance (um)

β = 1.0

0 10 20 30 40 50
Distance (um)

β = 2.0

0 2 4
0.0

0.1

0.2

0 2 4
0.0

0.1

0.2

0 2 4
0.0

0.1

0.2

β = 0.0 β = 1.0 β = 2.0

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

A

B

-2 2 -3 3 -3 3

-1 3 -2 3 -2 3

-1 2 -3 3 -3 3

-1 2.5 -2 3 -2 4

-1 1 -2 3 -2 3

-1 2 -2 3 -2 3

Extended Data Fig. 16: Effects of inverse weighting on PCs at various β values. A: Inverse weight values
plotted against real world distances (um) for β = 0, β = 1, and β = 2. B: First six PCs for the mouse ovary
dataset visualized spatially on the tissue, smoothed by inverse distances exponentiated by 0 (left), 1 (middle) and
2(right).

28

Extended Data Fig. 17: Inverse weights at different β values. A: Inverse weight values plotted against real
world distances (um) at various values of β

29

PCA

Euclidean,
Inverse

Distance

PC1 PC2 PC3 PC4
A B

Euclidean,
gaussian

Euclidean,
quadratic

Manhattan,
Inverse
Distance

Manhattan,
gaussian

Manhattan,
quadtratic

Method
pca
Euclidean, inverse squared
Euclidean, gaussian
Euclidean, quadratic
Manhattan inverse squared
Manhattan, gaussian
Manhattan, quadratic

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ARI

C

Extended Data Fig. 18: Differential distance measurements and distance weights applied to Human
breast cancer dataset. A: Normal and spatially smoothed PCs 1-4 visualized spatially on the tissue. B:
RASP-identified domains from the different distance and weighting schemes presented in A. C: Kernel density
estimates of the first 4 normal and spatially smoothed PCs. Colors indicate distance and weighting schemes, as
shown in A. D: Quantification of domain detection by ARI score for the regions identified in B.

30

4. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods198

17. Publisher: Nature Publishing Group, 261–272. issn: 1548-7105. https://www.nature.com/articles/199

s41592-019-0686-2 (2024) (Mar. 2020).200

5. Hubert, L. & Arabie, P. Comparing partitions. Journal of Classification 2, 193–218. issn: 1432-1343. https:201

//doi.org/10.1007/BF01908075 (2024) (Dec. 1, 1985).202

6. Alexandrov, T. & Bartels, A. Testing for presence of known and unknown molecules in imaging mass spectrom-203

etry. Bioinformatics 29, 2335–2342. issn: 1367-4803. https://doi.org/10.1093/bioinformatics/btt388204

(2024) (Sept. 15, 2013).205

7. Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37. Publisher: [Oxford University206

Press, Biometrika Trust], 17–23. issn: 0006-3444. https://www.jstor.org/stable/2332142 (2024) (1950).207

8. Huang, R. et al. Single-cell and spatiotemporal profile of ovulation in the mouse ovary Pages: 2024.05.20.594719208

Section: New Results. June 5, 2024. https://www.biorxiv.org/content/10.1101/2024.05.20.594719v4209

(2024).210

9. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular seg-211

mentation. Nature Methods 18. Publisher: Nature Publishing Group, 100–106. issn: 1548-7105. https :212

//www.nature.com/articles/s41592-020-01018-x (2024) (Jan. 2021).213

10. Dalsasso, E., Rambour, C., Trouvé, N. & Thome, N. MERLIN-Seg: Self-supervised despeckling for label-214

efficient semantic segmentation. Computer Vision and Image Understanding 241, 103940. issn: 1077-3142.215

https://www.sciencedirect.com/science/article/pii/S1077314224000213 (2024) (Apr. 1, 2024).216

11. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nature217

Biotechnology 40. Number: 3 Publisher: Nature Publishing Group, 308–318. issn: 1546-1696. https://www.218

nature.com/articles/s41587-021-01182-1 (2023) (Mar. 2022).219

12. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: Access and store annotated data220

matrices. Journal of Open Source Software 9, 4371. issn: 2475-9066. https://joss.theoj.org/papers/221

10.21105/joss.04371 (2024) (Sept. 16, 2024).222

13. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome223

Biology 19, 15. issn: 1474-760X. https://doi.org/10.1186/s13059-017-1382-0 (2024) (Feb. 6, 2018).224

14. Chen, S. et al. Integration of spatial and single-cell data across modalities with weakly linked features.225

Nature Biotechnology. Publisher: Nature Publishing Group, 1–11. issn: 1546-1696. https://www.nature.226

com/articles/s41587-023-01935-0 (2024) (Sept. 7, 2023).227

31

https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1093/bioinformatics/btt388
https://www.jstor.org/stable/2332142
https://www.biorxiv.org/content/10.1101/2024.05.20.594719v4
https://www.nature.com/articles/s41592-020-01018-x
https://www.nature.com/articles/s41592-020-01018-x
https://www.nature.com/articles/s41592-020-01018-x
https://www.sciencedirect.com/science/article/pii/S1077314224000213
https://www.nature.com/articles/s41587-021-01182-1
https://www.nature.com/articles/s41587-021-01182-1
https://www.nature.com/articles/s41587-021-01182-1
https://joss.theoj.org/papers/10.21105/joss.04371
https://joss.theoj.org/papers/10.21105/joss.04371
https://joss.theoj.org/papers/10.21105/joss.04371
https://doi.org/10.1186/s13059-017-1382-0
https://www.nature.com/articles/s41587-023-01935-0
https://www.nature.com/articles/s41587-023-01935-0
https://www.nature.com/articles/s41587-023-01935-0

	Supplemental Methods
	Efficient numerical methods and data structures utilized by RASP
	Adjusted Rand Index calculation
	CHAOS score calculation
	Moran's I calculation
	Real world data preprocessing
	Simulated dataset processing

	Supplemental Results
	A note on Moran's I and CHAOS score

