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A Likelihood Model for DISCONTINUOUS TRANSCRIPT ASSEMBLY

We use the segment graph G to compute the probability Pr(R | T, c) of observing the alignment R given
transcripts 7 and abundances c. We follow the generative model described in [1]], which has been extensively
used for transcription quantification [2-4]. Let the set R of reads be {1, ..., 7, } and the set 7 of transcripts
be 7 = {T1,...,T}} with lengths Li,..., L; and abundances ¢ = [ci,...,cg]. In line with current
literature, reads R are generated independently from transcripts 7 with abundances c. Further, we must
marginalize over the set of transcripts 7 as the transcript of origin of any given read is typically unknown,

due to ¢ < L. Thus,

Pr(R|T,c) = H Pr(rj | T,c)
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where Z; ; is the indicator random variable for the event that T is the transcript of origin for read r;. We
denote by Pr(r; | Z; ;) the probability of observing read r; given that it is generated from transcript 7;
and Pr(Z; ; | T, c) denotes the probability of generating a read from transcript 7; given transcripts 7 and
abundances c.

Assuming no amplification and sequencing bias, the probability Pr(Z; ; | T,c) of generating a read
from a transcript 7; of length L; is given by

cilL;
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We now derive the probability Pr(r; | Z; ;) of transcript T; generating read r; of fixed length £. We do so

Pr(Z;; | T,c) =

using the segment graph G = (V, E). Recall that a transcript 7" must correspond to an s to t path in G. Let
7m(T) C E denote the path corresponding to transcript 7. Similarly, each read r induces a path 7(r) C E
in G. Read 7 can only be generated by transcript 7" if 7(r) C 7(T"). Hence, the probability of transcript 7;
generating a given read r; is given by

1/L/'7 ifﬂ-(rj) < W(T’i)7
Pr(r; | Zi;) = '

0, otherwise,

where L, = L; — ( is the effective length of the transcript. We assume that the transcripts are much longer



than the reads and as such L, /L; ~ 1. Putting it all together we get

Pr(R|T,c) = H > Pr(rj | Zij) Pr(Zij | Te)
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B Supplementary Methods

B.1 Recharacterization of solutions using discontinuous edges

We prove the following two main text propositions.

(Main Text) Proposition 1. There is a bijection between subsets of discontinuous edges that are pairwise

non-overlapping and s — t paths in G.

Proof. Let Il be the set of s — t paths in G. We indicate with 3 the family of subsets of discontinuous edges
that are pairwise non-overlapping. Note that ¥ C 257",

For an s — t path 7w € II, let f(7) be the set of discontinuous edges in 7, i.e. f(7) = 7N E™. Since 7 is
an s — t path of G, we have that for each edge (v = [v™,v"],w = [w™,w*]) € 7 it holds that v < w™.
Therefore, f () is composed of pairwise non-overlapping disconnected edges.

Now, consider a subset o € 3 of discontinuous edges that are pairwise non-overlapping. We obtain
the corresponding s — t path f~!(o) by first ordering the edges of o in ascending order. That is, let
o ={(vi = o], vf], w1 = [wy,wil]),...,(vjs = [v;l,v;|],w|g| = [w‘;‘,wrgl])} such that w;" < v,
foralli € {1,...,|o|—1}. For every two consecutive discontinuous edges (v; = [v; , v;'], w; = [w; ", w;'])
and (vip1 = [v, 1, v ], Wig1 = [w;, 1, w;;]), we include the corresponding subpath of continuous edges
from w; to v;41 into f (o). In addition, we include the subpath of continuous edges from node s to node

v1 as well as the subpath from node w/,| to t into f~! (o). By construction, f~Yo)isans —t path. [

(Main Text) Proposition 2. Let G be a segment graph, 7" be a transcript and r be a read. Then, 7(7") 2 7 (r)
if and only if o(T') 2 0@ (r) and o(T) N o°(r) = 0.



Proof. (=) By the premise, 7(T") D m(r). By definition, o(T") = 7(T") N E™. By Definition 4 from the
main text, 0 (r) = w(r)NE™. As 7(T) 2 7(r), we have that o(T) = ©(T)NE™ 2 w(r)NE™ = o®(r).
By definition, o () is the subset of discontinuous edges in £\ o®(r) that overlaps with an edge in (7).
Since 7(T") 2 m(r), every edge included in o (r) because of an overlap with an edge in 7(r) must also
overlap with the same edge in 7(7"). Since 7(7T) is an s — t path, and thus does not contain pairwise
overlapping edges, we infer that 0°(r) N o (T) = ().

(<) By the premise, o(T) 2 ¢®(r) and o(T) N o®(r) = 0. As o(T) 2 o¥(r), we have that (7)) N
E™=0(T) 20%(r) =m(r)n E™. Since o(T) No®(r) = (), we have by Definition 4 from the main text,
that no discontinuous edge in o(7") overlaps with any edge in 7(r). Since 7(T") is an s — t path containing
the subset o®(r) of discontinuous edges in 7 (r), it holds that #(T') N E~ D m(r) N E~. Finally, as

E~YUE” =E,n(r) C Eand n(T) C E, we get 7(T") 2 w(r). O

Using this proposition, we derive a simpler form of the likelihood given in Equation 2 in the main text.

Let S = {(0f,07),...,(02,05)} be the set of characteristic discontinuous edges generated by the reads
inalignment R. Letd = {dy, - - , d,,} be the number of reads that map to each pair in S. Using that distinct

reads r; and rj with the same characteristic discontinuous edges (6% (r;),0%(r;)) = (69 (rj), 0% (ry))

have the same likelihood in terms of Equation 2 in the main text, we have

d,
= 1 i 1 ]
j=1 2b=1 oL i€X(T.02,09) =1\ 2b=1 Ly i€X(T,02,09)
Now, taking the logarithm yields
m
logPr(R| T,c) = Zdj log ( ) + log Z Ci
Jj=1 b=1 Cb5b iEX(T,O’J@,O'je)
m k m
=_ Z d; <log Z chb) + Z d; log Z C;
Jj=1 b=1 Jj=1 ’LEX(T,O';B,O’G)
m k
=> |dijlog Y a|-—nlogd cLs (13)
Jj=1 iGX(T,a;B,a'je) b=1

The goal is the remove the second sum in the above equation, as it is convex and we are maximizing. In

order to do so, we first prove the following lemma.



Lemma 1. For any given scaling factor o > 0, we have that log Pr(R | 7,¢) =log Pr(R | T, ac).

Proof.

logPr(R | T,ac) =

NE

k
d;log Z ac; | —nlog Z acpLy
b=1

J=1 l‘GX(T,CT]@,O'je)
m k
= Z djlog | a Z C; —nloga Z cyLy
Jj=1 iEX('T,a;B,Uje) b=1
m m k
:Zdjlogoz—kz d;log Z C; —nloga—nlochbLb
J=1 J=1 iGX(T,U?,U?) b=1
m k
:nloga—i—z d;log Z Ci —nloga—nlochbLb
Jj=1 iGX(T,O'j@,Uje) b=1

m k
= Z d;log Z ¢ | —nlog Z cp Ly,
j b=1

iGX(T,cr]@,JJe)
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<

=logPr(R | T,c).

This enables us to prove the following lemma.

(Main Text) Lemma 1. Let D > 0 be a constant, ¢;(¢) = ¢; D/ E?:l ¢;Lj and ¢;(€) = ¢;/ Zle ¢; for

all ¢ € [k]. Then, (T, c = [c1(€), ..., cx(T)]) is an optimal solution for Eq. (3)-(6) from the main text if and

only if (7,¢€ = [¢1(c),...,Ck(c)]) is an optimal solution for

m
r]%l_aéx Z djlog Z C;
Jj=1 iGX(T,UJE.B,a'je)

s.t. w(T;) is an s — t path in the segment graph G Vi € [k],

& >0 Vi € [K].

14)

5)

(16)

a7

Proof. We will refer to the optimization problem in Eq. (3)-(6) from the main text as P and the optimization

problem in Eq. (T4)-(17) as Q. Further, we will refer to the objective function in Eq. (3) from the main text



as J(T,c) and the objective function in as K(T,c). Observe that

k
K(T,¢) =logPr(R | T,€) + nlog » Ly
b=1

k
=J(T,c)+ nlogZébLb, (18)
b=1
where the last equality uses (13).
(=) Let (T,c) be an optimal solution to problem P. We begin by showing that (7,¢€) is a feasible
solution to ) where € = [¢1(c), . .., ¢x(c)]. By definition of ¢;(c), constraints Eq. (16]) are satisfied. Hence,
(T,7<) is a feasible solution to problem Q.
We now show that if (7, c) is an optimal solution to problem P, then (7, <€) is an optimal solution to

problem Q. Let (77,T’) be an optimal solution to problem . Then, by optimality of (77, ¢’), we have
K(T',©) > K(T,%). (19)

Letc' = [¢1(T), ..., ck(c)]. Note that ¢’ satisfies constraints in Eq. (5). Thus (77, c’) is a feasible solution

to problem P. Since (7, c) is an optimal solution of P, we have
J(T.e) = J(T',c). (20)

Since ¢’ and € only differ by a positive scaling factor « = 1/ Z we use Lemmalto get J(T',c) =

zlz’

J(T',<'). Similar result holds for ¢ and €, i.e. J(T,c) = J(T,<€). Applying this to (20), we get
J(T.e) = J(T',@).

Using (16) and (18)), we get

J(T.¢) > J(T',©)
k
K(T, c)—nlochbLb>K( —nlochbLb
b=1
= K(T,c) —nlogD > K(T',€) —nlog D
— K(T,¢) > K(T',©). (21)

Finally, using and (21)), we get K(7,¢€) = K(T',¢). Hence, (T,<) is an optimal solution of Q.
(«) Let (7,€) be an optimal solution to problem (). We begin by showing that (7, c) is a feasible
solution to P where ¢ = [¢1(C), ..., ck(C)]. By definition of ¢;(€), constraints in Eq. (5) of the main text

are satisfied. Hence, (7, c) is a feasible solution to problem P.



Next, we need to show that (7, c) is an optimal solution to problem P. Let (77,c’) be an optimal
solution to problem P.

Then, from the optimality condition, we get
J(T',¢) = J(T,c). (22)

Letc¢ = [¢1(c'),...,ck(c)]. Note that ¢’ satisties constraint (I6) and thus (77, ¢’) is a feasible solution to

problem Q. Using (T8)) and the fact that (7, €) is an optimal solution of problem P we get

K(T,c) > K(T',@)
k k
= J(T,¢) +nlogZEbLb > J(T',c) —|—nlogZE§,Lb
b=1 b=1
= J(T,¢) +nlog D > J(T',€) +nlog D
= J(T,¢) > J(T',©). (23)

Observe that ¢’ and ¢’ only differ by a positive scaling factor « = D/ Z?Zl c;

Lemmall] we have J(7’,c¢’) = J(7’,¢). Similarly, for ¢ and €, we have J(7,c) = J(T,<). Using this
together with (23)), we obtain

L;. Therefore, using

J(T,c) > J(T',c). (24)

Moreover, (22)) and (24) simultaneously imply J(7,c) = J(T”,c’). Hence, (T, c¢) is an optimal solution to
problem P.

B.2 Mixed integer linear program

In the following, we introduce variables and constraints to encode the following.
(i) The composition of each transcript 7; as a set o(T;) of non-overlapping discontinuous edges.
(i) The abundance ¢; and length L; of each transcript 7;.

(iii) The total abundance ), eX(T,0%,0%) ¢; of transcripts supported by characteristic discontinuous edges
e .o
(0, 07).

(iv) A piecewise linear approximation of the log function.

We describe (iii) and (iv) in the following and refer to the Materials and methods section in the main

text for (i) and (ii).



Contribution of transcripts to each pair of characteristic discontinuous edges. The objective function

has m terms, one corresponding to each pair (Uj@, aj@) € S of characteristic discontinuous edges (see Eq.

(7) in the main text). Specifically, each term j equals d;log » . + (To0®,00) Ci where d; is a constant, for all
]

Jj € [m]. We introduce non-negative continuous variables q = {qi, . . ., ¢m } such that
k
g= Y. ca=>|a ][ @i [T 2] (25)
iGX(T,UEB ,crje) i=1 660’;9 e’eaje

where the last equality uses the characterization of candidate transcripts of origin for a given read de-
scribed in Proposition [2[ of the main text. We introduce continuous variables y; € [0, 1]* that encode

the product y;; = ¢; ]_[660@ Tei He, co© Te' iv Intuitively, each variable y;; encodes the contribution of
J J

a transcript 7; for the given characteristic discontinuous edge sets (a]@, crje). We linearize the product

¢ Heécr]@? Tei He'ea]@ Zer ; as follows.
Yji < ci, Vi€lk],jem],
yj,igxe,iu veeo.i@’ie [k;]v]e [m]’
Yji <1— ey, VeEa?,iG [k],7 € [m],

yj,i Z C; + Z xe,i + Z (1 - "L‘e,i) - |J]€a| - |U]'e|a VZ € [k]vj € [m]
660'5-9 eea].@
Hence, we have
k
6= v 20
=1

Objective function. The objective function (Eq. (7) in the main text) can be written in terms of continuous

variables q as
m
J(q) = _djlogg;,
j=1

where d; is a constant and q is as in (26). We use the lambda method to approximate our objective method
using a piecewise linear function [5]]. Following the method described in [5]], we partition the domain (0, 1]

with  breakpoints by < by < ... < by. We introduce continuous variables A; € [0, 1]h with the constraints
h
> No=1, Vje[m],
o=1

h
> bodjo=q;, Vi€ [m].

o=1



Note that b, for o € [h] are constants. Since each of the m terms in the objective function are individually
concave and we are maximizing, the adjacency condition of breakpoints does not need to be enforced. For

each j € [m], the log function is then approximated as

h
log(g;) & Y Ajolog(bo),
o=1

where log(b,) is a constant for each o € [h]. Therefore the objective function we wish to maximize is

m h
Z d; Z Ajolog(bo).
j=1 o=l

Note that since we have a log-likelihood objective function, feasibility of the solution requires that
g; > 0for j € [m]. This means that for each characteristic discontinuous edge sets (UJ@, aj@), there must
be at least one candidate transcript of origin 7; with non-zero abundance ¢; > 0. This leads to the solution
containing a large number of transcripts and making the problem intractable while also preventing us from
finding parsimonious sets of transcripts that support most but not all of the observed reads in the sample.
Finding such parsimonious solutions is often desirable since they provide a reasonable explanation of the
observed reads while keeping the problem computationally tractable. In order to allow us to generate solu-

tions that can partially explain the observed reads, we slightly modify our objective function. We introduce

a new breakpoint by = 0 and associated continuous variables \; o € [0, 1] for j € [m] so that

h
> No=1, Vje[m],
0=0

h

Y bodjo =gj, Vi€ [m].
o=0

The objective function we maximize is

m h
> d; <)‘j,0 10g(8) + Y Ajo 10g(bo)) ,
j=1 o=1

where 6 > 0 is a small constant. Note that instead of evaluating the log function at by, we include log ()
which is well defined since § > 0. In this study, we choose § = by /100 = 1/(2"~! x 100) while A is left as
the user’s choice with default value of 16.

Moreover, the choice of breakpoints to approximate the objective function (Eq. (7) in the main text)
can have a significant impact on the accuracy of the MILP solver. As a result, there has been research in
efficient methods for choosing optimal breakpoint locations for convex functions, such as recursive descent
algorithms [6]]. In this work we take a simpler approach, by choosing breakpoints such that their spacing
around a given breakpoint is proportional to the local gradient of the objective function. For the log function,

this is equivalent to choosing breakpoints such that b; = 2°~1 /2"~1_ Note that by = 1/2"~! while b}, = 1.



Number of variables and constraints. The total number of binary variables x is | E*|k. Note that q are

auxiliary (intermediate) variables that are uniquely determined by c, y, z and A. Therefore, the total number

of required continuous variables (i.e. ¢, y, z and A) is k + mk + |E™|k + mh. The number of constraints

is O(k|E|* + |E|km). We provide the full MILP for reference.

m h
max » d; Y Xjolog(bo)
j=1 o=l
S.t. ey + Terj <1,
Yji < Ciy

Yii < Tey,

Yii <1 — ey,

Yji = Ci + E Tei + g (1—$e,i)_‘0§9|_‘0j9|’
®
lo;
J

ec EEU?

Zei < Cjy

10

Vi € [k] and e, e € E™,
s.t. I(e) N I(e) # 0,

Vi € [k}, j € [m],

Ve e ol iel[k],je[ml
Ve € o5, i€ [k],j € [ml,

Vi € [k],j € [m],

Vi € [k],
Ve e E™i € [K],

Ve e E™i € [K],

vj € [m],

Vj € [ml],

Vi € [k],e € B,
Vi € [k],

Vj € [m],i€ [k],
Ve € E™,i € [k],

Vj € [m],o0 € [h].



B.3 JUMPER: progressive heuristic for the DTA problem

Here we describe the subproblems that are solved at each iteration of the greedy heuristic. For a given set

of transcripts 7 and characteristic discontinuous edge sets S, consider the optimization problem which we

denote by P,
m
: , n & O /
max Zd] log Y e+ LX{T}0P,07)) # 0)c 27
J=1 iEX(T,UJ@,oje)
s.t.m(T") is an s — t path in the segment graph G (28)
7]
Z@-Li +dL =D, (29)
i=1
¢ >0 Vi e [|T]] (30)
d>0 . (€18

and the following optimization problem denoted by P,

max Z d;log Z G (32)
Jj=1 iEX(T,O’]E-B,Uje)
||
> aLi=D, (33)
i=1
¢ >0 Vie [T (34)

Solution to P; We obtain the solution of P; by solving the optimization problem given in Eq. (7)-(10) in
the main text with additional constraints to fix the values of the variables that encode the presence/absence
of discontinuous edges for the transcripts in 7. More specifically, for each transcript 7; € 7T, we enforce
xe,i = 1 for each edge e € o(T;) and z.; = 0 otherwise. Note that ¢; for T; € T are still variables and
are solved for in the optimization problem. By doing so, we only solve for the structure of the transcript 7"

while solving for the abundance of all transcripts.

Solution to P, Similar to the approach taken to solve P;, we fix the values of the variables that encode
the presence/absence of discontinuous edges in the transcripts. This results in all the binary variables in the

MILP with fixed values rendering the resulting optimization problem a simpler linear program.

Heuristic Algorithm The Algorithm 1 from the main text is re-written here in form of an itemized list.

11



1. Initialize 7 = {},i =1

2. Solve P; with T to get a new transcript 7" with abundance ¢/

3. Generate a new set of transcripts 7 < 7 UEXPAND(T") where EXPAND(T") = {T : o(T) € 2°(T)},
4. Solve P, with T as input

5. Select i transcripts from 7. If ¢ < k go to step (2) else return (7, c)

B.4 Filtering false positive discontinuous edges

In practice, we see spurious discontinuous edges in the resulting segment graph due to sequencing and
alignment errors. We filter these edges by requiring a minimum number A of spliced reads to support each
discontinuous edge in the segment graph. The higher the value of A, fewer will be the number of edges and
nodes in the resulting segment graph.

It is not trivial to infer the optimal value of A to remove all false positive discontinuous edges. Several
heuristics are used in existing methods to remove spurious splicing events. SCALLOP removes an edge e
from its splice graph if the coverage of the exons of either end of the edge is more than 2w(e)? + 18, where
w(e) is the number of spliced reads that support the edge e. STRINGTIE on the other hand, terminates its
algorithm of assembling transcripts when the coverage of all the paths in the splice graph build from the
un-assigned reads drops below a threshold, set by default to 2.5 reads per base-pair. By default, JUMPER
requires a support of 100 reads for a discontinuous edge to be included in the segment graph.

Another parameter that can be used to filter false-positive splicing events is the number of discontinuous
edges allowed in the segment graph. From tests on simulated instances emulating SARS-CoV-2 samples,
we found that focusing on the 35 most abundant discontinuous edges is sufficient to get a summary of the
transcriptome and highly expressed canonical and non-canonical transcripts in the sample. A higher value

can be used to capture more complexity of the transcriptome. By default, we set this parameter to 35.

C Supplementary Results

C.1 Simulation pipeline

Our simulations are based on a widely believed model of discontinuous transcription. Briefly, there are two
competing models of discontinuous transcription for coronaviruses [7]]. Both models agree that the RdRp

jump is mediated by matching core-sequences (motifs) present in the TRSs in the viral genome. The only

12



point of difference between the two models is whether discontinuous transcription occurs during the plus-
strand synthesis or the minus-strand synthesis. The negative-sense discontinuous transcription model S]]
proposes that the it is during the minus-strand synthesis that the RdRp performs discontinuous transcription.
Transcription is initiated at the 3’ end of the plus-strand RNA and the RdRp jumps to the TRS-L region
when it reaches a TRS-B region adjacent to a gene, thereby generating a minus-strand subgenomic RNA.
The minus-strand subgenomic RNA is then replicated by the RdRp to produce a plus-strand RNA which can
be translated to a viral protein. Currently, this model is largely believed to be true due to the considerable
experimental support from genetic studies detecting minus-strand subgenomic RNAs [9-13].

We now describe the procedure to simulate transcripts and their abundances following the negative-sense
model of discontinuous transcription for a given segment graph. The model is parameterized by the function
p: E — [0,1]. According to the negative-sense discontinuous transcription model, the transcription process
is modeled as an t — s walk in the reverse graph GG where the direction of each original edge is reversed. At
each node the RdRp randomly chooses an outgoing edge to traverse in the reverse graph G' (which would
be an incoming edge to the node in the original graph G) where the probabilities are given by the function
p. Hence, the corresponding constraint on p under the negative-sense discontinuous transcription model is
Y ecs— v) p(e) = 1. The probabilities are drawn from a Dirichlet distribution with concentration parameter
o set to 10 for edges that are present in the path corresponding to any of the canonical transcripts and 1
otherwise. This is done to ensure that canonical transcripts are generated with high enough abundance,
making the simulations similar to real data.

The next step of our simulation pipeline is to generate transcripts 7 and their abundances c for the
given segment graph. We simulate the transcription process by generating 100,000 s — t paths on the
segment graph and report the number of unique paths/transcripts 7 and their abundances c. We repeat this
process to generate 5 independent sets of transcripts and abundances for the positive and the negative model
each. Figure 3b in the main text shows the number of transcripts generated from each simulation using
the negative-sense discontinuous transcription model. To contrast, the total number of s — t paths in the
underlying segment graph is 3440.

Once the transcripts are generated, the next step in our pipeline is to simulate the generation and sequenc-
ing of RNA-seq data. We use polyester [14] for this step as it allows the user to provide the number of
reads generated from each transcript. For a given total number n of reads, the number of reads generated
from transcript 7; is given by n¢; L;/ Z§:1 c;L;j where L; is the length of the transcript 7;. We use the de-
fault parameters for read length (¢ = 100) and fragment length distribution (Gaussian with mean p,, = 250

and standard deviation o, = 25) to generate 3,000,000 reads. For each set of transcript and abundances

13



generated in the previous step of the pipeline, we simulate 5 replicates of the sequencing experiment.

The final step of the simulation pipeline is to align the generated reads to the reference genome
NC_045512.2 using STAR [15]. The resulting BAM file serves as the input for the transcription assem-
bly methods. To summarize, we generated 5 independent pairs (7, c) of transcripts and abundances under
the negative-sense discontinuous transcription model. For each pair (7, c) we run 5 simulated sequencing

experiments using polyester [14]. Therefore, we generated a total of 5 x 5 = 25 simulated instances.

C.2  SCALLOP arguments

We use the following arguments.

scallop —i ${input_bam} -o ${output_assembled}

C.3 STRINGTIE arguments

We run STRINGTIE in de novo transcript assembly mode. That is, we do not provide a GFF file to guide

assembly. We use the following arguments.
stringtie -o ${output_assembled} —-A ${output_abundance} ${input_bam}

We noted that STRINGTIE produces incomplete transcripts, i.e. all the assembled transcripts did not
map to the 5’ and 3’ end of the reference genome. In our simulations, STRINGTIE was not penalized for

this as our evaluation metrics considered only discontinuous edges.

C.4 Human gene simulations

We evaluate the performance of JUMPER, SCALLOP and STRINGTIE on simulated samples of the human
gene FAS as well. This gene is located on the long arm of chromosome 10 in humans and encodes the Fas
cell surface receptor which leads to programmed cell death if it binds its ligand (Fas ligand). The FAS gene
has 15 exons, yielding the following seven isoforms via alternative splicing (https://www.uniprot.

org/uniprot/P25445).

1. P25445-1 with length of 335aa
https://useast.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000652046
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Figure C1: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances of the FAS gene (on

human chromosome 10) with all 7 isoforms of the gene in terms of F score, recall and precision while maintain-

ing a modest running time. (a) F score (b) recall and (c) precision of the three methods for the simulated instances.

The ground truth contained seven isoforms of the FAS gene with uniform relative abundances.
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Figure C2: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances of the FAS gene (on
human chromosome 10) with only 3 isoforms (P25445-1, P25445-6 and P25445-7) in terms of F score, recall

and precision while maintaining a modest running time. (a) F; score (b) recall and (c) precision of the three

methods for the simulated instances. The ground truth contained three isoforms of the FAS gene with uniform relative

abundances.
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2. P25445-2 with length of 103aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000484444

3. P25445-3 with length of 86aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000479522

4. P25445-4 with length of 149aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000494410

5. P25445-5 with length of 132aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000492756

6. P25445-6 with length of 314aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000357339

7. P25445-7 with length of 220aa
https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;

g=ENSG00000026103;r=10:88990731-89014619; t=ENST00000355279

The region between the first and the last exon span position 5001 to 30255 of the FAS gene. We used this
region as the reference genome in our simulationﬂ We include the seven isoforms with equal proportion of
1/7 in the ground truth. We add a poly-A tail of length 85 at the end of the reference genome as well as each
of the isoforms to emulate the transcription process. We use polyester [[14] to simulate the sequencing of
35,000,000 paired-end reads of the sample with a Gaussian fragment length distribution with mean 250 and
standard deviation of 25. We simulate 5 replicates of the sequencing experiment. The simulated reads are
aligned to the selected region of the FAS gene using STAR [15]]. The resulting BAM file serves as the input
for the transcription assembly methods We evaluate the recall and precision of the three methods focusing
on transcripts with abundance of more than 0.01. Figure shows that JUMPER (median F1 score of 1)

outperforms SCALLOP (median F1 score of 0.83) in terms of both recall and precision, while STRINGTIE

'NCBI reference sequence NG_009089.2: https://www.ncbi.nlm.nih.gov/nuccore/NG_009089.22from=
5001&to=30255&report=fasta
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Figure C3: JUMPER finds all canonical transcripts and some non-canonical transcripts from three MERS-
CoV samples. (a) Abundance of the detected transcripts in the three samples, SRR10357372, SRR10357374 and
SRR10357375. (b) A Venn diagram of the non-canonical transcripts reconstructed for each sample showing that there
are 7 non-canonical transcripts that are present in all the three samples. Table shows the abundance of the 8
canonical transcripts that are present in all the samples and 14 non-canonical transcripts that are present in more than

1 sample.

is not able to recall any of the 7 transcripts in the ground truth. We run the simulations again with only 3
of the isoforms, P25445-1, P25445-6 and P25445-7. Figure [C2] shows that STRINGTIE is able to perform
better with a median recall of 0.33, but still not as well as either SCALLOP (median recall of 1) or JUMPER

(median recall of 1).

C.5 Transcript Assembly of MERS-CoV samples

MERS-CoV has a genome of length 30119 bp, and consists of 10 ORFs (lab, S, 3, E, M, 4a, 4b, 5, 8b,
N). We ran JUMPER on three published MERS-CoV samples [[16], SRR10357372, SRR10357373 and
SRR10357374, with a median coverage of 41,999, 36,663 and 45,235 respectively. These samples cor-
respond to MERS-CoV infected Calu-3 cell lines [[16]]. Similar to previous analyses in this paper, we used
fastp to trim the short reads (trimming parameter set to 10 nucleotides) and we aligned the resulting
reads using STAR in two-pass mode. SCALLOP identified at most two canonical transcripts in each of
the three samples (transcripts corresponding to ORF3 and ORF M in SRR10357372, ORF5 and ORF3 in
SRR10357373, and ORF N in SRR10357374). We ran JUMPER with the 35 most abundant discontinuous
edges in the segment graph and restrict our attention to transcripts identified by JUMPER that have more than
0.001 abundance as estimated by SALMON [3]].

JUMPER reconstructs transcripts corresponding to all canonical ORFs of MERS-CoV in all the samples,

except for ORF4b and ORF8b which are the only canonical ORFs that are not preceded by well supported
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TRS-B regions [17]. The most abundant transcript corresponds to ORF N (median abundance of 0.348),
in line with the observations for SARS-CoV-2, while the least abundant canonical transcript encodes for
protein E (median abundance of 0.0053). Figure shows, for each sample, the relative abundances of
each canonical transcript as well as the total abundances of all non-canonical transcripts. Firstly, we observe
that the abundance of each canonical transcript is consistent across the three samples. Secondly, we see
that all the three samples have high total abundance of non-canonical transcripts (median total abundance of
0.3908). Figure |C3b|shows a Venn diagram for the non-canonical transcripts present in the three samples.
We see out of the 25 distinct non-canonical transcripts, 7 are present in all the three samples and 14 are
present in at least two of the samples. Table [CI|shows the abundance of the 8 canonical transcripts present
in all the samples and the 14 non-canonical transcripts present in at least two samples. We will now describe
the most abundant non-canonical transcripts in each sample.

The most abundant non-canonical transcript in samples SRR10357372 and SRR10357373 is ‘NC8&’,
which has a single discontinuous edge from position 1317 (5’ end) to 29600 (3’ end). The abundance of this
transcript is 0.1019 in sample SRR10357372 and 0.1639 in sample SRR10357372, which is higher than all
the canonical transcripts in both the samples except the transcript corresponding to ORF N. The 5° end of the
discontinuous edge is in ORF1ab (nsp2 region) and the 3’ end is in ORF N. Interestingly the most abundant
non-canonical transcript in the third sample SRR10357374 is ‘NC12’°, which has a single discontinuous edge
with the same 3’ end of 29600 while the 5° end is at position 1297 (also in the nsp2 region of ORF1ab).
This transcript has abundance of 0.1486 in sample SRR10357374, higher than all the canonical transcripts
in SRR10357374 except the transcript corresponding to ORF N, and 0.0483 in sample SRR10357372. We
were not able to attribute the occurrence of transcripts NC8 and NC12 to matching motifs at the 5’ and 3’
ends of the discontinuous edges. Given the high abundance of these non-canonical transcripts in the sample,

further investigation is required to ascertain their function, or whether

C.6 Supplementary results figures

We have the following supplementary figures.

* Figure [C4]shows that JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances in

terms of F score, recall and precision while maintaining a modest running time.

* Figure shows that JUMPER outperforms SCALLOP and STRINGTIE for varying values of thresh-

olding parameter A.
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Transcript | Discontinuous Edges | SRR10357372 | SRR10357373 | SRR10357374
lab - 0.0195 0.0190 0.0213
S (59, 21402) 0.0251 0.0261 0.0284
3 (59, 25518) 0.0789 0.0840 0.0876
E (61, 27582) 0.0055 0.0049 0.0053 é
S
M (58, 27834) 0.0812 0.0699 0.08 §
5 (55, 26826) 0.0266 0.0261 0.0294
4a (59, 25840) 0.0237 0.0246 0.0241
N (53, 28536) 0.3483 0.3542 0.34
NCl1 (62, 28626) 0.0017 0.0016 0.0015
NC2 (65, 29106) 0.0043 0.0029 0.0026
NC3 (61, 29503) 0.0016 0.0014 0.0015
NC4 (61, 29582) 0.003 0.0027 0.0029
NC5 (1727, 28983) 0.016 0.0169 0.0198
NC6 (2343, 29204) 0.0736 0.1047 0.0575 =
NC7 (7120, 24104) 0.0086 0.0088 0.0087 é
S
NCS8 (1317, 29600) 0.1019 0.1639 - Z
NC9 (2333, 29203) 0.055 - 0.049 2
NC10 (03,650 0.0019 - 0.0017
(1727, 28983)
NCl11 (9, 21402 0.0011 - 0.0011
(24103, 27938)
NC12 (1297, 29600) 0.0483 - 0.1486
NC13 (64, 29105) 0.0011 - 0.001
NC14 (2333, 29150) - 0.0613 0.0363

Table C1: Abundance of 8 canonical transcript present in all three MERS-CoV samples and 14 non-canonical tran-
script present in more than 1 sample. The canonical and non-canonical transcripts with the highest abundance in each

sample are highlighted. Figure@ shows the Venn diagram of all the transcripts in the solution.
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Figure C4: JUMPER outperforms SCALLOP and STRINGTIE for all simulation instances in terms of F; score,
recall and precision while maintaining a modest running time. (a) F} score (b) recall, (c) precision and (d) time

taken by the three methods for the simulated instances.

* Figure [C6|shows that JUMPER produces better recall and precision when compared to SCALLOP and

STRINGTIE for every simulation instance (7, c).

* Figure [C7] shows that the core sequence observed in the reference genome potentially explaining a
non-canonical discontinuous transcription event, and the core sequence corresponding to transcript X

is conserved across Sarbecovirus species.
* Figure[C8|shows an example of a supporting read for a transcript with two discontinuous edges.

* Figure[CY|shows that transcript X is supported in both long-read and short-read samples deposited in
SRA.

* Figure shows the number of supporting reads with the 5° end mapping to the leader sequence in

the short and long read sequencing data.

* Figure shows the abundances of the predicted transcripts by JUMPER in two SARS-CoV-1 in-

fected samples.
* Table[C2] shows summary of the results from the simulations.

* Table [C3|describes 18 transcripts (including 9 canonical transcripts) detected from SARS-CoV-2 in-

fected samples with and without pre-treatment of ruxolitinib.
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Figure C5: JUMPER outperforms SCALLOP and STRINGTIE for varying values of thresholding parameter A.

(a) F1 score (b) recall, (c) precision and (d) time taken by the JUMPER for different values of A compared to SCALLOP

and STRINGTIE on the simulated instances. As expected, the recall value drops for increasing A while the precision

increases. We set the default value of A to 100 which incurs runtime comparable to SCALLOP while producing higher

recall and precision solutions.
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Figure C6: While all three methods return consistent results when generating technical sequencing replicates,

JUMPER produces better recall and precision when compared to SCALLOP and STRINGTIE for every simula-

tion instance (7, c). Varying simulation instances (7, c¢) correspond to distinct panels. Each panel shows the recall

and precision of the three methods for 5 sequencing experiments of the same simulated instance (7, c).
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SARS 2 isolate Wuhan-Hu-1 Sarbecovirus NC_045512
Bat coronavirus RaTG13 Sarbecovirus MN996532
Pangolin coronavirus isolate PCoV_GX-P5L Sarbecovirus MT@40335
Bat SARS-like coronavirus isolate Rs4237 Sarbecovirus KY417147
Bat SARS-like coronavirus isolate Rs4247 Sarbecovirus KY417148
Coronavirus BtRs-BetaCoV/YN2018D Sarbecovirus MK211378
Coronavirus BtRs-BetaCoV/YN2018A Sarbecovirus MK211375
Bat coronavirus isolate Anlong-112 Sarbecovirus KY770859
Bat SARS-like coronavirus isolate Rf4092 Sarbecovirus KY417145
Bat SARS CoV Rs672/2006 Sarbecovirus F]588686
Bat SARS-like coronavirus isolate Rs4231 Sarbecovirus KY417146
SARS coronavirus Tor2 Sarbecovirus NC_004718
Bat coronavirus strain 16B0133 Sarbecovirus KY938558
Coronavirus BtRs-BetaCoV/YN2018B Sarbecovirus MK211376
Bat SARS-like coronavirus isolate Rs4081 Sarbecovirus KY417143
UNVERIFIED: SARS-related coronavirus isolate F46 Sarbecovirus KU973692
Bat coronavirus isolate Jiyuan-84 Sarbecovirus KY770860
Bat SARS-like coronavirus isolate Rs7327 Sarbecovirus KY417151
Bat SARS-like coronavirus YNLF_31C Sarbecovirus KP886808
Bat SARS-like coronavirus WIV1 Sarbecovirus KF367457
Bat coronavirus (BtCoV/273/2005) Sarbecovirus DQ648856
Rhinolophus affinis coronavirus isolate LYRall Sarbecovirus KF569996
BtRs-BetaCoV/HuB2013 Sarbecovirus KJ473814
Bat SARS-like coronavirus isolate Rs4255 Sarbecovirus KY417149
Bat SARS coronavirus Rp3 Sarbecovirus DQ@71615
Coronavirus BtR1-BetaCoV/SC2018 Sarbecovirus MK211374
Bat SARS-like coronavirus isolate As6526 Sarbecovirus KY417142
SARS-like coronavirus WIV16 Sarbecovirus KT444582
Bat SARS coronavirus HKU3-7 Sarbecovirus GQ153542
Bat SARS-like coronavirus isolate bat-SL-CoVZ(C45 Sarbecovirus MG772933
Bat SARS coronavirus HKU3-1 Sarbecovirus DQ@©22305
Bat coronavirus (BtCoV/279/2005) Sarbecovirus DQ648857
Bat SARS-like coronavirus isolate bat-SL-CoVZXC21 Sarbecovirus MG772934
Severe acute respiratory syndrome-related coronavirus strain BtKY72 Sarbecovirus KY352407
Severe acute respiratory syndrome-related coronavirus strain BtKY72 Hibecovirus  NC_025217

(¢) Sequence logo of 11 Nobecoviruses, 27 Merbecoviruses and 36 Embecoviruses

Figure C7: The core sequence of transcript X is conserved within the Sarbecovirus subgenus but not in other
subgenera of the Betacoronavirus genus. (a) Core sequence for the transcript X and X’. (b) Sequence logo for the
positions 15780 to 15788 in SARS-CoV-2 genome built from the multiple sequence alignment of the leader sequence
and ORFlab of 34 Sarbecovirus and a Hibecovirus. (c) Sequence logo for positions 15780 to 15788 in SARS-CoV-2

genome built from multiple sequence alignment with the remaining subgenera of Betacoronaviruses.
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Figure C8: A schematic showing an example of a supporting read for a transcript 7 with o® (7;) = 2. Transcript
Ty is supported by o because 7(ry) = m(T1) and |6®(rq)| = |o®(T1)| = 2. Reads r1, r3 and r4 do not support T}

since |0®(r1)| < |[0®(T1)| and 7 (r3), 7 (ra) € m(T7). No reads support T% since [o®(r;)| < |o®(T%)] for all reads
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Figure C9: Transcript X has supporting reads in multiple independent publicly available samples of SARS-
CoV-2 infected cells on SRA. Distribution of number of (a) short-read and (b) long-read SRA samples with varying
proportion of leader-sequence spanning reads that support transcript X. All the short-read samples were aligned using
STAR [I5] while the long-read samples were aligned using minimap2 [18]. In this plot we only consider samples

with more than 100 reads that map to the leader-sequence (position 55 to 85 in the SARS-CoV-2 reference genome).
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Figure C10: Supporting phasing reads with 5’ end mapping to the leader sequence in short and long-read
sequencing samples of SARS-CoV-2 infected Vero cells [19]. Supporting phasing reads have at most one discontin-
uous edge with the 5° end occurring in the leader sequence (i.e. between positions 55 and 85) and the first occurrence
of ‘AUG’ downstream of the 3’ end position coinciding with the start codon of a known ORF. Supporting phasing
reads corresponding to ‘1ab’ start in the leader sequence but do not contain a discontinuous edge. Supporting phasing
reads corresponding to ‘N/A’ start in the leader sequence but have a 3’ end such that the first occurrence of ‘AUG’
downstream of the 3’ end position does not coincide with the start codon of any known ORFs. (a) Supporting phasing

reads in the short-read sequencing sample. (b) Supporting phasing reads in the long-read sequencing sample.
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Figure C11: JUMPER enables analysis of drug response of the virus in infected cells at the transcript level.

(a) A Venn diagram of recalled transcripts from sample with and without treatment of ruxolitinib and a bar plots
showing the number of samples containing each of the 18 common transcripts. Table [C3] described each of the 18
common transcripts. The transcripts are named based on the protein they yield, with V indicating presence of out of

frame deletions and A indicating in-frame deletions.
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Figure C12: Abundances of the canonical and non-canonical transcripts predicted by JUMPER are consistent
in the two SARS-CoV-1 infected samples (SRR194256 and SRR194257). JUMPER predicts 10 canonical and 3

non-canonical transcripts across the two samples.
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Simulation JUMPER SCALLOP STRINGTIE
TP TP TP
seed | rep | can | non-can FP FP FP
can | non-can can | non-can can | non-can
0 1 14 94 7 9 1 7 4 8 2 0 14
0 2 | 14 94 8 11 0 7 2 8 1 0 13
0 3 14 94 7 11 2 4 1 8 1 0 11
0 4 | 14 94 6 9 2 7 2 8 1 0 13
0 5 14 94 7 11 0 4 1 8 1 0 7
1 1 14 78 3 13 1 3 0 12 2 0 13
1 2 | 14 78 4 11 1 2 0 10 1 0 13
1 3 14 78 3 16 1 3 0 2 1 0 12
1 4 | 14 78 3 11 1 2 0 8 0 0 16
1 5 14 78 4 13 1 2 0 8 1 0 15
2 1 14 150 5 11 1 3 1 8 1 0 16
2 2 | 14 150 4 14 3 5 1 4 2 0 15
2 3 14 150 5 13 3 5 1 8 2 0 13
2 4 | 14 150 7 16 1 5 1 8 2 0 16
2 5 14 150 4 14 1 3 1 8 2 0 14
3 1 14 72 4 7 2 3 0 8 1 0 9
3 2 | 14 72 6 8 2 3 0 4 0 0 8
3 3 14 72 7 6 4 4 0 8 0 0 20
3 4 | 14 72 4 8 3 3 0 8 2 0 9
3 5 14 72 4 9 2 3 0 6 0 0 4
4 1 14 115 4 13 1 1 0 4 1 0 19
4 2 | 14 115 5 12 1 1 0 0 0 0 12
4 3 14 115 6 14 1 1 0 8 2 0 10
4 4 | 14 115 6 10 1 1 0 4 0 0 16
4 5 14 115 6 13 1 1 0 4 0 0 12

Table C2: Simulation results for the three methods JUMPER, SCALLOP and STRINGTIE. Each distinct value in
the column ‘seed’ is a unique instance of (7, c) and each distinct value in the column ‘rep’ is a unique sequencing
experiment for the given (7, ¢). (rep: replicate, can: canonical, non-can: non-canonical, TP: true positives, FP: false

positives)
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Transcript | Discontinuous Edges Description
lab - canonical transcript with no discontinuous edges
lab’ (23593, 23630) single discontinuous edge downstream of ORF1ab
S (65, 21552) single discontinuous edge from TRS-L to TRS-B of ORF S
ASI (65, 21552) single discontinuous edge from TRS-L to TRS-B of ORF S
(23593, 23630) and an in-frame 12 amino-acid deletion overlapping the furin cleavage site
ASI (65, 21552) single discontinuous edge from TRS-L to TRS-B of ORF S
(23593, 23615) and an in-frame 7 amino-acid deletion overlapping the furin cleavage site
3a-1 (65, 25381) single discontinuous edge from TRS-L to TRS-B of ORF3a
3a-2 (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF3a
E (69, 26237) single discontinuous edge from TRS-L to TRS-B of ORF E
M (64, 26468) single discontinuous edge from TRS-L to TRS-B of ORF M
(64, 26468) single discontinuous edge from TRS-L to TRS-B of ORF M
VM (26779, 26817) with an out of frame deletion with motifs ‘CAATGGCTT’ to ‘CATTGCTT’
(28525, 28577) and another downstream deletion within ORF N
6 (69, 27041) single discontinuous edge from TRS-L to TRS-B of ORF6
7a (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF7a
8 (65, 27884) single discontinuous edge from TRS-L to TRS-B of ORFS8
g (65, 27884) single discontinuous edge from TRS-L to TRS-B of ORF8
(28270, 28970) with a single deletion downstream of ORFS8
N-1 (64, 28255) single discontinuous edge from TRS-L to TRS-B of ORF N
N-2 (68, 28263) single discontinuous edge from TRS-L to TRS-B of ORF N
NC1 (6001, 27376) matching motif ‘AGAGCAACCAAT’ on the 5’ and 3’ ends of the jump
NC2 (731, 29307) matching motif ‘ATTTTCAA’ to ‘AATTTCAA’

Table C3: 18 transcripts (including 9 canonical transcripts) detected from SARS-CoV-2 infected A549 cell line sam-

ples with and without pre-treatment of ruxolitinib. Figure 5 in the main text shows the abundances of these transcripts

in the samples.
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