
Numerical Methods. 
We consider an up to three-component column of upwelling mantle, composed of typical mantle, 

mantle wallrock, and a vein of rising melt. In this 1-D column the solid mantle volume, upwelling 

rate, temperature, water content, and dry and wet solidus temperatures are dynamic functions of 

partial melting. 

Thermal model. The temperature calculation is based on the conservation of energy:  
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where T denotes temperature, 𝜅 thermal diffusivity, 𝑧 the vertical spatial coordinate and 𝑢$ the 

vertical velocity of upwelling mantle material (This simplification for uniform upward advective 

heat transport is an additional advantage of keeping the total upwelling flux of melt and solid 

constant within the column.). Here the heat source term 𝑄 is the latent heat that describes the 

energy consumed by the solid-to-melt phase change. The small temperature changes associated 

with the additional heat consumed by melting of wallrock due to its water equilibrium with 

adjacent rising melt are described below. 

Mass conservation. The mantle’s volume fraction will decrease due to the loss of material that 

becomes a fractional or dynamic increment of melt. As mass must be conserved in the 1D 

column:  
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where 𝑢$ is the velocity of the solid mantle, 𝑈+,# is the given velocity of the solid mantle at the 

initial depth of melting, -.%
-$

 is the 𝑖th mantle component’s melt productivity, 𝑉𝑜𝑙% is the 𝑖th 

mantle component’s solid volume. (Here we also use the simplest approximation that the density 

of the mantle, wallrock and melt are the same.) 

Fractional pressure-release melting. The dry solidus temperature for a mantle component is 

assumed to depend on its pressure and degree of depletion, which is the sum of three terms 

[Morgan, 2001]: 
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where 𝑇/0  is solidus temperature of the rock at surface pressure, -")
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 is its solidus-pressure 

dependence, -")
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 is its solidus-depletion (depletion=degree of partial melt extraction) dependence, 



𝑃 is its pressure and 𝐹 is the degree of depletion of the lithologic component. Here we are using 

the assumption that all mantle has the same dry peridotitic solidus as that used by Morgan [2001].) 

The wet solidus of the mantle component with water content 𝑋2!, is parameterized using the 

relation of Katz et al. [2003] 

𝑇/34# = 𝑇/-56 − ∆𝑇=𝑋2!,> (4) 

∆𝑇=𝑋2!,> = 𝛬 ∗ 𝑋2!,
7 (5) 

where 𝑋2!, is the water content in the ideal batch melt (wt.%), it can be calculated by dividing the 

water concentration in the solid (wt.%) by 0.01 (D value in the Katz et al. [2003]). Λ and 𝛾 are 

constant model parameters. 

Melting happens when the temperature of a mantle component exceeds its solidus 

temperature. We determine melt productivity following Morgan [2001]. The melt productivity of 

component 𝑖, in thermal but not chemical equilibrium with other components 𝑗 that each has a 

mass/volume fraction 𝑉𝑜𝑙8 is described by 
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where 𝛼  is the thermal expansion coefficient, 𝐶9  is specific heat, ∆𝑆 is the change in entropy 

associated with the solid-to-melt phase change, 𝑇 is temperature, 𝑇%/ is the solidus temperature of 

component 𝑖. The melt productivity per unit mass of component 𝑖, as a function of depth, can be 

written as 
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and the melt productivity of the mantle system (solid mantle + veins of melt) depends on the 

volume of solid component, see the equation 20 of Morgan [2001] 
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To get the melt production rate (𝑀𝑃𝑅) of the 1D column from the max depth 𝑧+,# of the 

model to the depth of 𝑧, we integrate the instantaneous melt productivity of the mantle system 

with respect to each depth increment 𝑑𝑧 
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where 𝑢$ is vertical upwelling rate of solid mantle, 𝜌 is density, 𝑔 is gravitational acceleration, 

and 𝑛𝑐 is the number of components (here 2). 

The change in temperature during melting over a decompression interval 𝑑𝑃 in fractional 

melting is discussed in Morgan [2001]: 
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Once mantle components melt, water will be strongly partitioned from solid into melt. We 

use a fractional melting equation to calculate the current water concentration left in a solid mantle 

component during its partial melting:  
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where 𝑋?/0 is the initial water concentration in the solid component at the current step,	𝑑𝐹 is its 

small degree change of melt depletion at this step, and 𝐷2!@ is the partition coefficient of water 

between this component solid and its melt. 

The effect of water depletion on the solidus temperature in the  !"%
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 term of the equation (6) 

is treated by a water “depletion” related part !"/
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added to the -"%
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 term of equations (6) and (10) when water is extracted during the melting of 

mantle component 𝑖: 
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where !"/
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 is the derivative of equation (5) with respect to 𝑋? , !D/
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 is the derivative of fractional 

melting equation with respect to current water depletion degree 𝐹? ,	𝑋/0  is the initial water 

concentration in solid, 𝑋?/ is the current water concentration in solid. 𝐷2!@ is the water partition 

coefficient. Water’s partition coefficient is assumed to be the same partition coefficient as that for 

the incompatible element Cerium, i.e ~0.01. 

Water exchange between wallrock and melt rising in adjacent veins. In order to simulate the 

exchange of water between vein melt and adjacent wallrock, we assume there exists a limiting vein 

fraction within the mantle. As long as the cumulative volume of melt generated by a certain depth 

does not exceed this threshold, the melt rising within veins will be assumed to be equal to the 

summed melt production beneath this depth. Otherwise, the melt volume within veins is capped at 

the limiting vein fraction (with melts rising more rapidly within these veins than their surrounding 

mantle). 

During decompression melting, water in the wallrock is assumed to be in equilibrium with a 

fraction of the melt rising in its adjacent vein — i.e. the water content of the wallrock will reflect 

a diffusive water equilibrium between the wallrock and a fraction of melt in its neighboring vein, 

due to their close proximity on a length scale where water diffusive transport is significant. The 

bulk of the rising mantle continues to melt by fractional or dynamic melting. Assuming water 

conservation and chemical equilibrium, the water concentration in the wallrock and vein melt is 

given 

by:
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where 𝑋E4%&
4F  and 𝑋KL

4F  is the water concentration of the melt in the vein and the wallrock after their 

water concentration reaches equilibrium; 𝑉𝑜𝑙E4%& and 𝑉𝑜𝑙KL is the mass/volume fraction of the 

melt in the vein and wallrock; 𝑋E4%& and 𝑋KL is the water concentration of the melt in the vein and 

wallrock after fractional melting process but before water equilibrium. 

Mantle wallrock will further melt after water is diffusively added from an adjacent melt-

filled vein. This additional water has diffusively migrated from the water-rich vein melt into its 

adjacent relatively water-poor wallrock, which will cause the solidus of the wallrock to decrease. 



In this case, mantle wallrock will experience enhanced partial melting relative to the bulk of its 

surrounding mantle that cannot diffusively equilibrate with a nearby vein of ascending more water-

rich melt. This will also lead to a local increase in the absorption of latent heat. The wallrock will 

lose some of this water during its additional increment of melt production.  

Conservation of energy also describes this process: 
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where 𝑉𝑜𝑙KL is the mass/volume fraction of wallrock; 	𝑑𝐹KL
&  is the new change in depletion for 

the wallrock due to the addition of water from the water-riched melt, which is unknown and needed 

to calculate; 𝐿 is the latent heat; 𝐶9 is specific heat; ∆𝑇 is the change of the system temperature: 

∆𝑇 = 	𝑇0 − 𝑇& (19) 

where 𝑇0 is the system temperature before melting, and 𝑇&	is the new system temperature after an 

increment of wallrock melting. Here ∆𝑇 also equals the change in wet solidus temperature of the 

wallrock:

∆𝑇 = 𝑇𝑠KL
34#5 − 𝑇𝑠KL

34#2 (20)

where 𝑇𝑠KL
34#5 is the wet solidus temperature of the wallrock before melting but after the addition 

of water, and 𝑇𝑠KL
34#2 is the new wet solidus temperature of the wallrock after its remelting. 𝑇𝑠3MHH34#2 

is equal to 𝑇& because the temperature of the system is equal to the solidus temperature of the 

wallrock at the end of the melting: 

𝑇& = 𝑇𝑠KL
34#2 (21) 

Combining the above equations, 𝑑𝐹3MHH&  can be solved by finding the root of the implicit 

equation below 
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where the change in depletion of the wallrock is 𝑑𝐹KL
& ,	and the new wet solidus temperature for 

the wallrock 𝑇𝑠KL
34#2 is determined by substituting the new depletion 𝐹& = 𝐹 + 𝑑𝐹KL

&  and current 

water concentration 𝑋?/ into the equations (3),(4),(5). And the new system’s temperature 𝑇& is 

equal to the new wet solidus temperature for the wallrock 𝑇𝑠KL
34#2 according to equation (21). 

The parameter values used here are summarized in Table 1. 

Table 1. List of used parameters 

Symbols Meaning Values Units 



𝑇/0 
solidus temperature of rock at 

surface pressure 
1151  ℃ 

𝑑𝑇/
𝑑𝑃  

 the solidus-pressure 

dependence 
71 ℃/𝐺𝑃𝑎 

𝑑𝑇/
𝑑𝐹  

the solidus-depletion 

dependence 
150  ℃ 

Λ Λ is constant for wet solidus 43 ℃	𝑤𝑡%=7	 

𝛾 𝛾 is constant for wet solidus 0.75 1 

𝜅 Thermal diffusivity 10=O m2/s 

𝐸M Activation energy 400 kJ/mol 

𝑉M Activation volume 0 m=P/mol 

𝜌 Mantle density 3300 kg/mP 

𝑔 Gravitational acceleration -9.81 m/sB 

𝑅 Ideal gas constant 8.314 𝐽	𝑚𝑜𝑙=)𝐾=) 

𝛼 Thermal expansion coefficient 3 × 10=Q ℃=) 

𝛽 
Coefficient for Fe-depletion 

buoyancy scale 
3 × 10=B 1 

𝐿/𝐶9 
Latent heat divided by specific 

heat 
600 𝐾/𝑘𝑔 
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