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A Likelihood Model for DISCONTINUOUS TRANSCRIPT ASSEMBLY

We use the segment graph G to compute the probability Pr(R | T , c) of observing the alignment R given

transcripts T and abundances c. We follow the generative model described in [1], which has been extensively

used for transcription quantification [2–4]. Let the setR of reads be {1, . . . , rn} and the set T of transcripts

be T = {T1, . . . , Tk} with lengths L1, . . . , Lk and abundances c = [c1, . . . , ck]. In line with current

literature, reads R are generated independently from transcripts T with abundances c. Further, we must

marginalize over the set of transcripts T as the transcript of origin of any given read is typically unknown,

due to `� L. Thus,

Pr(R | T , c) =
n∏
j=1

Pr(rj | T , c)

=
n∏
j=1

k∑
i=1

Pr(rj , Zi,j | T , c)

=
n∏
j=1

k∑
i=1

Pr(rj | Zi,j) Pr(Zi,j | T , c),

where Zi,j is the indicator random variable for the event that Ti is the transcript of origin for read rj . We

denote by Pr(rj | Zi,j) the probability of observing read rj given that it is generated from transcript Ti

and Pr(Zi,j | T , c) denotes the probability of generating a read from transcript Ti given transcripts T and

abundances c.

Assuming no amplification and sequencing bias, the probability Pr(Zi,j | T , c) of generating a read

from a transcript Ti of length Li is given by

Pr(Zi,j | T , c) =
ciLi∑k
j=1 cjLj

.

We now derive the probability Pr(rj | Zi,j) of transcript Ti generating read rj of fixed length `. We do so

using the segment graph G = (V,E). Recall that a transcript T must correspond to an s to t path in G. Let

π(T ) ⊆ E denote the path corresponding to transcript T . Similarly, each read r induces a path π(r) ⊆ E

in G. Read r can only be generated by transcript T if π(r) ⊆ π(T ). Hence, the probability of transcript Ti

generating a given read rj is given by

Pr(rj | Zi,j) =


1/L′i, if π(rj) ⊆ π(Ti),

0, otherwise,

where L′i = Li − ` is the effective length of the transcript. We assume that the transcripts are much longer
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than the reads and as such L′i/Li ≈ 1. Putting it all together we get

Pr(R | T , c) =
n∏
j=1

k∑
i=1

Pr(rj | Zi,j) Pr(Zi,j | T , c)

=
n∏
j=1

k∑
i=1

1{π(rj) ⊆ π(Ti)}
L′i

· ciLi∑k
b=0 cbLb

=
n∏
j=1

∑
i:π(Ti)⊇π(rj)

1

L′i
· ciLi∑k

b=0 cbLb

=
n∏
j=1

1∑k
b=1 cbLb

∑
i:π(Ti)⊇π(rj)

ci
Li
L′i

=
n∏
j=1

1∑k
b=1 cbLb

∑
i:π(Ti)⊇π(rj)

ci.

B Supplementary Methods

B.1 Recharacterization of solutions using discontinuous edges

We prove the following two main text propositions.

(Main Text) Proposition 1. There is a bijection between subsets of discontinuous edges that are pairwise

non-overlapping and s− t paths in G.

Proof. Let Π be the set of s− t paths in G. We indicate with Σ the family of subsets of discontinuous edges

that are pairwise non-overlapping. Note that Σ ⊆ 2E
y

.

For an s− t path π ∈ Π, let f(π) be the set of discontinuous edges in π, i.e. f(π) = π∩Ey. Since π is

an s− t path of G, we have that for each edge (v = [v−, v+],w = [w−, w+]) ∈ π it holds that v+ ≤ w−.

Therefore, f(π) is composed of pairwise non-overlapping disconnected edges.

Now, consider a subset σ ∈ Σ of discontinuous edges that are pairwise non-overlapping. We obtain

the corresponding s − t path f−1(σ) by first ordering the edges of σ in ascending order. That is, let

σ = {(v1 = [v−1 , v
+
1 ],w1 = [w−1 , w

+
1 ]), . . . , (v|σ| = [v−|σ|, v

+
|σ|],w|σ| = [w−|σ|, w

+
|σ|])} such that w+

i ≤ v−i+1

for all i ∈ {1, . . . , |σ|−1}. For every two consecutive discontinuous edges (vi = [v−i , v
+
i ],wi = [w−i , w

+
i ])

and (vi+1 = [v−i+1, v
+
i+1],wi+1 = [w−i+1, w

+
i+1]), we include the corresponding subpath of continuous edges

from wi to vi+1 into f−1(σ). In addition, we include the subpath of continuous edges from node s to node

v1 as well as the subpath from node w|σ| to t into f−1(σ). By construction, f−1(σ) is an s− t path.

(Main Text) Proposition 2. LetG be a segment graph, T be a transcript and r be a read. Then, π(T ) ⊇ π(r)

if and only if σ(T ) ⊇ σ⊕(r) and σ(T ) ∩ σ	(r) = ∅.
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Proof. (⇒)(⇒) By the premise, π(T ) ⊇ π(r). By definition, σ(T ) = π(T ) ∩ Ey. By Definition 4 from the

main text, σ⊕(r) = π(r)∩Ey. As π(T ) ⊇ π(r), we have that σ(T ) = π(T )∩Ey ⊇ π(r)∩Ey = σ⊕(r).

By definition, σ	(r) is the subset of discontinuous edges in Ey \σ⊕(r) that overlaps with an edge in π(r).

Since π(T ) ⊇ π(r), every edge included in σ	(r) because of an overlap with an edge in π(r) must also

overlap with the same edge in π(T ). Since π(T ) is an s − t path, and thus does not contain pairwise

overlapping edges, we infer that σ	(r) ∩ σ(T ) = ∅.
(⇐)(⇐) By the premise, σ(T ) ⊇ σ⊕(r) and σ(T ) ∩ σ	(r) = ∅. As σ(T ) ⊇ σ⊕(r), we have that π(T ) ∩
Ey = σ(T ) ⊇ σ⊕(r) = π(r)∩Ey. Since σ(T )∩σ	(r) = ∅, we have by Definition 4 from the main text,

that no discontinuous edge in σ(T ) overlaps with any edge in π(r). Since π(T ) is an s− t path containing

the subset σ⊕(r) of discontinuous edges in π(r), it holds that π(T ) ∩ E→ ⊇ π(r) ∩ E→. Finally, as

Ey ∪ E→ = E, π(r) ⊆ E and π(T ) ⊆ E, we get π(T ) ⊇ π(r).

Using this proposition, we derive a simpler form of the likelihood given in Equation 2 in the main text.

Let S = {(σ⊕1 , σ	1 ), . . . , (σ⊕m, σ
	
m)} be the set of characteristic discontinuous edges generated by the reads

in alignmentR. Let d = {d1, · · · , dm} be the number of reads that map to each pair in S. Using that distinct

reads rj and rj′ with the same characteristic discontinuous edges (σ⊕(rj), σ
	(rj)) = (σ⊕(rj′), σ

	(rj′))

have the same likelihood in terms of Equation 2 in the main text, we have

Pr(R | T , c) =

n∏
j=1

1∑k
b=1 cbLb

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci =

m∏
j=1

 1∑k
b=1 cbLb

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


dj

. (12)

Now, taking the logarithm yields

log Pr(R | T , c) =
m∑
j=1

dj

log

(
1∑k

b=1 cbLb

)
+ log

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


=−

m∑
j=1

dj

(
log

k∑
b=1

cbLb

)
+

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci


=

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n log

k∑
b=1

cbLb. (13)

The goal is the remove the second sum in the above equation, as it is convex and we are maximizing. In

order to do so, we first prove the following lemma.
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Lemma 1. For any given scaling factor α > 0, we have that log Pr(R | T , c) = log Pr(R | T , αc).

Proof.

log Pr(R | T , αc) =
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

αci

− n log
k∑
b=1

αcbLb

=
m∑
j=1

dj log

α ∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


− n logα

k∑
b=1

cbLb

=

m∑
j=1

dj logα+

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n logα− n log

k∑
b=1

cbLb

= n logα+
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n logα− n log
k∑
b=1

cbLb

=
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n log
k∑
b=1

cbLb

= log Pr(R | T , c).

This enables us to prove the following lemma.

(Main Text) Lemma 1. Let D > 0 be a constant, ci(c) = ciD/
∑k

j=1 cjLj and ci(c) = ci/
∑k

j=1 cj for

all i ∈ [k]. Then, (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for Eq. (3)-(6) from the main text if and

only if (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for

max
T ,c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci (14)

s.t. π(Ti) is an s− t path in the segment graph G ∀i ∈ [k], (15)

k∑
i=1

ciLi = D, (16)

ci ≥ 0 ∀i ∈ [k]. (17)

Proof. We will refer to the optimization problem in Eq. (3)-(6) from the main text as P and the optimization

problem in Eq. (14)-(17) as Q. Further, we will refer to the objective function in Eq. (3) from the main text
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as J(T , c) and the objective function in (14) as K(T , c). Observe that

K(T , c) = log Pr(R | T , c) + n log

k∑
b=1

cbLb

=J(T , c) + n log
k∑
b=1

cbLb, (18)

where the last equality uses (13).

(⇒)(⇒) Let (T , c) be an optimal solution to problem P . We begin by showing that (T , c) is a feasible

solution to Q where c = [c1(c), . . . , ck(c)]. By definition of ci(c), constraints Eq. (16) are satisfied. Hence,

(T , c) is a feasible solution to problem Q.

We now show that if (T , c) is an optimal solution to problem P , then (T , c) is an optimal solution to

problem Q. Let (T ′, c′) be an optimal solution to problem Q. Then, by optimality of (T ′, c′), we have

K(T ′, c′) ≥ K(T , c). (19)

Let c′ = [c1(c
′), . . . , ck(c

′)]. Note that c′ satisfies constraints in Eq. (5). Thus (T ′, c′) is a feasible solution

to problem P . Since (T , c) is an optimal solution of P , we have

J(T , c) ≥ J(T ′, c′). (20)

Since c′ and c′ only differ by a positive scaling factor α = 1/
∑k

i=1 c
′
i, we use Lemma 1 to get J(T ′, c′) =

J(T ′, c′). Similar result holds for c and c, i.e. J(T , c) = J(T , c). Applying this to (20), we get

J(T , c) ≥ J(T ′, c′).

Using (16) and (18), we get

J(T , c) ≥ J(T ′, c′)

=⇒ K(T , c)− n log
k∑
b=1

cbLb ≥ K(T ′, c′)− n log
k∑
b=1

c′bLb

=⇒ K(T , c)− n logD ≥ K(T ′, c′)− n logD

=⇒ K(T , c) ≥ K(T ′, c′). (21)

Finally, using (19) and (21), we get K(T , c) = K(T ′, c′). Hence, (T , c) is an optimal solution of Q.

(⇐)(⇐) Let (T , c) be an optimal solution to problem Q. We begin by showing that (T , c) is a feasible

solution to P where c = [c1(c), . . . , ck(c)]. By definition of ci(c), constraints in Eq. (5) of the main text

are satisfied. Hence, (T , c) is a feasible solution to problem P .
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Next, we need to show that (T , c) is an optimal solution to problem P . Let (T ′, c′) be an optimal

solution to problem P .

Then, from the optimality condition, we get

J(T ′, c′) ≥ J(T , c). (22)

Let c′ = [c1(c
′), . . . , ck(c

′)]. Note that c′ satisties constraint (16) and thus (T ′, c′) is a feasible solution to

problem Q. Using (18) and the fact that (T , c) is an optimal solution of problem P we get

K(T , c) ≥ K(T ′, c′)

=⇒ J(T , c) + n log

k∑
b=1

cbLb ≥ J(T ′, c′) + n log

k∑
b=1

c′bLb

=⇒ J(T , c) + n logD ≥ J(T ′, c′) + n logD

=⇒ J(T , c) ≥ J(T ′, c′). (23)

Observe that c′ and c′ only differ by a positive scaling factor α = D/
∑k

j=1 c
′
jLj . Therefore, using

Lemma 1, we have J(T ′, c′) = J(T ′, c′). Similarly, for c and c, we have J(T , c) = J(T , c). Using this

together with (23), we obtain

J(T , c) ≥ J(T ′, c′). (24)

Moreover, (22) and (24) simultaneously imply J(T , c) = J(T ′, c′). Hence, (T , c) is an optimal solution to

problem P .

B.2 Mixed integer linear program

In the following, we introduce variables and constraints to encode the following.

(i) The composition of each transcript Ti as a set σ(Ti) of non-overlapping discontinuous edges.

(ii) The abundance ci and length Li of each transcript Ti.

(iii) The total abundance
∑

i∈X(T ,σ⊕j ,σ
	
j ) ci of transcripts supported by characteristic discontinuous edges

(σ⊕j , σ
	
j ).

(iv) A piecewise linear approximation of the log function.

We describe (iii) and (iv) in the following and refer to the Materials and methods section in the main

text for (i) and (ii).
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Contribution of transcripts to each pair of characteristic discontinuous edges. The objective function

has m terms, one corresponding to each pair (σ⊕j , σ
	
j ) ∈ S of characteristic discontinuous edges (see Eq.

(7) in the main text). Specifically, each term j equals dj log
∑

i∈X(T ,σ⊕j ,σ
	
j ) ci where dj is a constant, for all

j ∈ [m]. We introduce non-negative continuous variables q = {q1, . . . , qm} such that

qj =
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci =
k∑
i=1

ci ∏
e∈σ⊕j

xe,i
∏
e′∈σ	j

xe′,i

 , (25)

where the last equality uses the characterization of candidate transcripts of origin for a given read de-

scribed in Proposition 2 of the main text. We introduce continuous variables yj ∈ [0, 1]k that encode

the product yj,i = ci
∏
e∈σ⊕j

xe,i
∏
e′∈σ	j

xe′,i. Intuitively, each variable yj,i encodes the contribution of

a transcript Ti for the given characteristic discontinuous edge sets (σ⊕j , σ
	
j ). We linearize the product

ci
∏
e∈σ⊕j

xe,i
∏
e′∈σ	j

xe′,i as follows.

yj,i ≤ ci, ∀i ∈ [k], j ∈ [m],

yj,i ≤ xe,i, ∀e ∈ σ⊕i , i ∈ [k], j ∈ [m],

yj,i ≤ 1− xe,i, ∀e ∈ σ	i , i ∈ [k], j ∈ [m],

yj,i ≥ ci +
∑
e∈σ⊕j

xe,i +
∑
e∈σ	j

(1− xe,i)− |σ⊕j | − |σ	j |, ∀i ∈ [k], j ∈ [m].

Hence, we have

qj =

k∑
i=1

yj,i. (26)

Objective function. The objective function (Eq. (7) in the main text) can be written in terms of continuous

variables q as

J(q) =

m∑
j=1

dj log qj ,

where dj is a constant and q is as in (26). We use the lambda method to approximate our objective method

using a piecewise linear function [5]. Following the method described in [5], we partition the domain (0, 1]

with h breakpoints b1 ≤ b2 ≤ . . . ≤ bh. We introduce continuous variables λj ∈ [0, 1]h with the constraints

h∑
o=1

λj,o = 1, ∀j ∈ [m],

h∑
o=1

boλj,o = qj , ∀j ∈ [m].
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Note that bo for o ∈ [h] are constants. Since each of the m terms in the objective function are individually

concave and we are maximizing, the adjacency condition of breakpoints does not need to be enforced. For

each j ∈ [m], the log function is then approximated as

log(qj) ≈
h∑
o=1

λj,o log(bo),

where log(bo) is a constant for each o ∈ [h]. Therefore the objective function we wish to maximize is
m∑
j=1

dj

h∑
o=1

λj,o log(bo).

Note that since we have a log-likelihood objective function, feasibility of the solution requires that

qj > 0 for j ∈ [m]. This means that for each characteristic discontinuous edge sets (σ⊕j , σ
	
j ), there must

be at least one candidate transcript of origin Ti with non-zero abundance ci > 0. This leads to the solution

containing a large number of transcripts and making the problem intractable while also preventing us from

finding parsimonious sets of transcripts that support most but not all of the observed reads in the sample.

Finding such parsimonious solutions is often desirable since they provide a reasonable explanation of the

observed reads while keeping the problem computationally tractable. In order to allow us to generate solu-

tions that can partially explain the observed reads, we slightly modify our objective function. We introduce

a new breakpoint b0 = 0 and associated continuous variables λj,0 ∈ [0, 1] for j ∈ [m] so that
h∑
o=0

λj,o =1, ∀j ∈ [m],

h∑
o=0

boλj,o =qj , ∀j ∈ [m].

The objective function we maximize is
m∑
j=1

dj

(
λj,0 log(δ) +

h∑
o=1

λj,o log(bo)

)
,

where δ > 0 is a small constant. Note that instead of evaluating the log function at b0, we include log(δ)

which is well defined since δ > 0. In this study, we choose δ = b1/100 = 1/(2h−1× 100) while h is left as

the user’s choice with default value of 16.

Moreover, the choice of breakpoints to approximate the objective function (Eq. (7) in the main text)

can have a significant impact on the accuracy of the MILP solver. As a result, there has been research in

efficient methods for choosing optimal breakpoint locations for convex functions, such as recursive descent

algorithms [6]. In this work we take a simpler approach, by choosing breakpoints such that their spacing

around a given breakpoint is proportional to the local gradient of the objective function. For the log function,

this is equivalent to choosing breakpoints such that bi = 2i−1/2h−1. Note that b0 = 1/2h−1 while bh = 1.
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Number of variables and constraints. The total number of binary variables x is |Ey|k. Note that q are

auxiliary (intermediate) variables that are uniquely determined by c,y, z and λ. Therefore, the total number

of required continuous variables (i.e. c, y, z and λ) is k + mk + |Ey|k + mh. The number of constraints

is O(k|E|2 + |E|km). We provide the full MILP for reference.

max

m∑
j=1

dj

h∑
o=1

λj,o log(bo)

s.t. xe,i + xe′,i ≤ 1, ∀i ∈ [k] and e, e′ ∈ Ey,

s.t. I(e) ∩ I(e′) 6= ∅,

yj,i ≤ ci, ∀i ∈ [k], j ∈ [m],

yj,i ≤ xe,i, ∀e ∈ σ⊕j , i ∈ [k], j ∈ [m],

yj,i ≤ 1− xe,i, ∀e ∈ σ	j , i ∈ [k], j ∈ [m],

yj,i ≥ ci +
∑
e∈σ⊕j

xe,i +
∑
e∈σ	j

(1− xe,i)− |σ⊕j | − |σ	j |, ∀i ∈ [k], j ∈ [m],

ze,i ≤ ci, ∀i ∈ [k],

ze,i ≤ xe,i, ∀e ∈ Ey, i ∈ [k],

ze,i ≥ ci + xe,i − 1, ∀e ∈ Ey, i ∈ [k],

k∑
i=1

ciL−
k∑
i=1

∑
e∈Ey

ze,iL(e) = `∗,

h∑
o=1

λj,o = 1, ∀j ∈ [m],

h∑
o=1

boλj,o =
k∑
i=1

yj,i, ∀j ∈ [m],

xe,i ∈ {0, 1}, ∀i ∈ [k], e ∈ Ey,

ci ≥ 0, ∀i ∈ [k],

yj,i ≥ 0, ∀j ∈ [m], i ∈ [k],

ze,i ≥ 0 ∀e ∈ Ey, i ∈ [k],

λj,o ≥ 0, ∀j ∈ [m], o ∈ [h].
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B.3 JUMPER: progressive heuristic for the DTA problem

Here we describe the subproblems that are solved at each iteration of the greedy heuristic. For a given set

of transcripts T and characteristic discontinuous edge sets S , consider the optimization problem which we

denote by P1,

max
T ′,c,c′

m∑
j=1

dj log

 ∑
i∈X(T ,σ⊕j ,σ

	
j )

ci + 1(X({T ′}, σ⊕j , σ	j )) 6= ∅)c′
 (27)

s.t. π(T ′) is an s− t path in the segment graph G (28)

|T |∑
i=1

ciLi + c′L′ = D, (29)

ci ≥ 0 ∀i ∈ [|T |] (30)

c′ ≥ 0 . (31)

and the following optimization problem denoted by P2,

max
c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci (32)

|T |∑
i=1

ciLi = D, (33)

ci ≥ 0 ∀i ∈ [|T |]. (34)

Solution to P1 We obtain the solution of P1 by solving the optimization problem given in Eq. (7)-(10) in

the main text with additional constraints to fix the values of the variables that encode the presence/absence

of discontinuous edges for the transcripts in T . More specifically, for each transcript Ti ∈ T , we enforce

xe,i = 1 for each edge e ∈ σ(Ti) and xe,i = 0 otherwise. Note that ci for Ti ∈ T are still variables and

are solved for in the optimization problem. By doing so, we only solve for the structure of the transcript T ′

while solving for the abundance of all transcripts.

Solution to P2 Similar to the approach taken to solve P1, we fix the values of the variables that encode

the presence/absence of discontinuous edges in the transcripts. This results in all the binary variables in the

MILP with fixed values rendering the resulting optimization problem a simpler linear program.

Heuristic Algorithm The Algorithm 1 from the main text is re-written here in form of an itemized list.
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1. Initialize T = {}, i = 1

2. Solve P1 with T to get a new transcript T ′ with abundance c′

3. Generate a new set of transcripts T ← T ∪EXPAND(T ′) where EXPAND(T ′) = {T : σ(T ) ∈ 2σ(T
′)}.

4. Solve P2 with T as input

5. Select i transcripts from T . If i < k go to step (2) else return (T , c)

B.4 Filtering false positive discontinuous edges

In practice, we see spurious discontinuous edges in the resulting segment graph due to sequencing and

alignment errors. We filter these edges by requiring a minimum number Λ of spliced reads to support each

discontinuous edge in the segment graph. The higher the value of Λ, fewer will be the number of edges and

nodes in the resulting segment graph.

It is not trivial to infer the optimal value of Λ to remove all false positive discontinuous edges. Several

heuristics are used in existing methods to remove spurious splicing events. SCALLOP removes an edge e

from its splice graph if the coverage of the exons of either end of the edge is more than 2w(e)2 + 18, where

w(e) is the number of spliced reads that support the edge e. STRINGTIE on the other hand, terminates its

algorithm of assembling transcripts when the coverage of all the paths in the splice graph build from the

un-assigned reads drops below a threshold, set by default to 2.5 reads per base-pair. By default, JUMPER

requires a support of 100 reads for a discontinuous edge to be included in the segment graph.

Another parameter that can be used to filter false-positive splicing events is the number of discontinuous

edges allowed in the segment graph. From tests on simulated instances emulating SARS-CoV-2 samples,

we found that focusing on the 35 most abundant discontinuous edges is sufficient to get a summary of the

transcriptome and highly expressed canonical and non-canonical transcripts in the sample. A higher value

can be used to capture more complexity of the transcriptome. By default, we set this parameter to 35.

C Supplementary Results

C.1 Simulation pipeline

Our simulations are based on a widely believed model of discontinuous transcription. Briefly, there are two

competing models of discontinuous transcription for coronaviruses [7]. Both models agree that the RdRp

jump is mediated by matching core-sequences (motifs) present in the TRSs in the viral genome. The only
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point of difference between the two models is whether discontinuous transcription occurs during the plus-

strand synthesis or the minus-strand synthesis. The negative-sense discontinuous transcription model [8]

proposes that the it is during the minus-strand synthesis that the RdRp performs discontinuous transcription.

Transcription is initiated at the 3’ end of the plus-strand RNA and the RdRp jumps to the TRS-L region

when it reaches a TRS-B region adjacent to a gene, thereby generating a minus-strand subgenomic RNA.

The minus-strand subgenomic RNA is then replicated by the RdRp to produce a plus-strand RNA which can

be translated to a viral protein. Currently, this model is largely believed to be true due to the considerable

experimental support from genetic studies detecting minus-strand subgenomic RNAs [9–13].

We now describe the procedure to simulate transcripts and their abundances following the negative-sense

model of discontinuous transcription for a given segment graph. The model is parameterized by the function

p : E → [0, 1]. According to the negative-sense discontinuous transcription model, the transcription process

is modeled as an t− s walk in the reverse graph Ḡ where the direction of each original edge is reversed. At

each node the RdRp randomly chooses an outgoing edge to traverse in the reverse graph Ḡ (which would

be an incoming edge to the node in the original graph G) where the probabilities are given by the function

p. Hence, the corresponding constraint on p under the negative-sense discontinuous transcription model is∑
e∈δ−(v) p(e) = 1. The probabilities are drawn from a Dirichlet distribution with concentration parameter

α set to 10 for edges that are present in the path corresponding to any of the canonical transcripts and 1

otherwise. This is done to ensure that canonical transcripts are generated with high enough abundance,

making the simulations similar to real data.

The next step of our simulation pipeline is to generate transcripts T and their abundances c for the

given segment graph. We simulate the transcription process by generating 100,000 s − t paths on the

segment graph and report the number of unique paths/transcripts T and their abundances c. We repeat this

process to generate 5 independent sets of transcripts and abundances for the positive and the negative model

each. Figure 3b in the main text shows the number of transcripts generated from each simulation using

the negative-sense discontinuous transcription model. To contrast, the total number of s − t paths in the

underlying segment graph is 3440.

Once the transcripts are generated, the next step in our pipeline is to simulate the generation and sequenc-

ing of RNA-seq data. We use polyester [14] for this step as it allows the user to provide the number of

reads generated from each transcript. For a given total number n of reads, the number of reads generated

from transcript Ti is given by nciLi/
∑k

j=1 cjLj where Li is the length of the transcript Ti. We use the de-

fault parameters for read length (` = 100) and fragment length distribution (Gaussian with mean µr = 250

and standard deviation σr = 25) to generate 3,000,000 reads. For each set of transcript and abundances
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generated in the previous step of the pipeline, we simulate 5 replicates of the sequencing experiment.

The final step of the simulation pipeline is to align the generated reads to the reference genome

NC 045512.2 using STAR [15]. The resulting BAM file serves as the input for the transcription assem-

bly methods. To summarize, we generated 5 independent pairs (T , c) of transcripts and abundances under

the negative-sense discontinuous transcription model. For each pair (T , c) we run 5 simulated sequencing

experiments using polyester [14]. Therefore, we generated a total of 5× 5 = 25 simulated instances.

C.2 SCALLOP arguments

We use the following arguments.

scallop -i ${input_bam} -o ${output_assembled}

C.3 STRINGTIE arguments

We run STRINGTIE in de novo transcript assembly mode. That is, we do not provide a GFF file to guide

assembly. We use the following arguments.

stringtie -o ${output_assembled} -A ${output_abundance} ${input_bam}

We noted that STRINGTIE produces incomplete transcripts, i.e. all the assembled transcripts did not

map to the 5’ and 3’ end of the reference genome. In our simulations, STRINGTIE was not penalized for

this as our evaluation metrics considered only discontinuous edges.

C.4 Human gene simulations

We evaluate the performance of JUMPER, SCALLOP and STRINGTIE on simulated samples of the human

gene FAS as well. This gene is located on the long arm of chromosome 10 in humans and encodes the Fas

cell surface receptor which leads to programmed cell death if it binds its ligand (Fas ligand). The FAS gene

has 15 exons, yielding the following seven isoforms via alternative splicing (https://www.uniprot.

org/uniprot/P25445).

1. P25445-1 with length of 335aa

https://useast.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000652046
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Figure C1: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances of the FAS gene (on

human chromosome 10) with all 7 isoforms of the gene in terms of F1 score, recall and precision while maintain-

ing a modest running time. (a) F1 score (b) recall and (c) precision of the three methods for the simulated instances.

The ground truth contained seven isoforms of the FAS gene with uniform relative abundances.
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Figure C2: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances of the FAS gene (on

human chromosome 10) with only 3 isoforms (P25445-1, P25445-6 and P25445-7) in terms of F1 score, recall

and precision while maintaining a modest running time. (a) F1 score (b) recall and (c) precision of the three

methods for the simulated instances. The ground truth contained three isoforms of the FAS gene with uniform relative

abundances.
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2. P25445-2 with length of 103aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000484444

3. P25445-3 with length of 86aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000479522

4. P25445-4 with length of 149aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000494410

5. P25445-5 with length of 132aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000492756

6. P25445-6 with length of 314aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000357339

7. P25445-7 with length of 220aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619;t=ENST00000355279

The region between the first and the last exon span position 5001 to 30255 of the FAS gene. We used this

region as the reference genome in our simulations1. We include the seven isoforms with equal proportion of

1/7 in the ground truth. We add a poly-A tail of length 85 at the end of the reference genome as well as each

of the isoforms to emulate the transcription process. We use polyester [14] to simulate the sequencing of

35,000,000 paired-end reads of the sample with a Gaussian fragment length distribution with mean 250 and

standard deviation of 25. We simulate 5 replicates of the sequencing experiment. The simulated reads are

aligned to the selected region of the FAS gene using STAR [15]. The resulting BAM file serves as the input

for the transcription assembly methods We evaluate the recall and precision of the three methods focusing

on transcripts with abundance of more than 0.01. Figure C1 shows that JUMPER (median F1 score of 1)

outperforms SCALLOP (median F1 score of 0.83) in terms of both recall and precision, while STRINGTIE

1NCBI reference sequence NG 009089.2: https://www.ncbi.nlm.nih.gov/nuccore/NG_009089.2?from=

5001&to=30255&report=fasta
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Figure C3: JUMPER finds all canonical transcripts and some non-canonical transcripts from three MERS-

CoV samples. (a) Abundance of the detected transcripts in the three samples, SRR10357372, SRR10357374 and

SRR10357375. (b) A Venn diagram of the non-canonical transcripts reconstructed for each sample showing that there

are 7 non-canonical transcripts that are present in all the three samples. Table C1 shows the abundance of the 8

canonical transcripts that are present in all the samples and 14 non-canonical transcripts that are present in more than

1 sample.

is not able to recall any of the 7 transcripts in the ground truth. We run the simulations again with only 3

of the isoforms, P25445-1, P25445-6 and P25445-7. Figure C2 shows that STRINGTIE is able to perform

better with a median recall of 0.33, but still not as well as either SCALLOP (median recall of 1) or JUMPER

(median recall of 1).

C.5 Transcript Assembly of MERS-CoV samples

MERS-CoV has a genome of length 30119 bp, and consists of 10 ORFs (1ab, S, 3, E, M, 4a, 4b, 5, 8b,

N). We ran JUMPER on three published MERS-CoV samples [16], SRR10357372, SRR10357373 and

SRR10357374, with a median coverage of 41,999, 36,663 and 45,235 respectively. These samples cor-

respond to MERS-CoV infected Calu-3 cell lines [16]. Similar to previous analyses in this paper, we used

fastp to trim the short reads (trimming parameter set to 10 nucleotides) and we aligned the resulting

reads using STAR in two-pass mode. SCALLOP identified at most two canonical transcripts in each of

the three samples (transcripts corresponding to ORF3 and ORF M in SRR10357372, ORF5 and ORF3 in

SRR10357373, and ORF N in SRR10357374). We ran JUMPER with the 35 most abundant discontinuous

edges in the segment graph and restrict our attention to transcripts identified by JUMPER that have more than

0.001 abundance as estimated by SALMON [3].

JUMPER reconstructs transcripts corresponding to all canonical ORFs of MERS-CoV in all the samples,

except for ORF4b and ORF8b which are the only canonical ORFs that are not preceded by well supported
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TRS-B regions [17]. The most abundant transcript corresponds to ORF N (median abundance of 0.348),

in line with the observations for SARS-CoV-2, while the least abundant canonical transcript encodes for

protein E (median abundance of 0.0053). Figure C3a shows, for each sample, the relative abundances of

each canonical transcript as well as the total abundances of all non-canonical transcripts. Firstly, we observe

that the abundance of each canonical transcript is consistent across the three samples. Secondly, we see

that all the three samples have high total abundance of non-canonical transcripts (median total abundance of

0.3908). Figure C3b shows a Venn diagram for the non-canonical transcripts present in the three samples.

We see out of the 25 distinct non-canonical transcripts, 7 are present in all the three samples and 14 are

present in at least two of the samples. Table C1 shows the abundance of the 8 canonical transcripts present

in all the samples and the 14 non-canonical transcripts present in at least two samples. We will now describe

the most abundant non-canonical transcripts in each sample.

The most abundant non-canonical transcript in samples SRR10357372 and SRR10357373 is ‘NC8’,

which has a single discontinuous edge from position 1317 (5’ end) to 29600 (3’ end). The abundance of this

transcript is 0.1019 in sample SRR10357372 and 0.1639 in sample SRR10357372, which is higher than all

the canonical transcripts in both the samples except the transcript corresponding to ORF N. The 5’ end of the

discontinuous edge is in ORF1ab (nsp2 region) and the 3’ end is in ORF N. Interestingly the most abundant

non-canonical transcript in the third sample SRR10357374 is ‘NC12’, which has a single discontinuous edge

with the same 3’ end of 29600 while the 5’ end is at position 1297 (also in the nsp2 region of ORF1ab).

This transcript has abundance of 0.1486 in sample SRR10357374, higher than all the canonical transcripts

in SRR10357374 except the transcript corresponding to ORF N, and 0.0483 in sample SRR10357372. We

were not able to attribute the occurrence of transcripts NC8 and NC12 to matching motifs at the 5’ and 3’

ends of the discontinuous edges. Given the high abundance of these non-canonical transcripts in the sample,

further investigation is required to ascertain their function, or whether

C.6 Supplementary results figures

We have the following supplementary figures.

• Figure C4 shows that JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances in

terms of F1 score, recall and precision while maintaining a modest running time.

• Figure C5 shows that JUMPER outperforms SCALLOP and STRINGTIE for varying values of thresh-

olding parameter Λ.
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Transcript Discontinuous Edges SRR10357372 SRR10357373 SRR10357374

1ab - 0.0195 0.0190 0.0213

ca
no

ni
ca

l

S (59, 21402) 0.0251 0.0261 0.0284

3 (59, 25518) 0.0789 0.0840 0.0876

E (61, 27582) 0.0055 0.0049 0.0053

M (58, 27834) 0.0812 0.0699 0.08

5 (55, 26826) 0.0266 0.0261 0.0294

4a (59, 25840) 0.0237 0.0246 0.0241

N (53, 28536) 0.3483 0.3542 0.34

NC1 (62, 28626) 0.0017 0.0016 0.0015

no
n-

ca
no

ni
ca

l

NC2 (65, 29106) 0.0043 0.0029 0.0026

NC3 (61, 29503) 0.0016 0.0014 0.0015

NC4 (61, 29582) 0.003 0.0027 0.0029

NC5 (1727, 28983) 0.016 0.0169 0.0198

NC6 (2343, 29204) 0.0736 0.1047 0.0575

NC7 (7120, 24104) 0.0086 0.0088 0.0087

NC8 (1317, 29600) 0.1019 0.1639 -

NC9 (2333, 29203) 0.055 - 0.049

NC10
(63, 680)

(1727, 28983)
0.0019 - 0.0017

NC11
(59, 21402)

(24103, 27938)
0.0011 - 0.0011

NC12 (1297, 29600) 0.0483 - 0.1486

NC13 (64, 29105) 0.0011 - 0.001

NC14 (2333, 29150) - 0.0613 0.0363

Table C1: Abundance of 8 canonical transcript present in all three MERS-CoV samples and 14 non-canonical tran-

script present in more than 1 sample. The canonical and non-canonical transcripts with the highest abundance in each

sample are highlighted. Figure C3b shows the Venn diagram of all the transcripts in the solution.
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Figure C4: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances in terms of F1 score,

recall and precision while maintaining a modest running time. (a) F1 score (b) recall, (c) precision and (d) time

taken by the three methods for the simulated instances.

• Figure C6 shows that JUMPER produces better recall and precision when compared to SCALLOP and

STRINGTIE for every simulation instance (T , c).

• Figure C7 shows that the core sequence observed in the reference genome potentially explaining a

non-canonical discontinuous transcription event, and the core sequence corresponding to transcript X

is conserved across Sarbecovirus species.

• Figure C8 shows an example of a supporting read for a transcript with two discontinuous edges.

• Figure C9 shows that transcript X is supported in both long-read and short-read samples deposited in

SRA.

• Figure C10 shows the number of supporting reads with the 5’ end mapping to the leader sequence in

the short and long read sequencing data.

• Figure C12 shows the abundances of the predicted transcripts by JUMPER in two SARS-CoV-1 in-

fected samples.

• Table C2 shows summary of the results from the simulations.

• Table C3 describes 18 transcripts (including 9 canonical transcripts) detected from SARS-CoV-2 in-

fected samples with and without pre-treatment of ruxolitinib.
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Figure C5: JUMPER outperforms SCALLOP and STRINGTIE for varying values of thresholding parameter Λ.

(a) F1 score (b) recall, (c) precision and (d) time taken by the JUMPER for different values of Λ compared to SCALLOP

and STRINGTIE on the simulated instances. As expected, the recall value drops for increasing Λ while the precision

increases. We set the default value of Λ to 100 which incurs runtime comparable to SCALLOP while producing higher

recall and precision solutions.
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Figure C6: While all three methods return consistent results when generating technical sequencing replicates,

JUMPER produces better recall and precision when compared to SCALLOP and STRINGTIE for every simula-

tion instance (T , c). Varying simulation instances (T , c) correspond to distinct panels. Each panel shows the recall

and precision of the three methods for 5 sequencing experiments of the same simulated instance (T , c).
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Leader …ACGAACTTTAAAA…
X, X’ …AAGAACTTTAAGT…

15780 15788

72 80

(a) Core sequence

15780 1578872 80

(b) MSA and sequence logo with 34 Sarbecoviruses and 1 Hibecovirus.

(c) Sequence logo of 11 Nobecoviruses, 27 Merbecoviruses and 36 Embecoviruses

Figure C7: The core sequence of transcript X is conserved within the Sarbecovirus subgenus but not in other

subgenera of the Betacoronavirus genus. (a) Core sequence for the transcript X and X’. (b) Sequence logo for the

positions 15780 to 15788 in SARS-CoV-2 genome built from the multiple sequence alignment of the leader sequence

and ORF1ab of 34 Sarbecovirus and a Hibecovirus. (c) Sequence logo for positions 15780 to 15788 in SARS-CoV-2

genome built from multiple sequence alignment with the remaining subgenera of Betacoronaviruses.
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Figure C8: A schematic showing an example of a supporting read for a transcript T1 with σ⊕(T1) = 2. Transcript

T1 is supported by r2 because π(r2) = π(T1) and |σ⊕(r1)| = |σ⊕(T1)| = 2. Reads r1, r3 and r4 do not support T1

since |σ⊕(r1)| < |σ⊕(T1)| and π(r3), π(r4) * π(T1). No reads support T2 since |σ⊕(rj)| < |σ⊕(T2)| for all reads

rj .
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Figure C9: Transcript X has supporting reads in multiple independent publicly available samples of SARS-

CoV-2 infected cells on SRA. Distribution of number of (a) short-read and (b) long-read SRA samples with varying

proportion of leader-sequence spanning reads that support transcript X. All the short-read samples were aligned using

STAR [15] while the long-read samples were aligned using minimap2 [18]. In this plot we only consider samples

with more than 100 reads that map to the leader-sequence (position 55 to 85 in the SARS-CoV-2 reference genome).
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Figure C10: Supporting phasing reads with 5’ end mapping to the leader sequence in short and long-read

sequencing samples of SARS-CoV-2 infected Vero cells [19]. Supporting phasing reads have at most one discontin-

uous edge with the 5’ end occurring in the leader sequence (i.e. between positions 55 and 85) and the first occurrence

of ‘AUG’ downstream of the 3’ end position coinciding with the start codon of a known ORF. Supporting phasing

reads corresponding to ‘1ab’ start in the leader sequence but do not contain a discontinuous edge. Supporting phasing

reads corresponding to ‘N/A’ start in the leader sequence but have a 3’ end such that the first occurrence of ‘AUG’

downstream of the 3’ end position does not coincide with the start codon of any known ORFs. (a) Supporting phasing

reads in the short-read sequencing sample. (b) Supporting phasing reads in the long-read sequencing sample.
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Figure C11: JUMPER enables analysis of drug response of the virus in infected cells at the transcript level.

(a) A Venn diagram of recalled transcripts from sample with and without treatment of ruxolitinib and a bar plots

showing the number of samples containing each of the 18 common transcripts. Table C3 described each of the 18

common transcripts. The transcripts are named based on the protein they yield, with ∇ indicating presence of out of

frame deletions and ∆ indicating in-frame deletions.
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Figure C12: Abundances of the canonical and non-canonical transcripts predicted by JUMPER are consistent

in the two SARS-CoV-1 infected samples (SRR194256 and SRR194257). JUMPER predicts 10 canonical and 3

non-canonical transcripts across the two samples.
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Simulation JUMPER SCALLOP STRINGTIE

seed rep can non-can
TP

FP
TP

FP
TP

FP
can non-can can non-can can non-can

0 1 14 94 7 9 1 7 4 8 2 0 14

0 2 14 94 8 11 0 7 2 8 1 0 13

0 3 14 94 7 11 2 4 1 8 1 0 11

0 4 14 94 6 9 2 7 2 8 1 0 13

0 5 14 94 7 11 0 4 1 8 1 0 7

1 1 14 78 3 13 1 3 0 12 2 0 13

1 2 14 78 4 11 1 2 0 10 1 0 13

1 3 14 78 3 16 1 3 0 2 1 0 12

1 4 14 78 3 11 1 2 0 8 0 0 16

1 5 14 78 4 13 1 2 0 8 1 0 15

2 1 14 150 5 11 1 3 1 8 1 0 16

2 2 14 150 4 14 3 5 1 4 2 0 15

2 3 14 150 5 13 3 5 1 8 2 0 13

2 4 14 150 7 16 1 5 1 8 2 0 16

2 5 14 150 4 14 1 3 1 8 2 0 14

3 1 14 72 4 7 2 3 0 8 1 0 9

3 2 14 72 6 8 2 3 0 4 0 0 8

3 3 14 72 7 6 4 4 0 8 0 0 20

3 4 14 72 4 8 3 3 0 8 2 0 9

3 5 14 72 4 9 2 3 0 6 0 0 4

4 1 14 115 4 13 1 1 0 4 1 0 19

4 2 14 115 5 12 1 1 0 0 0 0 12

4 3 14 115 6 14 1 1 0 8 2 0 10

4 4 14 115 6 10 1 1 0 4 0 0 16

4 5 14 115 6 13 1 1 0 4 0 0 12

Table C2: Simulation results for the three methods JUMPER, SCALLOP and STRINGTIE. Each distinct value in

the column ‘seed’ is a unique instance of (T , c) and each distinct value in the column ‘rep’ is a unique sequencing

experiment for the given (T , c). (rep: replicate, can: canonical, non-can: non-canonical, TP: true positives, FP: false

positives)
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Transcript Discontinuous Edges Description

1ab - canonical transcript with no discontinuous edges

1ab’ (23593, 23630) single discontinuous edge downstream of ORF1ab

S (65, 21552) single discontinuous edge from TRS-L to TRS-B of ORF S

∆S1
(65, 21552)

(23593, 23630)

single discontinuous edge from TRS-L to TRS-B of ORF S

and an in-frame 12 amino-acid deletion overlapping the furin cleavage site

∆S1
(65, 21552)

(23593, 23615)

single discontinuous edge from TRS-L to TRS-B of ORF S

and an in-frame 7 amino-acid deletion overlapping the furin cleavage site

3a-1 (65, 25381) single discontinuous edge from TRS-L to TRS-B of ORF3a

3a-2 (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF3a

E (69, 26237) single discontinuous edge from TRS-L to TRS-B of ORF E

M (64, 26468) single discontinuous edge from TRS-L to TRS-B of ORF M

∇M

(64, 26468)

(26779, 26817)

(28525, 28577)

single discontinuous edge from TRS-L to TRS-B of ORF M

with an out of frame deletion with motifs ‘CAATGGCTT’ to ‘CATTGCTT’

and another downstream deletion within ORF N

6 (69, 27041) single discontinuous edge from TRS-L to TRS-B of ORF6

7a (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF7a

8 (65, 27884) single discontinuous edge from TRS-L to TRS-B of ORF8

8’
(65, 27884)

(28270, 28970)

single discontinuous edge from TRS-L to TRS-B of ORF8

with a single deletion downstream of ORF8

N-1 (64, 28255) single discontinuous edge from TRS-L to TRS-B of ORF N

N-2 (68, 28263) single discontinuous edge from TRS-L to TRS-B of ORF N

NC1 (6001, 27376) matching motif ‘AGAGCAACCAAT’ on the 5’ and 3’ ends of the jump

NC2 (731, 29307) matching motif ‘ATTTTCAA’ to ‘AATTTCAA’

Table C3: 18 transcripts (including 9 canonical transcripts) detected from SARS-CoV-2 infected A549 cell line sam-

ples with and without pre-treatment of ruxolitinib. Figure 5 in the main text shows the abundances of these transcripts

in the samples.
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