Numerical Methods.

We consider an up to three-component column of upwelling mantle, composed of typical mantle,
mantle wallrock, and a vein of rising melt. In this 1-D column the solid mantle volume, upwelling
rate, temperature, water content, and dry and wet solidus temperatures are dynamic functions of
partial melting.

Thermal model. The temperature calculation is based on the conservation of energy:
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where T denotes temperature, k thermal diffusivity, z the vertical spatial coordinate and u, the
vertical velocity of upwelling mantle material (This simplification for uniform upward advective
heat transport is an additional advantage of keeping the total upwelling flux of melt and solid
constant within the column.). Here the heat source term Q is the latent heat that describes the
energy consumed by the solid-to-melt phase change. The small temperature changes associated
with the additional heat consumed by melting of wallrock due to its water equilibrium with
adjacent rising melt are described below.

Mass conservation. The mantle’s volume fraction will decrease due to the loss of material that
becomes a fractional or dynamic increment of melt. As mass must be conserved in the 1D

column:
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where u, is the velocity of the solid mantle, U, is the given velocity of the solid mantle at the
initial depth of melting, % is the ith mantle component’s melt productivity, Vol; is the ith

mantle component’s solid volume. (Here we also use the simplest approximation that the density
of the mantle, wallrock and melt are the same.)
Fractional pressure-release melting. The dry solidus temperature for a mantle component is
assumed to depend on its pressure and degree of depletion, which is the sum of three terms
[Morgan, 2001]:
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where T, is solidus temperature of the rock at surface pressure, d—PS is its solidus-pressure

dependence, % is its solidus-depletion (depletion=degree of partial melt extraction) dependence,



P is its pressure and F is the degree of depletion of the lithologic component. Here we are using
the assumption that all mantle has the same dry peridotitic solidus as that used by Morgan [2001].)

The wet solidus of the mantle component with water content X Hyo is parameterized using the
relation of Katz et al. [2003]

Tsyer = TSdry - AT(XHzo) (4)

AT(Xy,o) = A+ X}, , (5)

where Xy, , is the water content in the ideal batch melt (wt.%), it can be calculated by dividing the

water concentration in the solid (wt.%) by 0.01 (D value in the Katz et al. [2003]). A and y are

constant model parameters.

Melting happens when the temperature of a mantle component exceeds its solidus

temperature. We determine melt productivity following Morgan [2001]. The melt productivity of

component i, in thermal but not chemical equilibrium with other components j that each has a

mass/volume fraction Vol; is described by
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where a is the thermal expansion coefficient, C,, is specific heat, AS is the change in entropy
associated with the solid-to-melt phase change, T is temperature, T} is the solidus temperature of
component i. The melt productivity per unit mass of component i, as a function of depth, can be

written as
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and the melt productivity of the mantle system (solid mantle + veins of melt) depends on the

volume of solid component, see the equation 20 of Morgan [2001]
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To get the melt production rate (MPR) of the 1D column from the max depth z,,; of the
model to the depth of z, we integrate the instantaneous melt productivity of the mantle system

with respect to each depth increment dz
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where u, is vertical upwelling rate of solid mantle, p is density, g is gravitational acceleration,
and nc is the number of components (here 2).
The change in temperature during melting over a decompression interval dP in fractional
melting is discussed in Morgan [2001]:
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Once mantle components melt, water will be strongly partitioned from solid into melt. We
use a fractional melting equation to calculate the current water concentration left in a solid mantle

component during its partial melting:
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where X2° is the initial water concentration in the solid component at the current step, dF is its

small degree change of melt depletion at this step, and Dy, is the partition coefficient of water

between this component solid and its melt.
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The effect of water depletion on the solidus temperature in the a—? term of the equation (6)
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aizio (modified after Hasenclever [2010]), which is

Cc

is treated by a water “depletion” related part

added to the % term of equations (6) and (10) when water is extracted during the melting of

mantle component i:
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where # is the derivative of equation (5) with respect to X, a—);c is the derivative of fractional
Cc Cc

melting equation with respect to current water depletion degree F., X5° is the initial water
concentration in solid, X¢ is the current water concentration in solid. Dy, ¢ is the water partition
coefficient. Water’s partition coefficient is assumed to be the same partition coefficient as that for

the incompatible element Cerium, i.e ~0.01.

Water exchange between wallrock and melt rising in adjacent veins. In order to simulate the

exchange of water between vein melt and adjacent wallrock, we assume there exists a limiting vein
fraction within the mantle. As long as the cumulative volume of melt generated by a certain depth
does not exceed this threshold, the melt rising within veins will be assumed to be equal to the
summed melt production beneath this depth. Otherwise, the melt volume within veins is capped at
the limiting vein fraction (with melts rising more rapidly within these veins than their surrounding

mantle).

During decompression melting, water in the wallrock is assumed to be in equilibrium with a
fraction of the melt rising in its adjacent vein — i.e. the water content of the wallrock will reflect
a diffusive water equilibrium between the wallrock and a fraction of melt in its neighboring vein,
due to their close proximity on a length scale where water diffusive transport is significant. The
bulk of the rising mantle continues to melt by fractional or dynamic melting. Assuming water

conservation and chemical equilibrium, the water concentration in the wallrock and vein melt is

given
by:
eq _ VolyeinXypeintVolwrXwr
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where X 5 Zin and X, ;,qR 1s the water concentration of the melt in the vein and the wallrock after their

water concentration reaches equilibrium; Vol,,.;, and Vol g is the mass/volume fraction of the
melt in the vein and wallrock; X,.;, and X, is the water concentration of the melt in the vein and
wallrock after fractional melting process but before water equilibrium.

Mantle wallrock will further melt after water is diffusively added from an adjacent melt-
filled vein. This additional water has diffusively migrated from the water-rich vein melt into its

adjacent relatively water-poor wallrock, which will cause the solidus of the wallrock to decrease.



In this case, mantle wallrock will experience enhanced partial melting relative to the bulk of its
surrounding mantle that cannot diffusively equilibrate with a nearby vein of ascending more water-
rich melt. This will also lead to a local increase in the absorption of latent heat. The wallrock will
lose some of this water during its additional increment of melt production.

Conservation of energy also describes this process:

VolyrdFygrL = C,AT (18)
where Vol is the mass/volume fraction of wallrock; dFy is the new change in depletion for
the wallrock due to the addition of water from the water-riched melt, which is unknown and needed
to calculate; L is the latent heat; C, is specific heat; AT is the change of the system temperature:

AT =T, —T, (19)
where T is the system temperature before melting, and T,, is the new system temperature after an
increment of wallrock melting. Here AT also equals the change in wet solidus temperature of the
wallrock:

AT = TsWwet® — Tswet™ (20)

where Tsn’,%to is the wet solidus temperature of the wallrock before melting but after the addition

of water, and Ts}et" is the new wet solidus temperature of the wallrock after its remelting. T's/¢5"

is equal to T;, because the temperature of the system is equal to the solidus temperature of the
wallrock at the end of the melting:
T, = Tspet" (21)
Combining the above equations, dF;;,; can be solved by finding the root of the implicit
equation below
VolyrdFyrL = C,(To — Tsi& (dFiyr)) (22)
where the change in depletion of the wallrock is d Fjy;, and the new wet solidus temperature for
the wallrock Tsiyet" is determined by substituting the new depletion F, = F + dFj}, and current

water concentration X2 into the equations (3),(4),(5). And the new system’s temperature T}, is

equal to the new wet solidus temperature for the wallrock TsWet" according to equation (21).

The parameter values used here are summarized in Table 1.

Table 1. List of used parameters

Symbols Meaning Values Units




solidus temperature of rock at
Tso 1151 °C
surface pressure

drT, the solidus-pressure - °C/GPa
dp dependence
dT. the solidus-depletion
d; dependence 130 «
A A is constant for wet solidus 43 Cwt%™Y
y y is constant for wet solidus 0.75 1
K Thermal diffusivity 10°¢ m?/s
E, Activation energy 400 k] /mol
V, Activation volume 0 m~3/mol
p Mantle density 3300 kg/m3
g Gravitational acceleration -9.81 m/s?
R Ideal gas constant 8.314 Jmol™ 1K1
a Thermal expansion coefficient 3x107° °c1

Coefficient for Fe-depletion
B 3x 1072 1
buoyancy scale

Latent heat divided by specific
L/C, A 600 K/kg
eat
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