

1 **Supporting Information**

2

3 **Spatiotemporal Coordination of Active Deformation Forces and**
4 **Wnt / Hippo-Yap Signalling in *Hydra* Regeneration**

5

6 Ryo Suzuki^{1,2}, Tetsuya Hiraiwa^{3,4}, Anja Tursch⁵, Stefanie Höger⁵, Kentaro Hayashi^{1,6}, Suat
7 Özbek⁵, Thomas W. Holstein^{1,5,*}, Motomu Tanaka^{1,7,*}

8

9 ¹ Center for Integrative Medicine and Physics, Institute for Advanced Studies, Kyoto
10 University, 606-8501 Kyoto, Japan

11 ² Department of Biosciences and Informatics, Faculty of Science and Technology, Keio
12 University, 223-8522 Yokohama, Japan

13 ³ Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore

14 ⁴ Institute of Physics, Academia Sinica, 115201 Taipei, Taiwan

15 ⁵ Molecular Evolution and Genomics, Centre for Organismal Studies (COS), Heidelberg
16 University, D69120 Heidelberg, Germany

17 ⁶ National Institute for Basic Biology, 444-8585 Okazaki, Japan

18 ⁷ Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University,
19 D69120 Heidelberg, Germany

20

21 * Motomu Tanaka, Thomas W. Holstein (corresponding authors)

22

23 Email: tanaka@uni-heidelberg.de (MT)

24 thomas.holstein@cos.uni-heidelberg.de (TWH)

26 **Supporting Information S1: Derivation of the mechanical model**

27

28 *Hydra* reaggregates and regenerates are approximated by a rotationally symmetric ellipsoid
 29 as shown in Fig. 3a. The variables M_0 , M_2 and \hat{M}_2 are defined in the main text using the
 30 projected shape in two dimensions: The zero-th mode M_0 represents the average of the
 31 minor and major axis half-lengths a and b of the projected ellipse, respectively. The second
 32 mode M_2 represents the deviation from the circle $M_2 \equiv (a - b)/2$, and $\hat{M}_2 \equiv M_2/M_0$ is the
 33 degree of elliptical shape, i.e. for $\hat{M}_2 = 0$, the 2D projection is a circle whereas for $\hat{M}_2 = 1$, it
 34 is an infinitely thin ellipse with the length $2M_0$.

35 In this model, we assume that the actual *Hydra* shape is given by (M_0, \hat{M}_2) which minimizes
 36 the energy cost

37

$$38 P(M_0, \hat{M}_2) = P_C(M_0, \hat{M}_2) + P_S(M_0, \hat{M}_2), \quad (1)$$

39

40 under the fixed volume condition $V = V_0$, where V is the actual volume of the ellipsoid and V_0
 41 is a given constant volume. Here, P_C and P_S are the energy costs corresponding to curvature
 42 elasticity and area elasticity of the ellipsoid surface, respectively. These two contributions are
 43 given in the following:

44 The first term P_C represents the curvature energy cost, for which an anisotropic spontaneous
 45 curvature is assumed. Specifically, we assume that the spontaneous curvature acts only in
 46 the direction of the maximum principal curvature on the ellipsoid. Then, the equation is given
 47 as

48

$$49 P_C = \kappa \int_{-b}^b dz \ 2\pi r(z) \sqrt{1 + (dr/dz)^2} (C_{\perp}(z) - c_0)^2. \quad (2)$$

50

51 Here, z is the coordinate along the major axis of the ellipsoid (Fig. 3a), and κ and c_0 are the
 52 constants representing bending elasticity per area and spontaneous curvature, respectively.
 53 Let $r(z)$ represent the radius of the ellipsoidal section circle at the coordinate z . The maximum
 54 principal curvatures on the ellipsoid at the coordinate z is denoted by $C_{\perp}(z)$, which is given
 55 by

56

$$57 C_{\perp}(z) = a^{-1} \left[1 - \left(1 - \frac{a^2}{b^2} \right) \left(\frac{z}{b} \right)^2 \right]^{-1/2}. \quad (3)$$

58

59 The circumference of the circle of the cross section at the coordinate z is described as $2\pi r(z)$,
 60 and $\sqrt{1 + (dr/dz)^2}$ arises due to the nonlinear geometrical correction in the surface
 61 area located between the coordinates z and $z + dz$. Note that the other principal curvature
 62 is given by $(a/b)^2 C_{\perp}(z)$, which is indeed always smaller than $C_{\perp}(z)$ by the definition of a
 63 and b .

64 The second term P_S represents the energy cost when the surface area deviates from the
 65 optimum, given by

66

67
$$P_S = \frac{k}{2}(S - s_0)^2, \quad (4)$$

68

69 where S is the actual surface area, s_0 is the optimal area and k is the coefficient to express
 70 the rigidity against the area change from this optimum.

71 We minimize the total potential $P(M_0, \hat{M}_2)$ under the fixed volume condition. For this
 72 manipulation, there are a few technical notes: Firstly, by manually performing the integral in
 73 Eq. (2), the analytical expression of P_C is obtained as

74

75
$$P_C = 2\pi\kappa \left\{ c_0 M_0 \left[c_0 M_0 (1 - \hat{M}_2)^2 - 4(1 + \hat{M}_2) \right] + \frac{1 + \hat{M}_2}{1 - \hat{M}_2} \left[2 + c_0^2 M_0^2 (1 - \hat{M}_2)^2 \right] \frac{\arcsin \sqrt{1 - \left(\frac{1 - \hat{M}_2}{1 + \hat{M}_2} \right)^2}}{\sqrt{1 - \left(\frac{1 - \hat{M}_2}{1 + \hat{M}_2} \right)^2}} \right\} \quad (5)$$

76

77

78 Secondly, using the standard formulae for the volume and surface area of an ellipsoid, the
 79 volume V and surface area S are given as the functions of M_0 and \hat{M}_2 by

80

81
$$V = \frac{4\pi}{3} a^2 b = \frac{4\pi}{3} M_0^3 (1 - \hat{M}_2) (1 - \hat{M}_2^2), \quad (6)$$

82

83 and

84

85
$$S = 2\pi a^2 \left(1 + \frac{b}{ae} \arcsin e \right) = 2\pi M_0^2 (1 - \hat{M}_2)^2 \left[1 + \frac{(1 + \hat{M}_2)^2}{2(1 - \hat{M}_2)\sqrt{\hat{M}_2}} \arcsin \left(\frac{2\sqrt{\hat{M}_2}}{1 + \hat{M}_2} \right) \right], \quad (7)$$

86

87 respectively. Lastly, through the fixed volume condition $V(M_0, \hat{M}_2) = V_0$ with Eq. (6), M_0 is
88 implicitly given by the function of V_0 and \hat{M}_2 , and hence the potential minimum is searched
89 with a fixed V_0 over \hat{M}_2 from $\hat{M}_2 = 0.0$ to $\hat{M}_2 = 1.0$ by definition.

90

91 **Supporting Information S2: Parameters used in the model**

92

93 We used the parameter values (see **Table 1** in the main text for list of parameter values)
 94 determined as follows: For bending rigidity, we used the value $\kappa = 1$ nJ, given by Naik et al.
 95 [1]. The spontaneous curvature c_0 is a variable in our study. For optimal surface area, we
 96 used the value $R_0 = 270$ (reaggregate) and 160 (regenerate) μm , which are the minimum
 97 values shown in Fig. 2a,b. The optimal volume V_0 is the controlled parameter, which mimics
 98 the growth of *Hydra* reaggregate / regenerate, for our purpose.

99 The rigidity coefficient for the area change k was evaluated in the following way: Trushko et
 100 al. [2] defined the compressional rigidity λ in terms of energy potential, given by

101

$$102 E_\lambda = \lambda \int_{L_0} \Gamma(l)^2 \, dl, \quad (8)$$

103

104 where l represents the arc length, and $\Gamma(l)$ represents the local extension rate in length of a
 105 cell (MDCK) layer. It is important to note that the difference of the definition of λ from our area
 106 rigidity k . Trushko et al.[2] assumed a $2d$ thin elastic ring with circumferential length L_0 , and
 107 the integration is not an areal integration but a circumferential integration. Hence, their rigidity
 108 λ is defined over length and has the unit of [force / length]. On the other hand, our area rigidity
 109 k is defined as

110

$$111 P_S = \frac{ks_0^2}{2} \cdot \frac{(s-s_0)^2}{s_0^2}, \quad (9)$$

112

113 and $ks_0^2/2$ has the unit of [force \times length]. Therefore, we convert these two parameters
 114 through the relation

115

$$116 \frac{ks_0^2}{2} = \lambda L_0^2. \quad (10)$$

117

118 For this conversion, we assume L_0 is the typical perimeter of a section, $L_0 = 2\pi R_0$ in our
 119 case.

120 Since λ is the value for a layer of MDCK cells, we substitute it with a similar tissue
 121 compressional rigidity of *Hydra* $\hat{E} = 10 - 150 \times 10^{-3}$ N/m, which is defined $\hat{E} = Eh/2(1 - \mu^2)$

122 with Young's modulus E , tissue thickness h and Poisson's ratio μ . For simplicity, we applied
123 the middle value $\lambda = 80 \times 10^{-3}$ N/m with $L_0 = 2\pi R_0$ and $s_0 = 4\pi R_0^2$ with $R_0 = 160$ μm (i.e. the
124 above-mentioned initial R_0 value) into Eq. (10), obtaining $k = 1.56 \times 10^6$ N/m³. We used a
125 range of k considering the broad range of \hat{E} . In particular, the results shown in
126 **Supplementary Information S3** used either this value of k or half of it. Moreover, Fig. 3c, d
127 of the main text was plotted with the half value; see **Supplementary Information S3** for more
128 details.

129 Furthermore, we set the force and length units, denoted by F and L , based on the bending
130 rigidity κ and the reference size R_0 . In what follows, we adimensionalise the parameters by
131 the units $F = \kappa L^{-1} = 5.56 \times 10^{-6}$ N and $L = R_0$. The optimal surface area is 4π by the definition
132 of the length unit assuming the shape is close to a perfect sphere right after the burst.
133 Spontaneous curvature c_0 is presumed to be around 1.0 ($c_0 = 1.0 - 2.0$ are examined below)
134 since the sphere forms spontaneously. For the regenerates $R_0 = 160$ μm , the area rigidity
135 coefficient k is adimensionalised to either 1.6 or 0.8. For the reaggregate $R_0 = 270$ μm , $k \sim$
136 0.58 in the adimensionalised form, thus we use k which is in the value range for reaggregates
137 and regenerates.

138

139 **Supporting Information S3: Calculation of the model**

140

141 **Supplementary Figure S3** plots the resultant relation between M_0 and \hat{M}_2 , and
142 investigates the dependencies on the parameters c_0 and κ . The curves have dependency on
143 k as well as c_0 . Firstly, we plotted \hat{M}_2 against M_0 for various c_0 for $k = 1.6$ (**Supplementary**
144 **Figure S3a**) and $k = 0.8$ (**Supplementary Figure S3b**). For both cases, we found curves that
145 were convex upward. For increasing c_0 , the maximum \hat{M}_2 increased. The degree of
146 decrease in \hat{M}_2 with respect to increase in M_0 is weaker for $k = 0.8$. Fig. **S3c** compares our
147 theoretical curve and experimental observation (for regenerate: Fig. **2b**). The slope and
148 magnitude of \hat{M}_2 for $k = 0.8$ (**Supplementary Figure S3b**) agree quantitatively well with
149 experimental data. Therefore, we adopted the parameter value $k = 0.8$ for the results shown
150 in the main text (Fig. **3c, d**).

151

152 **Supporting Information S4: Comparative transcriptome analysis of regenerating head
153 tissue and *Wnt3* / β -catenin overexpressing polyps**

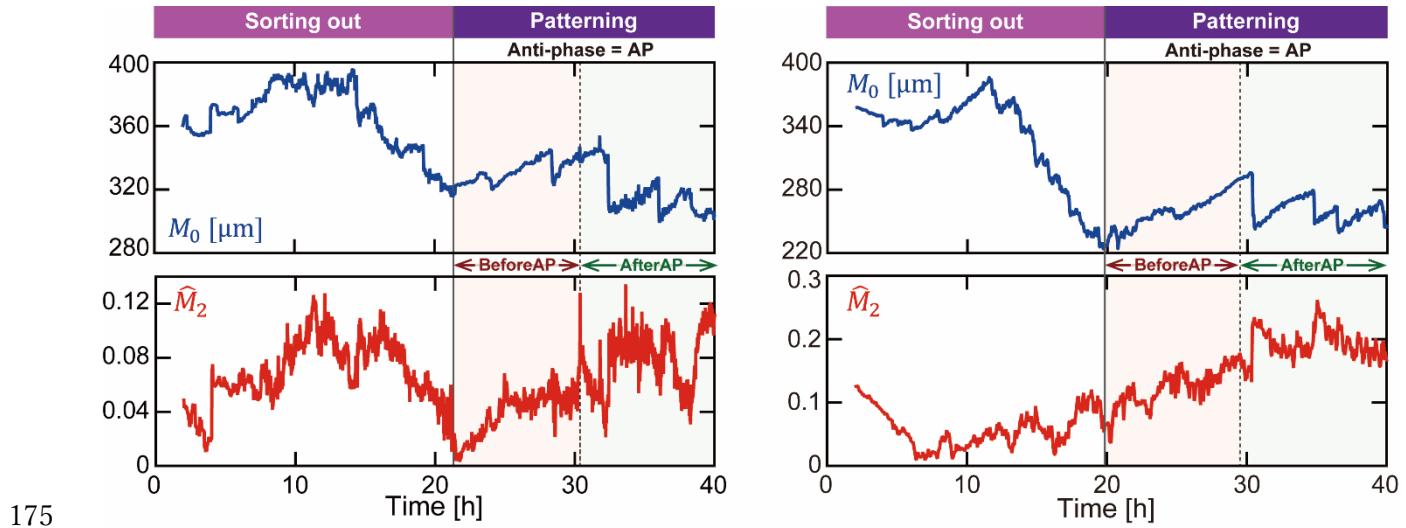
154

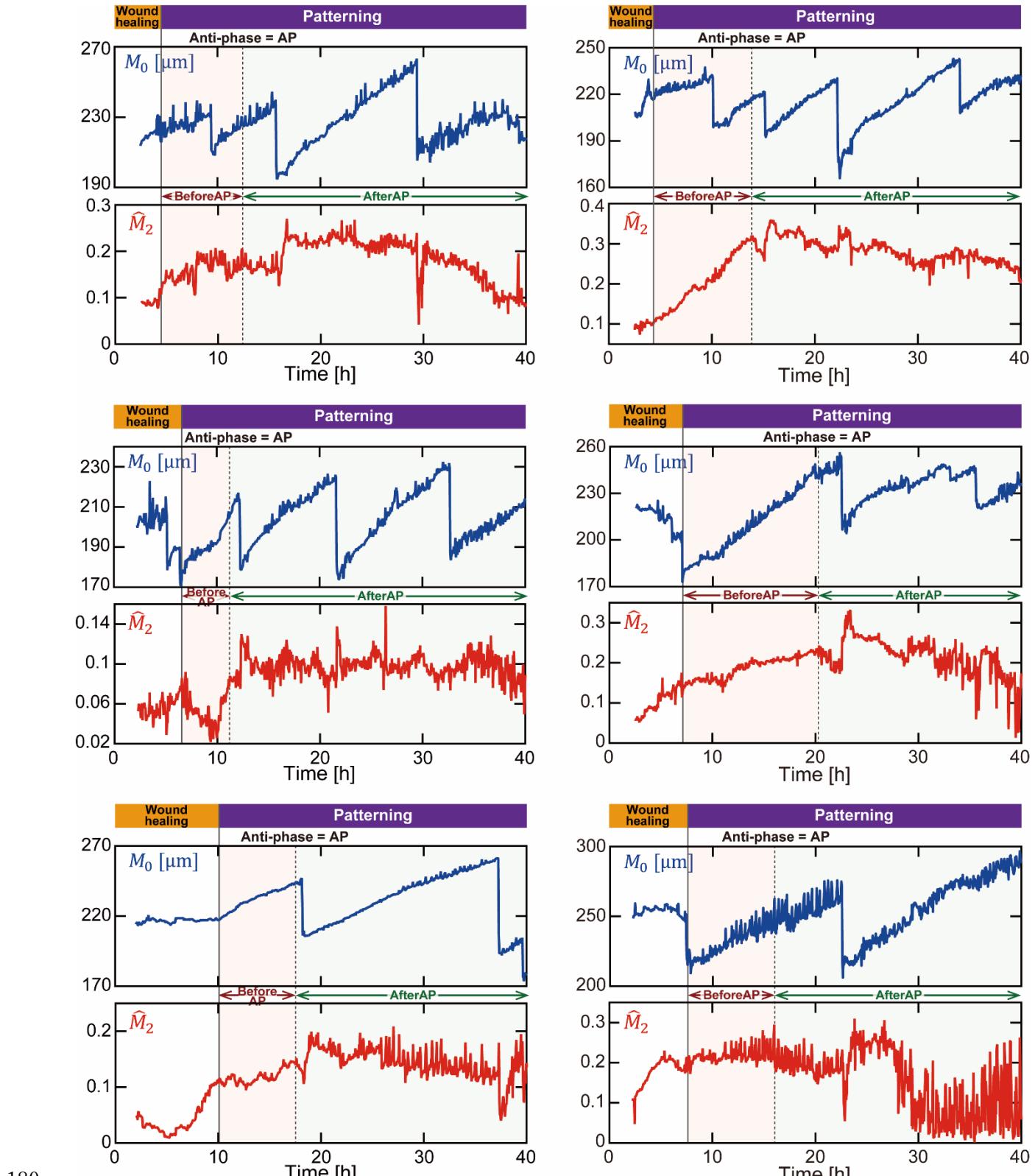
155 Based on a proteome/-transcriptome analysis of *Hydra* head regeneration [3], we established
156 a list of all transcripts that were regulated during head regeneration and compared them with
157 the transcriptome of β -catenin and *Wnt3* overexpressing animals. It included a total of 15,244
158 sequences that were analysed by DESeq2. **Supplementary Figure S4** shows the heat map
159 of all transcripts that were significantly regulated under at least one condition (padj < 0.05).
160 By hierarchical clustering, we identified 15 clusters that were based on the similarity of their
161 regulatory patterns. There was a sharp boundary between clusters during early regeneration
162 (0.5 – 12 h) and late regeneration (12 – 48 h). Many transcripts encoding for cell
163 communication and signal transduction were upregulated upon regeneration, particularly all
164 members of the Wnt pathways (cluster 2) became activated concomitantly with the onset of
165 regeneration. Some clusters reveal differences between β -catenin and *Wnt3* overexpressing
166 animals, indicating differences in the regulation of Wnt signalling between β -catenin and *Wnt3*
167 overexpressing animals.

168

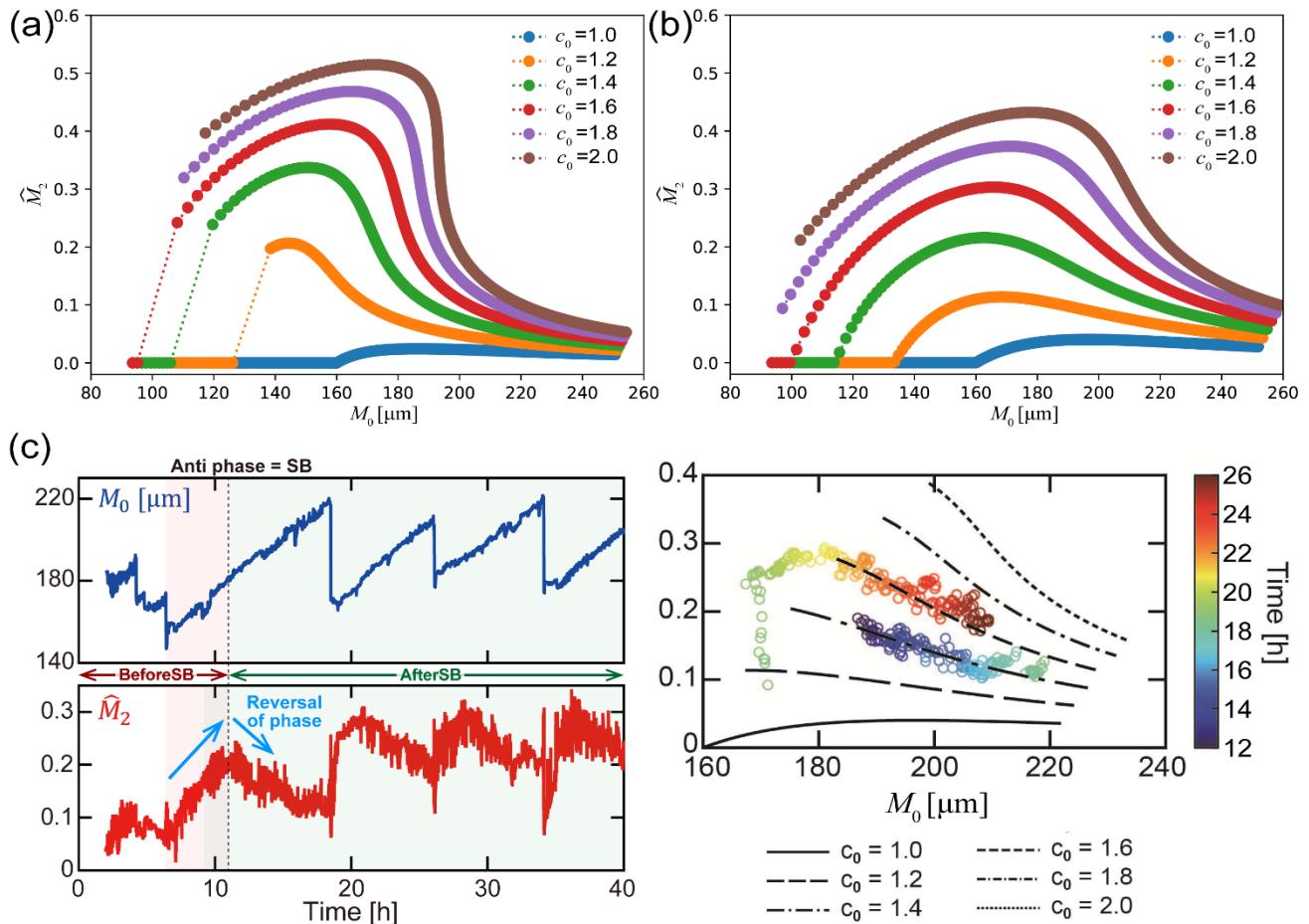
169 The analysis of genes in cluster 1 revealed that genes of the Hippo-Yap pathway were
170 upregulated during head regeneration (see also Fig. 7). Although animals overexpressing
171 *Wnt3* or β -catenin show differences in gene regulation, all members of the Hippo-Yap and
172 Wnt pathway were strongly enriched up to 48 h after onset of regeneration. These data clearly
173 emphasize the importance of Hippo-Yap signalling for *Hydra* regeneration.

174

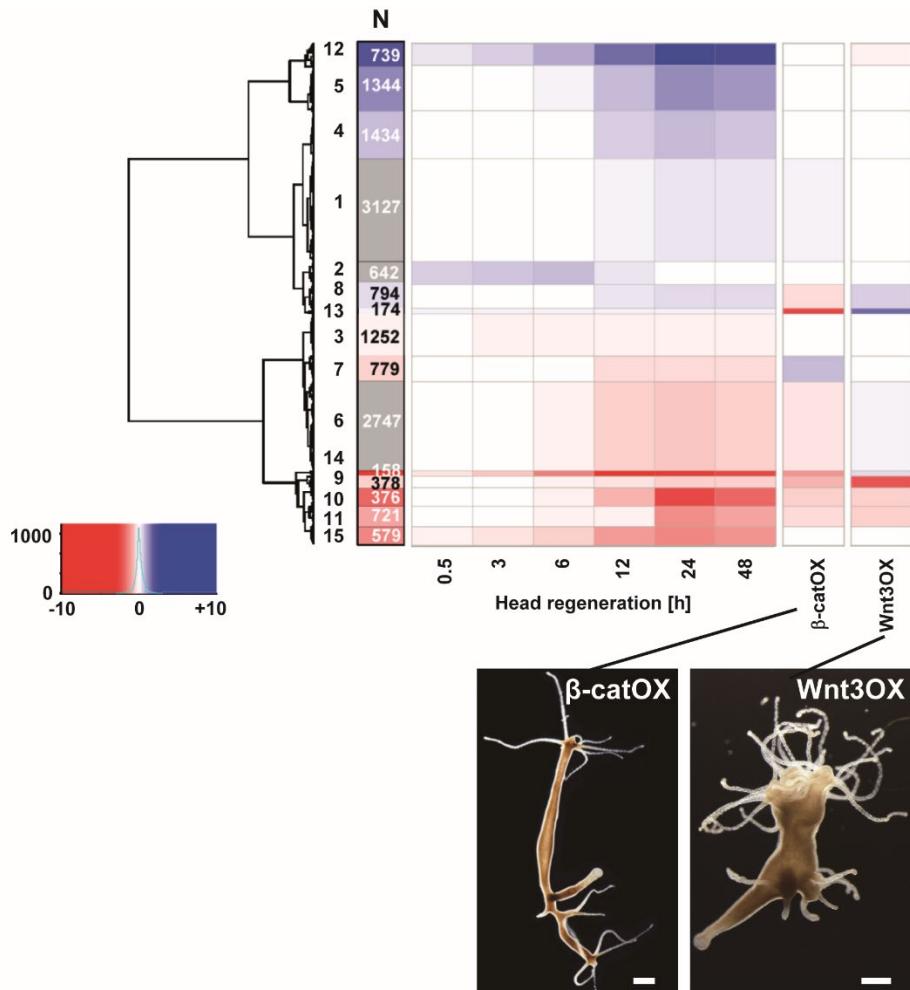




Supporting Figure S2: Other examples of mode analysis for regenerates. Similar anti-phase behaviour can be observed.



Supporting Figure S3: Dependence of parameters V_0 , c_0 and k on M_0 and \hat{M}_2 in the mechanistic model. (a, b) Theoretical result for (a) $k = 1.6$ and (b) $k = 0.8$. Spontaneous curvature c_0 ranges from 1.0, which matches the inverse radius for the sphere case, to 2.0. The colours are specified in the inset legends. The points with the same colour correspond to various values of V_0 ; from left to right, V_0 is increased. (c) Comparison between model and experimental data for the regenerate case. Here, we used $k = 0.8$.



211 **References**

212

213 1. Naik, S., et al., *Differential tissue stiffness of body column facilitates locomotion of Hydra on solid*
214 *substrates*. *Journal of Experimental Biology*, 2020. **223**(20): p. jeb232702.

215 2. Trushko, A., et al., *Buckling of an Epithelium Growing under Spherical Confinement*. *Developmental*
216 *Cell*, 2020. **54**(5): p. 655-668.e6.

217 3. Petersen, H.O., et al., *A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head*
218 *Regeneration*. *Molecular Biology and Evolution*, 2015. **32**(8): p. 1928-1947.

219 4. Nakamura, Y., et al., *Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer*.
220 *Proceedings of the National Academy of Sciences*, 2011. **108**(22): p. 9137-9142.

221