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Figure S1. Comparisons between r-SAGE-net and Enformer. (a) R-SAGE-net trained on genes in Enformer’s training set (n=15335) and evaluated on
genes in Enformer’s test set (n=1516). R-SAGE-net is trained and evaluated on 40 kb reference sequence and average log-transformed gene
expression across ROSMAP individuals. Scatterplot is colored by density. (b) Fine-tuned Enformer evaluated on Enformer’s test set genes. Fine-tuning
follows the procedure outlined in our previous work (9) (Methods). Evaluation is done with the same length input as in Enformer training
(196,608 bp). (c) Enformer evaluated on Enformer’s test set genes without fine-tuning. Insead of fine-tuning, we select the representative track
(“CAGE:brain, adult”), as done previously (9). (d) Comparison between r-SAGE-net and Enformer model sizes and inference times. Both models are
evaluated on one NVIDIA RTX A4000 GPU.
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Figure S2. Model performance for GSTM3. (a) R-SAGE-net GTEx predicted vs. observed. (b) Fine-tuned Enformer GTEx predicted vs. observed.
(c) P-SAGE-net GTEx predicted vs. observed. Note that the p-SAGE-net model used here was trained on the top 1000 gene set, which includes
GSTM3 (but the GTEx individuals shown here were not seen in model training).
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Figure S3. P-SAGE-net ISM for GSTM3. (a) Zero-centered ISM for a 150bp window around the variant of interest (chromosome 1, hg38 position
109731286 G - T), shown for the reference sequence. Motifs shown are from seqlets matched to the HOCOMOCO v12 database (18) by
TOMTOM (19) with p<0.05. (b) Same ISM as in (a), but shown for all bases instead of only reference sequence. White represents value=0. (c)
Same ISM as in (a), but done for reference sequence with variant inserted (T instead of G at 109731286). (d) Same ISM as in (c), but shown for all
bases instead of only reference sequence.
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Figure S4. R-SAGE-net ISM for GSTM3. Same analysis as Fig. S3, but using r-SAGE-net instead of p-SAGE-net.
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Figure S5. Enformer ISM for GSTM3. Same analysis as Fig. S3, but using fine-tuned Enformer instead of p-SAGE-net.
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Figure S6. Seqlet distances from TSS for p-SAGE-net vs. r-SAGE-net. (a) Distribution of p-SAGE-net seqlet distances from TSS. Analysis shown
(combined) for high performance genes in model training set (n=466 genes with GTEx per-gene correlation>0.3). We approximate ISM values
using gradients (20) and then identify seglets with p<0.005 (see Methods). (b) Same analysis as (a), but with r-SAGE-net instead of p-SAGE-net.
(c) Comparison between seqlet distances from gene TSS for p-SAGE-net and r-SAGE-net, p-values from the two-sample Kolmogorov-Smirnov test
for goodness of fit.
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Figure S7. Model ablation analyses. (a) Comparison between best model (p-SAGE-net) and variations: randomly initializing model weights
instead of initializing from r-SAGE-net (“random init”), using personal expression difference instead of z-score for model difference output
(“non-zscore”), replacing the last convolutional block with a transformer block (“transformer block”), and predicting personal gene expression
from personal sequence, without the contrastive approach (“non-contrastive”). See Methods for details on each variation. Each model is trained
on 689 ROSMAP training individuals for 734 training genes from the top 1000 gene set and evaluated on 205 GTEx individuals for the same gene
set. Each dot is one gene, boxplots show interquartile range with whiskers extending to minimum and maximum. (b) Modifications to loss
function hyperparameters. For each weight on the “difference” portion of the loss function (diff weight = 1, 10, 100), the weight on the “mean
expression” portion of the loss function = 1 — so when diff weight = 1, the two portions of the loss function are equally weighted. The difference
weight selected for all other analyses is 10. Model training and evaluation gene and individual sets are the same as in (a). (c) Comparison
between models with 40k vs. 20k input window. Window size applies to both model training and evaluation. Model training and evaluation gene
and individual sets are the same as in (a). (d) Same analysis as (a), but shown for unseen test genes (n=116). (e) Same analysis as (b), but shown
for unseen test genes (n=116). (f) Same analysis as (c), but shown for unseen test genes (n=116).
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Figure S8. Validation gene across-gene performance for p-SAGE-net and r-SAGE-net. 114 validation genes are from the top 1000 gene set used
in Fig. 1c,d. P-SAGE-net and r-SAGE-net models are the same as in Fig. 1c,d.
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Figure S9. Training on a larger gene set with increased model capacity. The evaluation shown for p-SAGE-net is the same as Fig. 2d, “Random

genes”, gene set size = 3000. The evaluation shown for “larger p-SAGE-net” is the same but for a model with double the number of
convolutional kernels in all convolutional layers after the first convolutional layer (512 instead of 256).



Figure S10

GTEx test gene across-gena Pearson R GTEXx train gene per-gene Pearson R
n=734
d ¢
0.35 1 0.8 -
0.30 1
0.6 1
@
0.25 -
0.4 1
[=
e 020 1 =
E § 02
1=} [ . b
& S '
0.15 & )
ol
0.0
0.10 1
-0.2
0.05 1
0.00 -04 1
T T T T
Perscnal 52E Personal 52E Personal S2E Personal S2E
no strand info with strand info no strand info with strand info
Model Model

Figure S10. Effect of using gene strand information. Genes are from the top 1000 gene set. For “with strand info”, we take the reverse
complement of the sequence for genes on the negative strand, while for “no strand info” we do not.
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Figure S11. p-SAGE-net model architecture. Model input is reference sequence for a given gene as well as an individual’s two haplotypes for
that gene. These three sequences pass through the same shared convolutional layers, after which the two haplotypes are averaged. The
averaged personal tensor and the reference tensor then pass through the same fully connected layer and different output heads to produce
mean expression and difference from mean expression. Mean expression is predicted from reference sequence alone, while difference from
mean expression is predicted using all three sequences, specifically by subtracting the “reference” tensor intermediate output from the
“personal”. See Methods for model layer specifics.
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Figure S12. p-SAGE-net training time. P-SAGE-net single epoch training time, shown for training parallelized over 2, 4, 8 NVIDIA A40 GPUs. For
one epoch, the model is trained on 689 individuals x 741 genes, evaluated on 85 individuals x 114 genes.
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Figure S13. Unseen gene across-gene performance across number of training individuals, gene set size. (a) Same analysis as in Fig. 2c, but
shown for unseen genes, across-gene correlation. (b) Same analysis as in Fig. 2d, but shown for unseen genes, across-gene correlation.
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