

1 Supplementary Information

2 **Globular pattern formation of hierarchical ceria nanoarchitecture**

3 Noboru Aoyagi^{1*}, Ryuhei Motokawa^{1,2}, Masahiko Okumura³, Takumi Saito^{1,4},

4 Shotaro Nishitsuji⁵, Tomitsugu Taguchi⁶, Takumi Yomogida⁷ and Atsushi Ikeda-Ohno¹

5 ¹Advanced Science Research Centre (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki 319-1195 Japan

6 ²Materials Sciences Research Centre (MSRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki 319-1195 Japan

7 ³Centre for Computational Science and e-Systems, JAEA, Kashiwa, Chiba 277-0871, Japan

8 ⁴Nuclear Professional School, School of Engineering, The University of Tokyo, Ibaraki 319-1188 Japan

9 ⁵Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan

0 ⁶National Institutes for Quantum and Radiological Science and Technology, Tokai-mura, Ibaraki 319-1106, Japan

1 ⁷Nuclear Science and Engineering Centre (NSEC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki 319-1195 Japan

2 Author Note

3 *E-mail: aoyagi.noboru@jaea.go.jp

6	TABLE OF CONTENTS	
7		
8	1. A set of parameters for SAXS analysis	...3
9		
0	2. The determination of the aggregation number (n_A) in a single secondary cluster	...7
1		
2		
3		
4		
5		
6		
7		
8		
9		
0		
1		
2		
3		

4 **1. A set of Ce^{IV} concentration parameters for nanoclusters and ions obtained from SAXS analysis**

5 The SAXS intensity $I(q)$ obeys the following relationship:

6

$$I(q = 0) = \phi_s \cdot V_s \cdot (\rho_s - \rho_m)^2, \quad (S1)$$

7 where ϕ_s [N.D.] is the volume fraction of the secondary clusters of our concern, V_s [cm³] is the volume of
8 a single secondary particle, ρ_s and ρ_m are the scattering length density [cm⁻²], respectively. Here, the
9 summation of the volume fraction is

0

$$\phi_w + \phi_s + \phi_m = 1 \quad (S2)$$

1 with the volume fraction of water, ϕ_w , and of matrix, ϕ_m , respectively. The matrix includes all of the ionic
2 species in the system: $Ce_m(OH)_n^{(4m-n)+}$. In the present study, we assume $m=1$ and $n=4$ as the representative
3 parameters with the one having close formula to the density available for relevant species ρ_s given in Table

4 S1. Remember that this leads to a discrimination to obtain a proper solution of the polynomial in the present
5 case.

6 **Table S1.** Chemical formula, the density of the compounds, and scattering line density in the literature. 1-6

Chemical formula	density, D_x [Mg/m ³]	S.L.D. [Å ⁻²]		S.L.D. [cm ⁻²]		Ref.No.
		Re	Im	Re	Im	
H ₂ O	0.998 (25°C)	9.52E-06	-3.17E-06	9.52E+10	-3.17E+10	
Ce (Metal)	6.77	4.61E-05	-8.23E-06	4.61E+11	-8.23E+10	
CeO ₂	7.20	5.13E-05	7.21E-06	5.13E+11	7.21E+10	1
Ce ^{III} (OH) ₃	4.57	3.40E-05	4.15E-06	3.40E+11	4.15E+10	2
Ce ^{III} (NO ₃) ₃ (H ₂ O) ₆	2.40	1.97E-05	9.99E-07	1.97E+11	9.99E+09	3
[NH ₄] ₂ [Ce ^{IV} (NO ₃) ₆]	2.49	2.05E-05	1.08E-06	2.05E+11	1.08E+10	4
[Ce ^{IV} ₂ (μ ₂ -OH) ₂ (NO ₃) ₆ (H ₂ O) ₈]	2.48	2.02E-05	1.08E-06	2.02E+11	1.08E+10	5
[Ce ₆ (μ ₆ -O)(μ ₃ -OH) ₈ (NO ₃) ₈]	3.85	2.93E-05	2.71E-06	2.93E+11	2.71E+10	6

7

8

9

0 The volume fraction of the second clusters, ϕ_s [cm³], is

$$2 \quad \phi_s := \frac{C_s M_s}{d_s} \frac{[\text{mol}][\frac{\text{g}}{\text{mol}}]}{[\frac{\text{g}}{\text{cm}^3}], \quad (\text{S3})$$

1

3 Where C_s [mol] is the number of the secondary clusters, M_s [g/mol] is the formula weight of the primary
4 particle, d_s [g/cm³] is the density of the particle. In the similar manner, we have the following fractions with
5 C_m [mol] is the number of Ce ions in the matrix medium M_m [g/mol] is the formula weight of the ionic
6 species, d_m [g/cm³] is the density of the ionic species. Each fraction defines

$$7 \quad \phi_w := \frac{\left(10^3 - \frac{C_s M_s}{d_s} - \frac{C_m M_m}{d_m}\right)}{10^3}, \quad (\text{S4})$$

8 and

$$9 \quad \phi_m := \frac{C_m M_m}{10^3 d_m}, \quad (\text{S5})$$

0 where, the eq. S3 with concentration [mol/L] description provides dimensionless fraction for $k = w, s$, or m :

$$1 \quad \phi_i = \frac{C_k M_k}{10^3 d_k}. \quad (\text{S6})$$

2 In the meantime, the scattering length density ρ_m in the eq(S1) is the summation of that of water and the
3 matrix by a factor of their volume fraction χ_w and χ_I , respectively. The actual matrix contains a variety of
4 the ionic species; however, we select Ce(OH)₄ as a presumable species in a succinct model case with a density
5 of $D_x = 2.49$ [g/cm³] (Table S1). As long as we investigated, no data is available for the density of Ce(OH)₄.
6 This might be due to an extensive hygroscopic nature or the reason the determination of the hydration number

7 and the subsequent structures is very difficult. Therefore, we used $D_x = 2.49$ [g/cm³] that is the value for CAN,
8 instead. Some possible density candidates are listed in Table S1, ranging from 7.20 for CeO₂ to 2.40 for
9 Ce^{III}(NO₃)₃(H₂O)₆. In reality, the system of our interest has a complicated mixture of the multiple
0 components—the optimal value for the present second cluster might exist in between.

1 Note that ρ_i represents a scattering length density for the corresponding ion: Ce(OH)₄.

2

$$\rho_m = \chi_w \rho_w + \chi_i \rho_i \quad (S6)$$

3 with

4

$$\chi_w = \frac{10^3 - \frac{C_s M_s}{d_s} - \frac{C_i M_i}{d_i}}{10^3 - \frac{C_s M_s}{d_s}} \quad (S7)$$

5 and

6

$$\chi_i = \frac{\frac{C_i M_i}{d_i}}{10^3 - \frac{C_s M_s}{d_s}} \quad (S8)$$

7

8 Total concentration of Ce⁴⁺ [mol/L] ions preserves;

0

$$\frac{C_t}{10^3} = \frac{C_s}{10^3} + \frac{C_i}{10^3} \quad (S9)$$

9

1 In the case of $C_{Ce^{IV}} = 0.05$ [M], which is the second series in the Procedure and Apparatus section, we
2 substitute $\frac{C_t}{10^3} = 0.05$ [M] for the total concentration. With the eq (S7) and the eq (S8), the eq (S6) turns into

3

$$C_i = -\frac{d_i M_s \rho_w - \rho_m}{d_s M_i \rho_w - \rho_i} C_s + 10^3 \frac{d_i \rho_w - \rho_m}{M_i \rho_w - \rho_i} \quad (S10)$$

4 And thus, one obtains the following simple solvable problem with a third order polynomial of ρ_m by using

5 parameters in Table S2 and erasing C_i and C_s from the eq (S10) in combination with the eq (S9):

6 $\rho_m^3 + b_2 \rho_m^2 + b_1 \rho_m + b_0 = 0$ (S11)

7

8 **Table S2.** Parameters used for the calculation.

Given variables	value	unit	remark
$I(q=0)$	231.77	cm^{-1}	Exp.
V_s	8.01E-11	cm^{-2}	Exp.
ρ_w	9.44E+10	cm^{-2}	Exp.
ρ_s	5.20E+11	cm^{-2}	Exp.
ρ_i	1.88E+11	cm^{-2}	Exp.
b_2	-1.135E+12		numerical
b_1	3.67E+23		numerical
b_0	-2.564E+34		numerical

9

0 The numerical solutions of the eq (S11) are complex numbers with the negligible imaginary parts. Two of
1 the solutions give the negative numbers for C_i . Therefore, an effective solution is:

2 $\rho_m = 9.58E+10 \text{ cm}^{-2}$ (S12)

3 Finally, the corresponding concentrations are

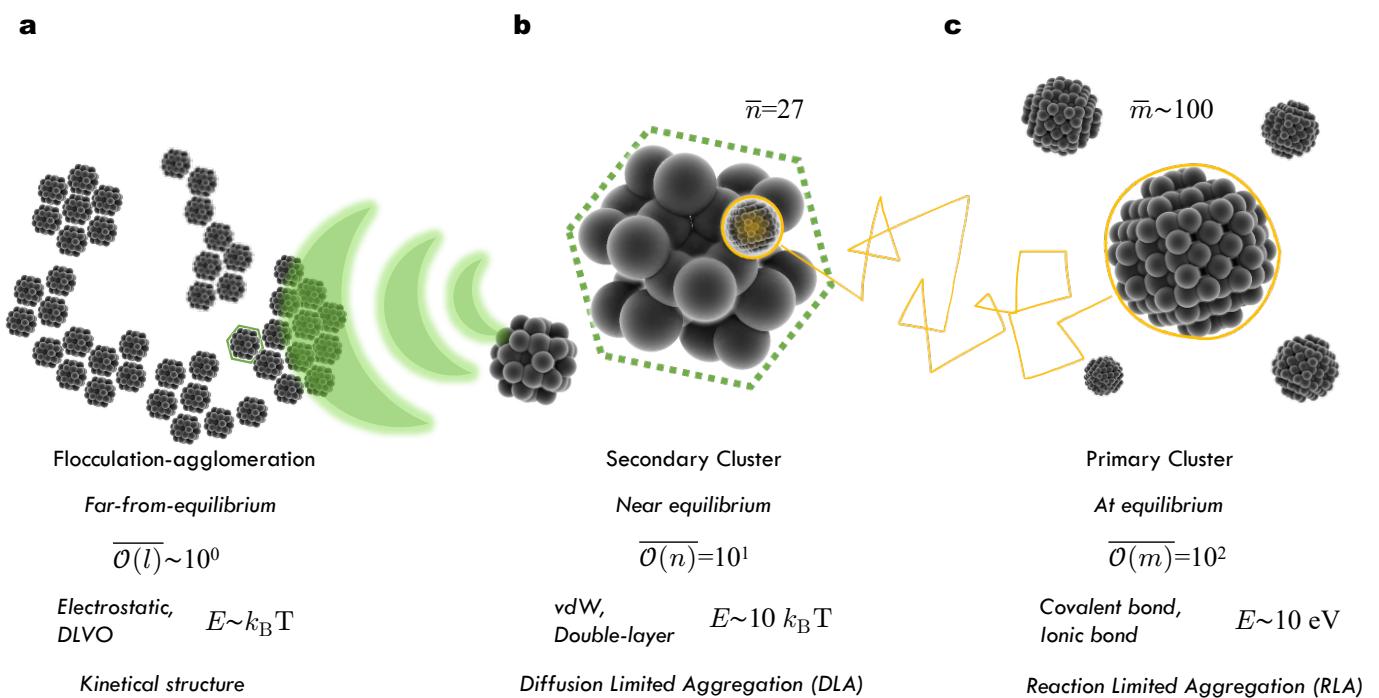
4 $C_i = 6.97E-03 \text{ M}$, (S13)

5 and

6 $C_s = 4.30E-02 \text{ M}$. (S14)

7

8


9

0 2. The determination of the aggregation number (n_A) in a single secondary cluster

- 1 The volume of the secondary cluster satisfies the following relation with that of the primary cluster (V_p), the association number (n), and a filling factor (ζ)
- 2

$$V_s = V_n \cdot n \cdot \zeta , \quad (S15)$$

4 Where the maximum number allowed is $\zeta_{\max} \sim 0.64$ for a hexagonal closest packing. In the present spherical
 5 approximation, $V_s = (\frac{3}{4})\pi R_s^3$ and $V_p = (\frac{3}{4})\pi R_p^3$ provide the mean aggregation number of the secondary
 6 clusters: $\bar{n}=27.0$. The following scheme is an updated scheme described in the Introduction section via the
 7 present discussion.

Fig. S1. A hierarchical nanoarchitecture concluded in the present study. **a** Flocculation–agglomeration model. Common in kinetical structure observed on a carbon-coated copper microgrid. **b** Secondary cluster with the mean value of aggregation number $\bar{n} = 27$. Diffusion Limited Aggregation is in control; that is, the Brownian motion (orange solid line segments represent a zigzag trace) is a key path. **c** Primary cluster with the mean value of Ce^{IV} in a single particle $\bar{m} \sim 100$.

5

6

7

References

8 (1) Itoh, T.; Mori, M.; Inukai, M.; Nitani, H.; Yamamoto, T.; Miyanaga, T.; Igawa, N.; Kitamura, N.; Ishida,
9 N.; Idemoto, Y., Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental
0 and Computational Methods. *J. Phys. Chem. C* **2015**, *119*, 8447-8458.

1 (2) Mullica, D. F.; Oliver, J. D.; Milligan, W. O., Cerium trihydroxide. *Acta Crystallographica Section B* **1979**,
2 35, 2668-2670.

3 (3) Milinski, N.; Ribar, B.; Sataric, M., PENTAAQUATRINITRATOCERIUM(III) MONOHYDRATE,
4 CE(H₂O)₅(NO₃)₃.H₂O. *Crystal Structure Communications* **1980**, *9*, 473-477.

5 (4) Beineke, T. A.; Delgaudio, J., Crystal structure of ceric ammonium nitrate. *Inorg. Chem.* **1968**, *7*, 715-721.

6 (5) Guillou, N.; Auffrédic, J. P.; Louér, D., Synthesis, Crystal Structure, and Thermal Behavior of Cerium(IV)
7 Oxide Nitrate Ce₂O(NO₃)₆(H₂O)₆ · 2H₂O. *Journal of Solid State Chemistry* **1994**, *112*, 45-52.

8 (6) Calvez, G.; Daiguebonne, C.; Guillou, O.; Le Dret, F., A New Series of Anhydrous Lanthanide-Based
9 Octahedral Hexanuclear Complexes. *Eur. J. Inorg. Chem.* **2009**, *2009*, 3172-3178.

0

1