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1 Simulations details

Transitions can be explained using a simple multi-equilibrium ecological model, where each equilibrium consists of a small number of
microbe strains. The Generalized Lotka-Volterra Model (GLVM)[1, 2, 3, 4, 5] offers a relatively straightforward way to describe such
dynamics, and has recently been shown[4] to be a generic framework that captures the essential features of many more complex models.
To account for transitions between equilibrium states, we introduced strain-specific stochastic variations in the growth rates, driven by
random environmental fluctuations. A similar approach to microbiome dynamics was used in [6, 7, 8].

Specifically, we consider a community of S microbes, the abundance of each is given by ni, where the index i runs from 1 to S. The
dynamics of the i-th microbe is govern by the equation,

dni

dt
= ni

1 − ni −
∑
j ̸=i

αi,jnj

 + λi + σeηi(t)ni. (1)

Here, the interaction matrix term αi,j corresponds to the pressure put by microbe j on microbe i. For a given abundance of microbe
j, The larger αi,j is, the larger is the suffering of i from competition with j. λi is the rate by which new immigrants reinforce the i-th
population, and the σe term represents the stochasticity associated with environmental variations: ηi(t) is a white noise process, so the
growth rate of each microbe fluctuates erratically in time.

Additional elements can be incorporated into the model to enhance its realism, such as varying carrying capacities, species-specific
growth rates, or Holling-type response functions. However, it was recently demonstrated that the core dynamics and their primary
phases are fully captured by the simple model (1) [4]. Furthermore, as long as λ > 0, the results remain unchanged for different values
of λ. Accordingly, we follow recent literature [2] and set λ = 10−10 (uniform across all i). The values of αi,j were randomly drawn from
a normal distribution with mean α and variance σ2.

In the absence of stochasticity (σe = 0), The community splits into two types of microbes: those whose abundance is much greater
than the square root of λ, and those whose abundance is smaller, approximately equal to λ. The microbes of the first type are ”residents”
forming a stable clique. The microbes of the second type are transients, unable to invade the resident clique. Competition with the
residents would lead to their extinction, if not for the weak inward migration at a rate of λ. This behavior is demonstrated in Figure
1(A).

This division between a clique of species with high abundance and a collection of transients is not necessarily unique [2]. When
interactions between microbes are relatively strong, as can be expected in cases of high niche overlap, alternative stable states emerge.
Stochasticity allows the system to transition between these alternative states [1], as demonstrated in Figure 1(B).
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Figure 1: Community dynamics with and without stochasticity.A. shows the dynamics of S = 100 competing microbe strains as
described by Eq. (1), with no stochasticity (σe = 0). Each line represents the abundance of a single strain, starting from random
initial conditions. The community rapidly settles into a state where a few resident microbes, with large abundances, outcompete all
other strains, which persist only due to immigration. B. presents the time evolution of the same community with identical parameters,
but now stochasticity has been introduced. The dynamics become more erratic, and a regime shift is clearly observable. The model
parameters are α = 0.65, σ = 0.25, λ = 10−10, and (for panel B) σe = 0.7. The interaction matrix is symmetric, i.e., αi,j = αj,i. Eq.
(1) was integrated numerically using the Euler method with dt = 0.01. For the stochastic case, the Stratonovich integration procedure
was implemented.

Table 1: Acronym table

Acronym Meaning
FMT Fecal Microbiota Transplantation
RSM Regime Shifting Microbes
WGS Whole-Genome Sequencing
QSS Quasi-Steady States
BIC Bayesian Information Criterion
LV Lotka-Volterra

RPT Reported Probiotic Taxa
IFMT Influential FMT
SCC Spearman Correlation Coefficient
LR Logistic Regression
RF Random Forest

AUC Area Under the Receiver Operating Characteristic Curve
S.D. Standard Deviation

ANOVA Analysis of Variance
NEC Necrotizing Enterocolitis
IBD Inflammatory Bowel Disease
ARD Automatic Relevance Determination
GDM Gestational Diabetes
ML Machine Learning
SVR Support Vector Machine Regression
RBF Radial Basis Function

LSTM Long Short-Term Memory
iMic iMage Microbiome
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Table 2: All dataset details

Dataset Phenotype
Number of
samples

Max number of
time points

Avg. number of
time points

16S vs.
WGS

Reference

GDM GDM 655 3 3 16S [9]
PRJNA730851 Infant allergy 954 19 6 16S [10]
PRJEB14529 Early dynamics 2 807 43 18 16S [11]
PRJEB6456 Early dynamics 1 400 4 4 WGS [12]

PRJNA1130109 Obesity 203 5 4 WGS
SRA accession

PRJNA1130109
PRJEB39500 T2D 202 3 2 WGS [13]

PRJNA345144 Eczema 646 5 3 WGS [14]
PRJNA290729 Fatty liver 92 6 6 WGS [15]

PRJNA273761 NEC 60 9 6 WGS
SRA accession
PRJNA273761

PRJNA301903 Preterm infants 510 20 6 WGS
SRA accession
PRJNA301903

PRJNA395569 IBDMDB 612 18 3 WGS [16]
PRJNA510445 CF 166 16 2 WGS [17]
PRJNA806984 Healthy 207 6 2 WGS [18]

Table 3: Statistical tests on distance distributions between each two consecutive samples. The table includes results for: the BIC and
F-test comparing bimodal to unimodal and three-modal distributions (Bimodal or multimodal > 3). Host sample distribution between
Gaussians is measured by the fraction of host samples in more than one Gaussian (Host ratio between Gaussians). Kolmogorov-Smirnov
test comparing time distributions across different Gaussians (Time distributions across Gaussians). Phenotype Chi-square test results
(Phenotype Chi-square).

Dataset Phenotype
Bimodal or multimodal

(> 3)
Host ratio

between Gaussians
Time distributions
across Gaussians

Phenotype
Chi-square

GDM GDM Multimodal 0.07 n.s n.s
PRJNA730851 Infant allergy Multimodal 0.66 n.s Not available
PRJEB14529 Early dynamics 2 Bimodal 1 n.s Only controls
PRJEB6456 Early dynamics 1 Bimodal 0.69 n.s n.s

PRJNA1130109 Obesity Bimodal 0.7 n.s n.s
PRJEB39500 T2D Bimodal 0.06 n.s significant

PRJNA345144 Eczema Bimodal 0.55 n.s n.s
PRJNA290729 Fatty liver Bimodal 0.75 n.s significant
PRJNA273761 NEC Multimodal 0.67 n.s Not available
PRJNA301903 Preterm infants Multimodal 0.58 n.s Not available
PRJNA395569 IBDMDB Bimodal 0.58 n.s significant
PRJNA510445 CF Bimodal 0.09 n.s Not available
PRJNA806984 Healthy Bimodal 0.13 n.s Only controls
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Table 5: Characteristics of all published human to human datasets used for defining the influential taxa within FMT (IFMT).

Accession
number

Disease Abx
Sample
size FMT

16S
region

Reference

ERP021216 CDI T 86 20 V4 [123]
PRJDB4959 IBD F 28 10 V1V2 [124]

PRJNA221789 CDI T 20 10 V1-V3 [125]
PRJNA238042 CDI T 22 11 V3-V5 [126]
PRJNA238486 CDI T 23 3 V6 [127]
PRJNA380944 IBD T 83 21 V4 [128]
PRJNA412501 IBD T 52 19 V3V4 [129]
PRJNA428898 IBD F 35 9 V4V5 [130]
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Table 6: Gut colonization data of ingested Lactobacillus and Bifidobacterium strains in the gut of infants or mother–infant pairs. Taxa
that appear in the top 5th percentile of S.D. people are highlighted in blue.

Species Strain
Persistence time
during washout

period
Strain-specific

L. rhamnosus 19070-2, GG, DR20, LC705 [< 5–11 days, > 21 days] Yes
L. rhamnosus GG [> 6 months, 0–18 months] NA

L. reuteri

DSM 12246,
108,

47 (R2LC),
ATCC PTA 6475,

DSM 17938,
ATCC 55730

[< 1 days, > 28 days] Yes

L. casei

CHCC 3137,
LC10,

Shirota,
136,
98,
271

, Lcr35

[< 1 days, > 3 weeks] Yes

L. casei GG > 2 weeks NA

L. plantarum

LPT,
283,
299,
299v

[< 1 days, > 11 days] Yes

L. plantarum ATCC 20195 > 6 months NA

L. crispatus
M247,
MU5

[< 8 days, > 8 days] Yes

L. delbrueckii CHCC 2329 < 5 days NA
L. paracasei IMPC 2.1 < 7 days NA

B. longum
AH1206,
SBT2928

[> 6–30 days, > 6 months] NA

B. infantis NA < 3 weeks NA
B. lactis NA > 3 weeks NA

L. salivarius
132,
280,

UCC118
[< 1 days, 3 weeks] NA

L. acidophilus DDS-1 < 8 days NA
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Figure 2: Histograms of microbiota distance between consecutive time points across different cohorts (A-M). These histograms represent
the distribution of microbiota distances measured between two successive time points for each cohort, providing insights into how
microbiota compositions change over time within each group. N, O. Histograms of simulated microbiota distance between consecutive
time points across a simulation with no disturbance (N) and a simulation with disturbance (O).
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Figure 3: The species microbiome system exhibits generic features, such as TOP (left) and DTN (right). Each black line represents a
separate study. The red lines represent the simulation, while the blue line in the left plot depicts the regression line based on all points
from all studies.
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Figure 4: Probability to change distribution over the different cohorts (black) and the simulation (red) analyzed at the strain-level.
P(change) was measured by the P (011) probability, which represents the likelihood of a taxon that is absent at a certain time step to
appear in the next step and remain in the subsequent one. This is divided by the P (01X) probability, representing the likelihood of a
taxon appearing at a time step when it was not previously present in the sample.
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Figure 5: Probability to change distribution over the different cohorts (black) and the simulation (red) analyzed at the species-level.
P(Change) was measured by the P (011) probability, which represents the likelihood of a taxon that is absent at a certain time step to
appear in the next step and remain in the subsequent one. This is divided by the P (01X) probability, representing the likelihood of a
taxon appearing at a time step when it was not previously present in the sample.

12



Figure 6: Visuaization of the different microbial features divided to the 3 groups of abundance, fluctuation and centrality.

13



Figure 7: Prediction of RSM using non-log normalized microbiome data, demonstrating consistent performance across different models
and cohorts. A-C. ROC curves show the predictive accuracy of RSM across various cohorts using three models: A depicts results
from the LR model, B from the RF model, and C from XGBOOST. D-F. Patchy features emerge as the most informative predictors.
This is evident in the LR coefficients (D), as well as the feature importance (FI) scores for RF (E) and XGBOOST (F). The results
highlight the robustness of patchy microbial features in predicting regime shifts across multiple models. The stars represent the p-values
of t-tests between the fluctuating features (S.D. time and S.D. people) vs. the highly abundant features (average and median) and the
central features (in-degree, out-degree, betweenness and closeness), such that * for p − value < 0.05, ** for p − value < 0.01, *** for
p− value < 0.001 and **** for p− value < 0.0001.
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Figure 8: Overall average SCC between predicted and actual taxon differences over time across models. This plot shows the overall
average Spearman correlation coefficient (SCC) between the differences predicted for each taxon and the real observed differences over
time, as a function of the model used for prediction. The best correlations were achieved using the Lasso model (blue).
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Figure 9: Microbial features accurately predict RSM (species), primarily through fluctuating microbes. A. ROC AUCs for predicting
RSM taxa (colonization success measured by high P (Change)) using the LR model across 10 WGS cohorts (black) and in a simulation
(red). B. Comparison of prediction performance using only fluctuating features (blue) versus all features (black). Each point represents
the average AUC from the test set of a different study. No significant difference is observed between models using all features and those
using fluctuating measures alone. C-I. The most informative features for predicting RSM capture variability and define fluctuating
taxa, consistently performing well across various RSM definitions and models. These features include predictions of taxa with high
likelihood to colonize (light grey C-E), RPT (pink F-H), or influential FMT (yellow I-K) across different models, including LR models
(C,F,I), RF models (D,G,J), and XGBOOST models (E,H,K). Feature contributions are measured by coefficients in LR models and
feature importance (FI) in RF and XGBOOST models. Blue features consistently show significantly higher positive contributions across
all tasks. Stars indicate p-values from paired t-tests comparing blue features with orange and green features such that *-p < 0.05,
**-p < 0.01, ***-p < 0.001.
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Figure 10: Taxa fluctuation (blue) emerged as the most influential factor contributing to the predictive accuracy of identifying RSM
taxa across multiple definitions and models. These include using a fixed cutoff of 0.8, where taxa with a probability to change above this
threshold are classified as changing ME taxa (A-C), or selecting the top percentile of taxa (D-F). Additionally, continuous prediction
tasks were explored, such as predicting the probability of change itself (G-H), or the Euclidean distance between RSM taxa and other
taxa. This analysis was applied at the strain-level only to the WGS cohorts.
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Figure 11: Taxa dynamics (blue) emerged as the most influential factors contributing to the predictive accuracy of identifying RSM
taxa across multiple definitions and models. These include using a fixed cutoff of 0.8, where taxa with a probability to change above this
threshold are classified as changing ME taxa (A-C), or selecting the top percentile of taxa (D-F). Additionally, continuous prediction
tasks were explored, such as predicting the probability of change itself (G-H), or the Euclidean distance between changing ME taxa
and other taxa. This analysis was applied at the species-level both to WGS and 16S cohorts.
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Figure 12: Spearman Correlation Coefficients (SCCs) between the probability to change and various taxa characteristics: average
abundance (orange), dynamics (standard deviation of time and population in blue), and interaction network metrics (such as Fiedler
vector, in-degree, out-degree, betweenness centrality, and closeness centrality in green) across different dynamic cohorts. Notably, the
highest correlations were observed with taxa dynamics. This analysis was applied at the strain-level only to the WGS cohorts.

Figure 13: Spearman Correlation Coefficients (SCCs) between the probability to change and various taxa characteristics: average
abundance (orange), dynamics (standard deviation of time and population in blue), and interaction network metrics (such as Fiedler
vector, in-degree, out-degree, betweenness centrality, and closeness centrality in green) across different dynamic cohorts. Notably, the
highest correlations were observed with taxa dynamics. This analysis was applied at the species-level both to WGS and 16S cohorts.
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Figure 14: All ROC curves over different tasks and different models. A-C. ROC curves of predicting changing ME taxa by LR (A), RF
(B), and XGBOOST (C). D-F. ROC curves of predicting RPT taxa by LR (D), RF (E), and XGBOOST (F). G-I. ROC curves of
predicting dominant within FMT taxa by LR (G), RF (H), and XGBOOST (I).The dotted line represents random performance with
an AUC of 0.5. Different line styles indicate the average ROC curves for different cohorts, and the standard deviation across runs is
shown as a shaded region. This analysis was applied at the strain-level only to the WGS cohorts.
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Figure 15: All ROC curves over different tasks and different models. A-C. ROC curves of predicting changing ME taxa by LR (A), RF
(B), and XGBOOST (C). D-F. ROC curves of predicting RPT taxa by LR (D), RF (E), and XGBOOST (F). G-I. ROC curves of
predicting dominant within FMT taxa by LR (G), RF (H), and XGBOOST (I).The dotted line represents random performance with
an AUC of 0.5. Different line styles indicate the average ROC curves for different cohorts, and the standard deviation across runs is
shown as a shaded region. This analysis was applied at the strain-level only to the WGS cohorts.
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Figure 16: Variability shows a positive correlation with probiotics persistence times. The scatter plots with the black trend lines depict
the relationships between probiotics’ persistence times and various microbiome attributes such as frequency (orange), patchy (blue),
and centrality (green). Each shape represents another dataset. This analysis was applied only to the WGS cohorts at the strain-level.
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Figure 17: Variability shows a positive correlation with probiotics persistence times. The scatter plots with the black trend lines depict
the relationships between probiotics’ persistence times and various microbiome attributes such as frequency (orange), patchy (blue),
and centrality (green). Each shape represents another dataset. This analysis was applied both to the WGS and 16S cohorts at the
species-level.
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Figure 18: List of fluctuating based on std time, consistent in at least three studies and within the top 5th percentile. The bar plots
represent the average S.D. people score of the taxa (bottom x-axis), while the dots represent the consistency of fluctuation as a fraction
of the studies in which it ranks in the top percentile of all studies it appears in (top x-axis). Dark pink bars correspond to taxa already
known as probiotics (RPT), light pink bars represent taxa identified as next-generation probiotics, and blue bars indicate newly identified
taxa.

Figure 19: Spearman correlation heatmaps of microbial features at the strain level across T2D, Eczema, early dynamic 1 and
obesity cohorts. Below the diagonal, statistical correlation values are shown, with significant correlations highlighted by a black border.
Above the diagonal, the corresponding p-values are displayed to indicate the strength of the correlations.
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Figure 20: Spearman correlation heatmaps of microbial features at the strain level across NEC, Fatty liver, IBDMDB and Preterm
infants cohorts. Below the diagonal, statistical correlation values are shown, with significant correlations highlighted by a black border.
Above the diagonal, the corresponding p-values are displayed to indicate the strength of the correlations.
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Figure 21: Spearman correlation heatmaps of microbial features at the strain level across CF, Healthy cohorts. Below the diagonal,
statistical correlation values are shown, with significant correlations highlighted by a black border. Above the diagonal, the corresponding
p-values are displayed to indicate the strength of the correlations.
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Figure 22: Spearman correlation heatmaps of microbial features at the species level across GDM, Infant allergy and Early
dynamics 2 cohorts. Below the diagonal, statistical correlation values are shown, with significant correlations highlighted by a black
border. Above the diagonal, the corresponding p-values are displayed to indicate the strength of the correlations.
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Figure 23: Spearman correlation heatmaps of microbial features species level across T2D, Eczema, early dynamic 1 and obesity
cohorts. Below the diagonal, statistical correlation values are shown, with significant correlations highlighted by a black border. Above
the diagonal, the corresponding p-values are displayed to indicate the strength of the correlations.
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Figure 24: Spearman correlation heatmaps of microbial features species level across NEC, Fatty liver, IBDMDB and Preterm
infants cohorts. Below the diagonal, statistical correlation values are shown, with significant correlations highlighted by a black border.
Above the diagonal, the corresponding p-values are displayed to indicate the strength of the correlations.
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Figure 25: Spearman correlation heatmaps of microbial features species level across CF and Healthy cohorts. Below the diagonal,
statistical correlation values are shown, with significant correlations highlighted by a black border. Above the diagonal, the corresponding
p-values are displayed to indicate the strength of the correlations.
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Figure 26: The S.D. over the host alone suffices as an RSM predictor. Swarm plot of average AUCs across 10 WGS studies, where
each point represents the average AUC of a single study. Grey dots indicate results from logistic regression (LR) using all nine features,
central blue dots show results from LR using only fluctuating features (S.D. time and S.D. people), and right blue dots show AUCs
based solely on the S.D. people feature. No significant differences were observed between the groups
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Figure 27: All 0, 1, X distributions over the different cohorts. The red line represents the cutoff of 5 samples, such that taxa with less
than 5 appearances in the whole cohort were removed from the analysis. This analysis was applied at the species-level both to WGS
and 16S cohorts
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Figure 28: All 0, 1, X distributions over the different cohorts. The red line represents the cutoff of 5 samples, such that taxa with less
than 5 appearances in the whole cohort were removed from the analysis. This analysis was applied at the species-level both to WGS
and 16S cohorts
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