1	Supplementary Information for
2	Black Carbon Emissions Generally Underestimated in the Global South as
3	Revealed by Globally Distributed Measurements
4	Yuxuan Ren ^{1*} , Christopher R. Oxford ¹ , Dandan Zhang ¹ , Xuan Liu ^{1,2} , Haihui Zhu ¹ , Ann
5	M. Dillner ³ , Warren H. White ⁴ , Rajan K. Chakrabarty ¹ , Sina Hasheminassab ⁵ , David
6	Diner ⁵ , Emmie Le Roy ¹ , Joshin Kumar ¹ , Valerie Viteri ¹ , Keyao Song ¹ , Clement
7	Akoshile ⁶ , Omar Amador-Muñoz ⁷ , Araya Asfaw ⁸ , Rachel Ying-Wen Chang ⁹ , Diana
8	Francis ¹⁰ , Paterne Gahungu ¹¹ , Rebecca M. Garland ^{12,13} , Michel Grutter ⁷ , Jhoon Kim ¹⁴ ,
9	Kristy Langerman ¹⁵ , Pei-Chen Lee ¹⁶ , Puji Lestari ¹⁷ , Olga L. Mayol-Bracero ¹⁸ , Mogesh
10	Naidoo ¹² , Narendra Nelli ¹⁰ , Norman O'Neil ¹⁹ , Sang Seo Park ²⁰ , Abdus Salam ²¹ ,
11	Bighnaraj Sarangi ¹⁸ , Yoav Schechner ²² , Robyn Schofield ²³ , Sachchida N. Tripathi ^{24,25} ,
12	Eli Windwer ²⁶ , Ming-Tsang Wu ^{27,28} , Qiang Zhang ²⁹ , Yinon Rudich ²⁶ , Michael Brauer ³⁰
13	and Randall V. Martin ¹
14	¹ Department of Energy, Environmental & Chemical Engineering, Washington
15	University in St. Louis, St. Louis, Missouri 63130, United States
16	² Scripps Institution of Oceanography, University of California San Diego, San Diego,
17	California 92093, United States
18	³ Air Quality Research Center, University of California Davis, Davis, California 95616,
19	United States
20	⁴ Crocker Nuclear Laboratory, University of California Davis, Davis, California 95616,
21	United States
22	⁵ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
23	91109, United States
24	⁶ Department of Physics, University of Ilorin, Ilorin, 240003, Nigeria
25	⁷ Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional
26	Autónoma de México, Mexico City, 04510, Mexico
27	⁸ Institute of Geophysics and Space Science, Addis Ababa University, Addis Ababa,
28	1176, Ethiopia

- ⁹Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova
- 30 Scotia B3H 4R2, Canada
- 31 ¹⁰Environmental and Geophysical Sciences Lab, Earth Science Department, Khalifa
- 32 University, Abu Dhabi, 127788, United Arab Emirates
- 33 ¹¹Institute of Applied Statistics, University of Burundi, Bujumbura, BP1550, Burundi
- 34 ¹²Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
- 35 ¹³Department of Geography, Geo-Informatics and Meteorology, University of Pretoria,
- 36 Pretoria, 0002, South Africa
- 37 ¹⁴Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of
- 38 Korea
- 39 ¹⁵Department of Geography, Environmental Management and Energy Studies,
- 40 University of Johannesburg, Johannesburg, 2006, South Africa
- 41 ¹⁶Department of Public Health, National Cheng Kung University, Tainan, 701, Taiwan
- 42 ¹⁷Faculty of Civil and Environmental Engineering, Bandung Institute of Technology,
- 43 Bandung, 40132, Indonesia
- 44 ¹⁸Department of Environmental Science, University of Puerto Rico, Puerto Rico, 00931,
- 45 United States
- 46 ¹⁹Department of Applied Geomatics, University of Sherbrooke, Sherbrooke, Ouebec
- 47 J1K 2R1, Canada
- 48 ²⁰Department of Urban and Environmental Engineering, Ulsan National Institute of
- 49 Science and Technology, Ulsan, 44919, Republic of Korea
- 50 ²¹Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- 51 ²²Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa,
- 52 3200003, Israel
- 53 ²³School of Geography, Earth and Atmospheric Sciences, University of Melbourne,
- Melbourne, 3010, Australia
- 55 ²⁴Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur,
- 56 208016, India

- 57 ²⁵Department of Sustainable Energy Engineering, Indian Institute of Technology
- 58 Kanpur, Kanpur, 208016, India
- 59 ²⁶Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,
- 60 76100, Israel
- 61 ²⁷Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung
- 62 Medical University, Kaohsiung, 807, Taiwan
- 63 ²⁸PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical
- 64 University, Kaohsiung, 807, Taiwan
- 65 ²⁹School of Environment, Tsinghua University, Beijing, 100084, China
- ³⁰School of Population and Public Health, University of British Columbia, Vancouver,
- 67 British Columbia V6T 1Z3, Canada
- *Email: ren.yuxuan@wustl.edu
- 69 Contents of this file
- 70 This Supplementary Information contains Text S1 and S2, Tables S1 to S3, and Figures
- 71 S1 to S7.

72 Text S1. Statistics Calculation

- We mainly use the coefficient of determination (r²), normalized mean bias (NMB, Eq.
- 74 1), and normalized mean difference (NMD, Eq. 2) to evaluate simulated BC
- 75 concentrations (C_{sim}) using coincident measurements (C_{meas}) across a total of N
- 76 SPARTAN sites.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

77
$$NMB = \frac{\sum_{i=1}^{N} (c_{sim,i} - c_{meas,i})}{\sum_{i=1}^{N} c_{meas,i}}$$
 (1)

78
$$NMD = \frac{\sum_{i=1}^{N} |C_{sim,i} - C_{meas,i}|}{\sum_{i=1}^{N} C_{meas,i}}$$
 (2)

- 79 where $C_{sim,i}$ is the simulated BC concentration at SPARTAN site i, $C_{meas,i}$ is the
- 80 measured BC concentration at the same site, and $|C_{sim,i} C_{meas,i}|$ is the absolute
- 81 difference between the simulated and measured concentrations.

82 Text S2. Representativeness Bias

Differences in representativeness between measurements and simulations arise from comparing a point measurement with an area average, magnified by the tendency for measurements to be in locations with elevated BC concentrations¹⁻³. To examine this potential bias, we perform GCHP sensitivity simulations at the finest available meteorological resolution of C720 (~12 km) and compare BC concentrations with those from simulations at C360 (~25 km) resolution in 2022, the year in which archival began of the GEOS-FP C720 meteorological data. A full-year simulation at C720 would be computationally prohibitive. However, a high level of consistency is found between BC concentrations in the C360 and C720 simulations (Figure S7), indicating that comparing BC simulations at approximately 25 km resolution with point measurements would yield similar results as using a 12 km simulation. The most prominent exception is for Beijing in January, where and when the C720 has BC concentrations that are 22% lower than at C360, partially explaining the anomaly apparent in Figure 2. Moreover, SPARTAN stations are mostly located on rooftops with a mean height of 17 m, which

- 97 increases their spatial fetch (Table S1), generally reducing differences between volume-
- 98 averaged modeled concentrations and point measurements.

100
101 Table S1. Location information of SPARTAN sites used in this study.

Site	Host Institute	Latituda	Lamaituda	Rooftop
Site	Host Institute	Latitude	Longitude	Height (m)
Abu Dhabi	Masdar Institute	24.44	54.62	27
Addis Ababa	Addis Ababa University	9.01	38.82	3
Bandung	Institute of Technology Bandung	-6.89	107.61	30
Beijing			116.33	9
Bujumbura			29.38	12
Dhaka	·		90.40	22
Fajardo	Cabezas de San Juan Nature Reserve	18.38	-65.62	4
Haifa	Technion Israel Institute of Technology	32.78	35.02	32
Halifax	Dalhousie University	44.64	-63.59	13
Ilorin	Ilorin University	8.48	4.67	11
Johannesburg	University of Johannesburg	-26.18	28.00	11
Kanpur	Indian Institute of Technology Kanpur	26.51	80.23	8
Kaohsiung	Kaohsiung Medical University	22.65	120.31	15
Melbourne	University of Melbourne	-37.80	144.96	57
Mexico City	Universidad Nacional Autónoma de México	19.33	-99.18	16
Pasadena	Jet Propulsion Laboratory	34.20	-118.17	15
Pretoria	Council for Scientific and Industrial Research	-25.76	28.28	13
Rehovot	Weizmann Institute	31.91	34.81	16
Seoul	Yonsei University	37.56	126.93	25
Sherbrooke	Sherbrooke University	45.38	-71.93	9
Taipei	National Taiwan University	25.04	121.50	10
Ulsan	Ulsan National Institute of Science and Technology	35.58	129.19	12

99

Tables

Table S2. Sampling information and BC concentration ($\mu g/m^3$) for SPARTAN sites used in this study.

Site	Start Date	Most Recent Sample Date	Sampling Seasons ^a	Start Date for MAIA Sites ^b	N^{c}	Mean (Median)	Standard Error
Abu Dhabi	4/26/2019	12/23/2023	DJF, MAM, JJA, SON		113	2.7 (2.7)	0.11
Addis Ababa	12/7/2022	12/27/2023	DJF, MAM, JJA, SON	12/7/2022	116	4.8 (4.5)	0.19
Bandung	9/6/2019	7/11/2021	DJF, MAM, JJA, SON		23	3.7 (3.9)	0.20
Beijing	3/24/2020	11/28/2023	DJF, MAM, JJA, SON	8/30/2022	153	1.4 (1.3)	0.090
Bujumbura	12/9/2022	12/26/2023	DJF, MAM, JJA, SON		18	3.7 (3.2)	0.40
Dhaka	8/11/2020	10/7/2023	MAM, JJA, SON		52	5.6 (5.4)	0.86
Fajardo	3/18/2021	12/24/2023	DJF, MAM, JJA, SON		34	0.11 (0.083)	0.017
Haifa	2/16/2022	6/17/2023	DJF, MAM, JJA, SON	2/16/2022	143	0.85 (0.63)	0.10
Halifax	6/14/2019	10/24/2023	DJF, MAM, JJA, SON		112	0.23 (0.21)	0.015
Ilorin	7/13/2019	12/1/2021	DJF, MAM, JJA, SON		36	3.0 (2.2)	0.61
Johannesburg	4/7/2022	12/28/2023	DJF, MAM, JJA, SON	4/7/2022	168	2.4 (2.3)	0.18
Kanpur	7/14/2021	5/24/2022	DJF, MAM, JJA		14	3.8 (3.0)	0.73
Kaohsiung	8/20/2022	12/29/2023	DJF, MAM, JJA, SON	8/20/2022	123	1.3 (1.4)	0.12
Melbourne	8/9/2022	12/28/2023	DJF, MAM, JJA, SON		34	0.43 (0.32)	0.061
Mexico City	2/26/2021	12/24/2023	DJF, MAM, JJA, SON		52	2.1 (2.0)	0.11
Pasadena	11/9/2021	11/15/2023	DJF, MAM, JJA, SON	11/9/2021	233	0.47 (0.44)	0.030
Pretoria	10/22/2020	12/27/2023	DJF, MAM, JJA, SON	4/15/2021	233	2.1 (2.0)	0.24
Rehovot	7/2/2020	6/7/2023	DJF, MAM, JJA, SON	11/5/2021	178	1.2 (1.0)	0.11
Seoul	9/11/2020	12/30/2023	DJF, MAM, JJA, SON		65	1.2 (1.1)	0.094
Sherbrooke	8/29/2019	6/21/2023	DJF, MAM, JJA, SON		67	0.36 (0.28)	0.049
Taipei	1/27/2022	12/31/2023	DJF, MAM, JJA, SON	1/27/2022	218	0.83 (0.75)	0.040
Ulsan	10/28/2021	12/23/2023	DJF, MAM, JJA, SON		92	0.78 (0.74)	0.043

^a DJF includes December, January, and February; MAM includes March, April, and May; JJA

includes June, July, and August; SON includes September, October, and November.

¹⁰⁷ b These sites began using the MAIA sampling protocol on the specified date.

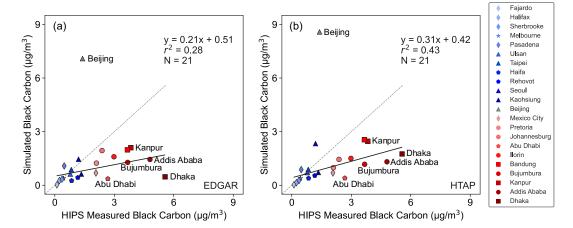
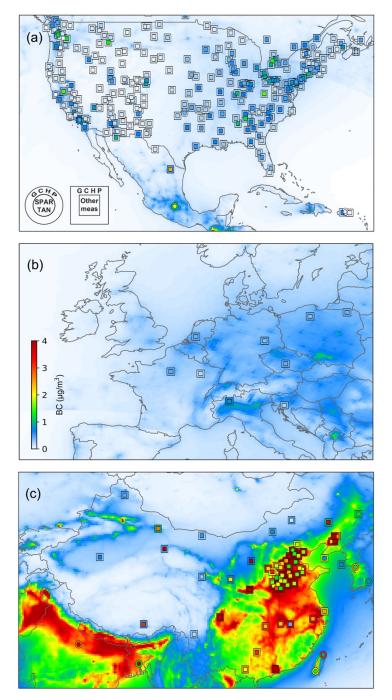

 $^{^{\}circ}$ N is the number of samples from each site included in this study.

Table S3. Sampling information and BC concentration for other individual measurements referenced in this study. Mass absorption cross section (MAC, m²/g) values at 880 nm and estimated values at 633 nm are provided for measurements using aethalometers when available.


Country	Site	Latitude	Longitude	Location Type	Instrument	MAC at 880 nm (m^2/g)	MAC at 633 nm $(m^2/g)^a$	Sampling Period	BC $(\mu g/m^3)$	Source
Argentina	Buenos Aires	-34.56	-58.51	suburban	Aethalometer (AE42)	16.6	23.1	Nov 2014 to Mar 2016	3.18	Resquin et al. ⁴
Bolivia	La Paz	-16.50	-68.13	urban	Aethalometer (AE33)	7.77	10.8	Jan to Jun, 2018	1.6	Mardoñez-Balderrama et al. ⁵
Ivory Coast	Lamto	6.22	-5.03	rural	Aethalometer (AE31)	16.6	23.1	Jan 2015 to May 2017	1.4	Kouassi et al. ⁶
Mexico	Monterrey	25.75	-100.26	urban	Aethalometer (AE33)	16.6	23.1	Jan to Dec, 2016	2.46	Peralta et al. ⁷
Morocco	Kenitra city	34.23	-6.61	urban	Aethalometer (AE31)	16.6	23.1	July 2020 to Feb 2021	0.9	Bounakhla et al. ⁸
Peru	Нуо	-12.04	-75.32	rural	Aethaometer (AE33)	7.77	10.8	May 2022 to Oct 2023	0.65	Villalobos-Puma et al. ⁹
Rwanda	Kigali	-1.96	30.06	urban	Portable Black	NaN	NaN	Jan to Dec, 2020	7.8	Kalisa and Adams ¹⁰
					Carbon Monitors					
					(BC1060)					
Mozambique	Manhiça	-25.41	32.81	semi-	Sunset OC-EC	NaN	NaN	2014 to 2015	0.9	Curto et al. ¹¹
				rural	Aerosol Analyzer					
Cotonou	Benin	6.35	-2.43	urban	Thermal/Optical	NaN	NaN	Feb 2015 to Mar 2017	2	Djossou et al. ¹²
					Carbon Analyzer					
					(DRI Model 2001)					
Ivory Coast	Abidjan	5.33	-4.02	urban	Thermal/Optical	NaN	NaN	Feb 2015 to Mar 2017	7	Djossou et al. ¹²
					Carbon Analyzer					
					(DRI Model 2001)					

a In aethalometer studies, MAC measurements at 880 nm are typically used to calculate BC concentrations⁴. For direct comparison, we adjust the MAC values to 633 nm, the wavelength used in Hybrid Integrating Plate/Sphere (HIPS) measurements in SPARTAN. This adjustment assumes that MAC varies inversely with wavelength and that the particles are small relative to the wavelength¹³.

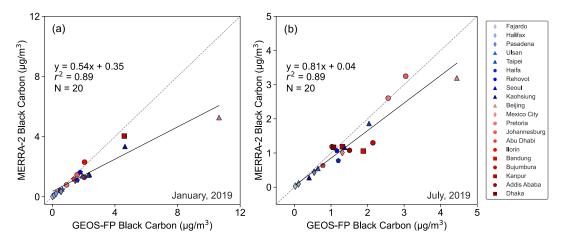

Figures

Figure S1. Annual mean BC concentrations across SPARTAN sites, with GCHP simulations using different inventories at C360 resolution (~25 km) in 2019 and SPARTAN measurements from 2019 to 2023. (a) EDGAR and (b) HTAP. Annotations include the line of best fit (y), coefficient of variation (r²), and number of comparison points (N). The lowest half of the measured concentrations are indicated in blue and the upper half in red. The Beijing site, marked in grey, is excluded from statistical calculations due to anomalies in its emissions estimates. Symbols indicate different regions (diamonds for North America, star for Australia, triangles for East Asia, pentagons for the Middle East, circles for Africa, and squares for South Asia).

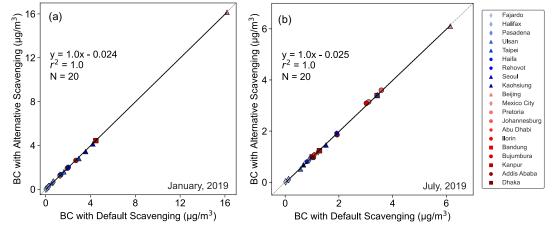


Figure S2. BC concentrations from measurements and simulations across different regions: (a) North America, (b) Europe, and (c) East Asia. SPARTAN and additional measurements are represented by colored circles and squares, respectively, surrounded by concentric circles and squares indicating local GCHP concentrations using the CEDS inventory. A GCHP C360 (~25 km) simulation using the CEDS inventory is in the background.

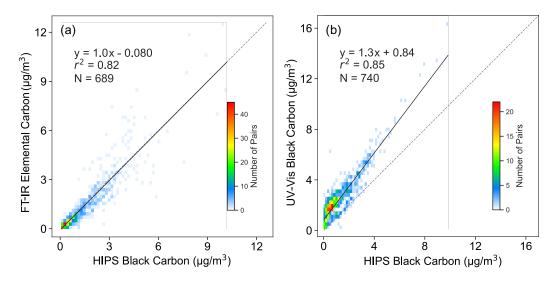
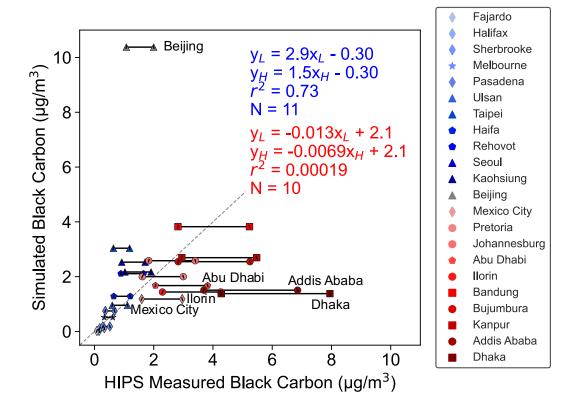


Figure S3. Mean BC concentrations across SPARTAN sites, with GCHP simulations using different meteorology (GEOS-FP vs MERRA-2) at C180 resolution (~50 km) in 2019. (a) January and (b) July. Annotations include the line of best fit (y), coefficient of variation (r²), and number of comparison points (N). Symbols indicate different regions (diamonds for North America, triangles for East Asia, pentagons for the Middle


East, circles for Africa, and squares for South Asia).

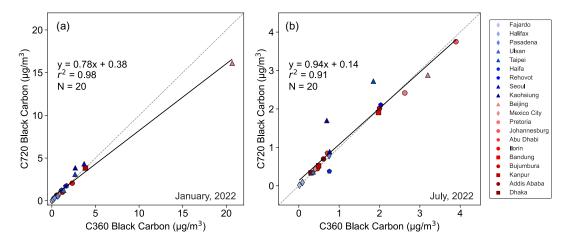

Figure S4. Mean simulated BC concentrations across SPARTAN sites, with GCHP simulations using alternative scavenging at C360 resolution (~25 km) in 2019. (a) January and (b) July. Annotations include the line of best fit (y), coefficient of variation (r²), and number of comparison points (N). Symbols indicate different regions (diamonds for North America, triangles for East Asia, pentagons for the Middle East, circles for Africa, and squares for South Asia).

Figure S5. Comparison of BC concentrations measured by HIPS, FT-IR, and UV-Vis in SPARTAN. (a) HIPS vs FT-IR and (b) HIPS vs UV-Vis. Annotations include the line of best fit (y), coefficient of variation (r²), and number of comparison points (N).

Figure S6. Annual mean BC concentrations across SPARTAN sites, with GCHP simulations using the CEDS inventory and HIPS measurements using varying MAC values from 7 m²/g to 13 m²/g. The simulations are from 2019, while the measurements are from 2019 to 2023. Annotations include the line of best fit (y), coefficient of variation (r^2), and number of comparison points (N). A MAC of 7 m²/g is represented by leftmost markers filled with a forward slash and a line of best fit (y_L) indicating lower BC concentrations, while a MAC of 13 m²/g is represented by rightmost markers filled with a backslash and a line of best fit (y_H) indicating higher BC concentrations. The lowest half of the measured concentrations are indicated in blue and the upper half in red. The Beijing site, marked in grey, is excluded from statistical calculations due to anomalies in its emissions estimates. Symbols indicate different regions (diamonds for North America, star for Australia, triangles for East Asia, pentagons for the Middle East, circles for Africa, and squares for South Asia).

Figure S7. Mean simulated BC concentrations across SPARTAN sites, with GCHP simulations using the CEDS inventory at C360 (~25 km) and C720 (~12 km) in 2022. (a) January and (b) July. Annotations include the line of best fit (y), coefficient of variation (r²), and number of comparison points (N). Symbols indicate different regions (diamonds for North America, triangles for East Asia, pentagons for the Middle East, circles for Africa, and squares for South Asia).

- References 173
- 174 Gilardoni, S., Vignati, E. & Wilson, J. Using measurements for evaluation of black 175 carbon modeling. Atmos. Chem. Phys. 11, 439–455 (2011).
- Swall, J. L. & Foley, K. M. The impact of spatial correlation and 176 incommensurability on model evaluation. Atmos. Environ. 43, 1204–1217 (2009). 177
- 178 Wang, R. et al. Spatial representativeness error in the ground-level observation
- 179 networks for black carbon radiation absorption. Geophys. Res. Lett. 45, 2106–2114 180 (2018).
- 4. Resquin, M. D. et al. Local and remote black carbon sources in the Metropolitan 181 182 Area of Buenos Aires. Atmos. Environ. 182, 105–114 (2018).
- 183 Mardoñez-Balderrama, V. et al. Atmospheric black carbon in the metropolitan area
- 184 of La Paz and El Alto, Bolivia: concentration levels and emission sources. Atmos.
- 185 Chem. Phys. 24, 12055–12077 (2024).
- Kouassi, A. et al. Measurement of atmospheric black carbon concentration in rural 186
- and urban environments: cases of Lamto and Abidjan. J. Environ. Prot. 12, 855-187 872, (2021). 188
- 189 7. Peralta, O. et al. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 190 **230,** 104626 (2019).
- 191 Bounakhla, Y. et al. Black carbon aerosols at an urban site in North Africa (Kenitra, 192 Morocco). Atmos. Pollut. Res. 13, 101489 (2022).
- 193 Villalobos-Puma, E. et al. Atmospheric black carbon observations and its valley-
- 194 mountain dynamics: eastern cordillera of the central Andes of Peru. Environ. Pollut.
- 195 **355,** 124089 (2024).
- 196 10. Kalisa, E. & Adams, M. Population-scale COVID-19 curfew effects on urban black
- 197 carbon concentrations and sources in Kigali, Rwanda. Urban Clim. 46, 101312 198 (2022).
- 199 11. Curto, A. et al. Predictors of personal exposure to black carbon among women in 200 southern semi-rural Mozambique. Environ. Int. 131, 104962 (2019).
- 201 12. Djossou, J. et al. Mass concentration, optical depth and carbon composition of
- 202 particulate matter in the major southern West African cities of Cotonou (Benin) and
- Abidjan (Cote d'Ivoire). Atmos. Chem. Phys. 18, 6275–6291 (2018). 203