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This additional file very briefly introduces core components of the secure matrix

inversion protocol by Blom et al. [1], as referred to in section “Matrix inverse pro-

tocol”.

Random matrix with determinant

To perform the first step, a random LU decomposition is generated. Such matrices

are statistically undistinguishable from uniformly random matrices [1].

1 The parties generate a random lower triangular (encrypted) matrix L with

ones on the diagonal (such that detL = 1).

2 The parties generate a random upper triangular (encrypted) matrix U , and

securely compute the reciprocal (detU)−1 = (
∏d

i=1 ui,i)
−1.

3 They compute [R] = [L] · [U ] with a secure matrix product.

Since detL = 1, the reciprocal of the determinant (detR)−1 will be equal to the

reciprocal (detU)−1, which we securely compute from [detU ] as follows:

1 The parties generate an encrypted, uniformly random number [r].

2 They securely compute [r detU ], decrypt the result and compute (r detU)−1

3 They locally multiply the result with [r] to obtain [(detU)−1]

In the unlikely case that r detU = 0, we have generated a singular matrix U , and

need to regenerate it.

Gauss-Jordan elimination

With Gaussian elimination, the first part of the augmented matrix can be trans-

formed to the identity matrix. It will take a sequence of three elementary row

operations, namely swapping of two rows, multiplying (or dividing) a row with an

integer factor, and adding two rows. As a bonus, the Gaussian elimination facilitates

computing the determinant of ~RA: each row multiplication divides the determinant

with that scalar, and each swap negates the determinant.

The first step in Gaussian elimination is transforming ~RA to an upper triangular

matrix. This can done without divisions, and adding only multiplications of rows.

The second step is transforming the upper triangular matrix to a diagonal matrix,

which is performed similarly [2]. Only the third and final step, transforming the

diagonal matrix to the identity matrix, involves divisions, which comes down to d

multiplications with multiplicative inverses.
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