

1 **Supplementary material**

2

3 **Table S1.** Summary of the experimental conditions, the measured factor, and the F-tests p-
 4 value assessing the alignment of experimental rhythmicity with the 24-hour cosinor model
 5 calculation.

Individual serial number	Experiment	Type of measurement	P-value	Color code
1'	24-hours – baseline- no stimulus	Normalized siphon opening	0.008	Blue-dashed
2'	24-hours – baseline- no stimulus	Normalized siphon opening	0.04	Green-dashed
3'	24-hours – baseline- no stimulus	Normalized siphon opening	-	Gray
5'	24-hours – baseline- no stimulus	Normalized siphon opening	0.51	Orange
6'	24-hours – baseline- no stimulus	Normalized siphon opening	0.0004	Black-dashed
8'	24-hours – baseline- no stimulus	Normalized siphon opening	2*10 ⁻⁵	Cyan-dashed
9'	24-hours – baseline- no stimulus	Normalized siphon opening	2.86*10 ⁻⁷	Red-dashed
4	24-hours stimulus every 2 hours	Normalized siphon opening	1.9*10 ⁻⁵	Blue
5	24-hours stimulus every 2 hours	Normalized siphon opening	0.02	Black
6	24-hours stimulus every 2 hours	Normalized siphon opening	4.76*10 ⁻⁵	Green
7	24-hours stimulus every 2 hours	Normalized siphon opening	0.7	Orange
8	24-hours stimulus every 2 hours	Normalized siphon opening	1.68*10 ⁻⁵	Cyan
9	24-hours stimulus every 2 hours	Normalized siphon opening	-	-
10	24-hours stimulus every 2 hours	Normalized siphon opening	-	-
4	Stimulation every two hours	Recovery time	0.3	Blue
5	Stimulation every two hours	Recovery time	0.007	Black
6	Stimulation every two hours	Recovery time	4*10 ⁻⁴	Green
7	Stimulation every two hours	Recovery time	0.64	Orange
8	Stimulation every two hours	Recovery time	0.9	Cyan

6	9	Stimulation every two hours	Recovery time	0.005	Purple
7	10	Stimulation every two hours	Recovery time	-	Pink
8	4	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	0.8	Blue
9	5	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	0.12	Black
10	6	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	0.22	Green
11	7	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	0.7	Orange
12	8	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	0.9	Cyan
13	9	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	-	-
14	10	Stimulation every two hours	Electrophysiology (activity in 200 seconds)	-	-

17

18

19

20 **Table S2.** Summary of the experimental conditions and the p-value for each spike type
 21 rhythmicity alignment with the 24-hour cosinor model calculation. Two values are presented
 22 when the experiment was run twice during separate 24-hour periods.

Individual serial number	Experiment	type 1	type 2	type 3	type 4	Collection date	Measurement starting date
1	Free running	0.09, 0.19	0.09, 0.16	0.08, 0.18	0.006, 1.6*10⁻⁶	25.08.22	29.08.22
2	Free running	6*10⁻⁷ , 0.47	0.52, 046	0.009 , 0.88	0.01 , 0.82	25.08.22	01.09.22
3	Free running	0.04 , 0.65	0.56, 0.03	0.01, 0.008	0.66, 0.85	25.08.22	08.09.22
4	24-hours	0.009	9*10⁻⁵	0.0013	0.2	30.04.23	03.05.23
5	24-hours	0.61	0.06	0.27	0.17	30.04.23	07.05.23
6	24-hours	0.004	0.002	1.4*10⁻⁵	0.0012	30.04.23	08.05.23
7	24-hours	0.002	0.003	0.0009	0.004	30.04.23	09.05.23
8	24-hours	0.21	0.04	0.04	0.1	30.04.23	10.05.23
9	24-hours	0.62	0.72	0.4	0.91	30.04.23	11.05.23
10	24-hours	0.004	0.02	0.5	0.008	30.04.23	14.05.23

23

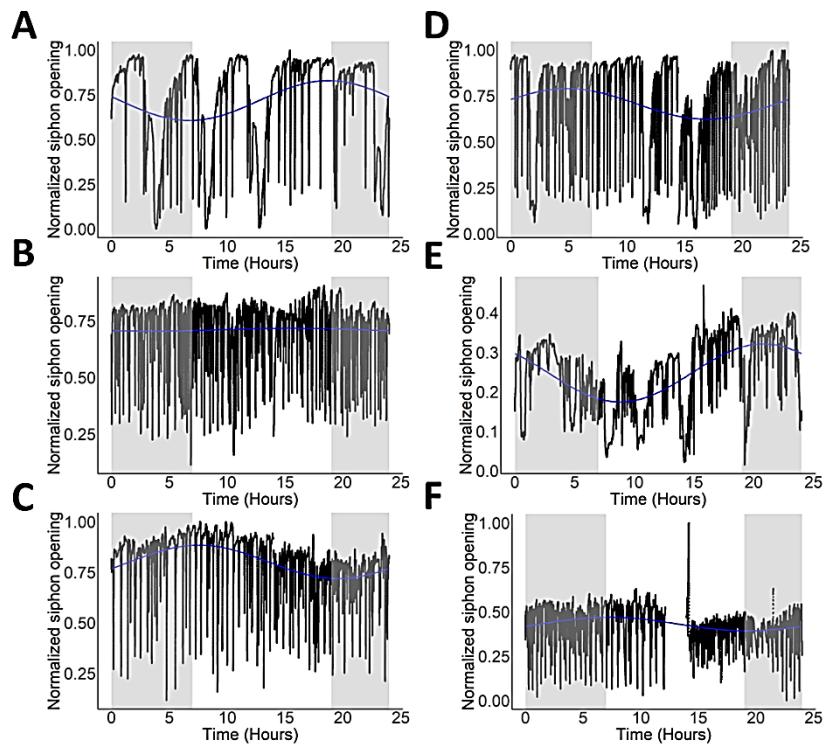
24

25 **Table S3.** BLAST analysis of *Styela clava* candidate clock-gene homologs. Highly
 26 similar hits were retrieved with MegaBLAST, while more divergent hits were retrieved
 27 with Discontiguous MegaBLAST (BLASTn). Hits with E-value > 1×10⁻⁵ or query
 28 coverage < 20 % were excluded as below our biological significance thresholds.

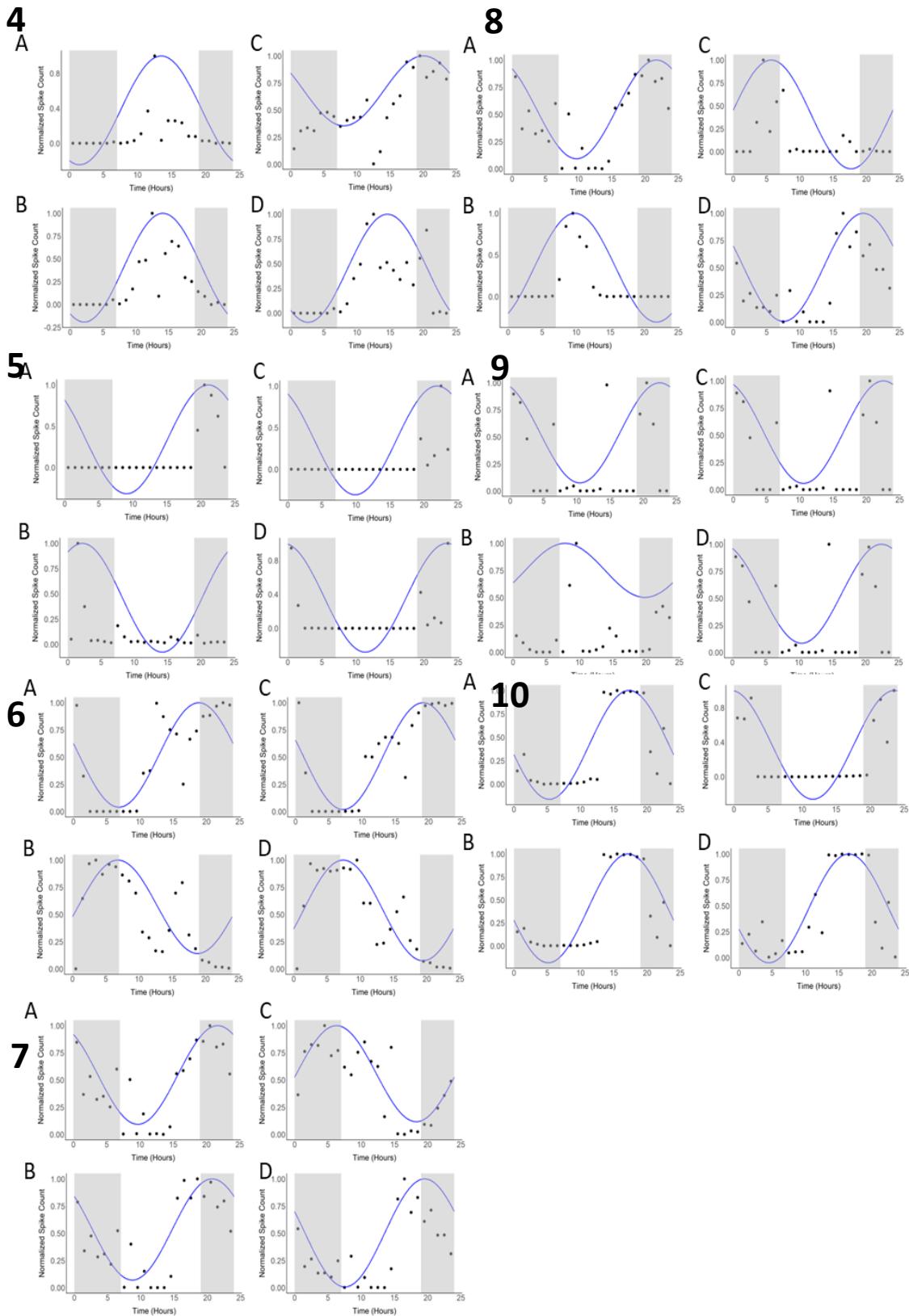
Gene Name	Source	Level of BLAST	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Comments
Casein Kinase I epsilon	Ciona genome	More dissimilar sequences (discontiguous megablast)	737	737	27%	0	78.17%	2216	The genes with the highest similarity to the human sequence
E4BP4			49.1	49.1	8%	1.00E-08	71.28%	3616	
FWD1			870	870	55%	0	74.25%	2549	
HLF			58.1	58.1	9%	4.00E-11	66.49%	3170	
rev-erb			56.3	56.3	2%	2.00E-10	75.64%	2676	to LOC120325544
ROR-A			215	336	33%	1.00E-58	73.00%	3791	
RXR			372	372	50%	5.00E-106	68.33%	4312	
BMAL1	Human genome	N/A							
BMAL2									
CLOCK									
CRY1									
CRY2									
PER1									
PER2									
PER3									

29

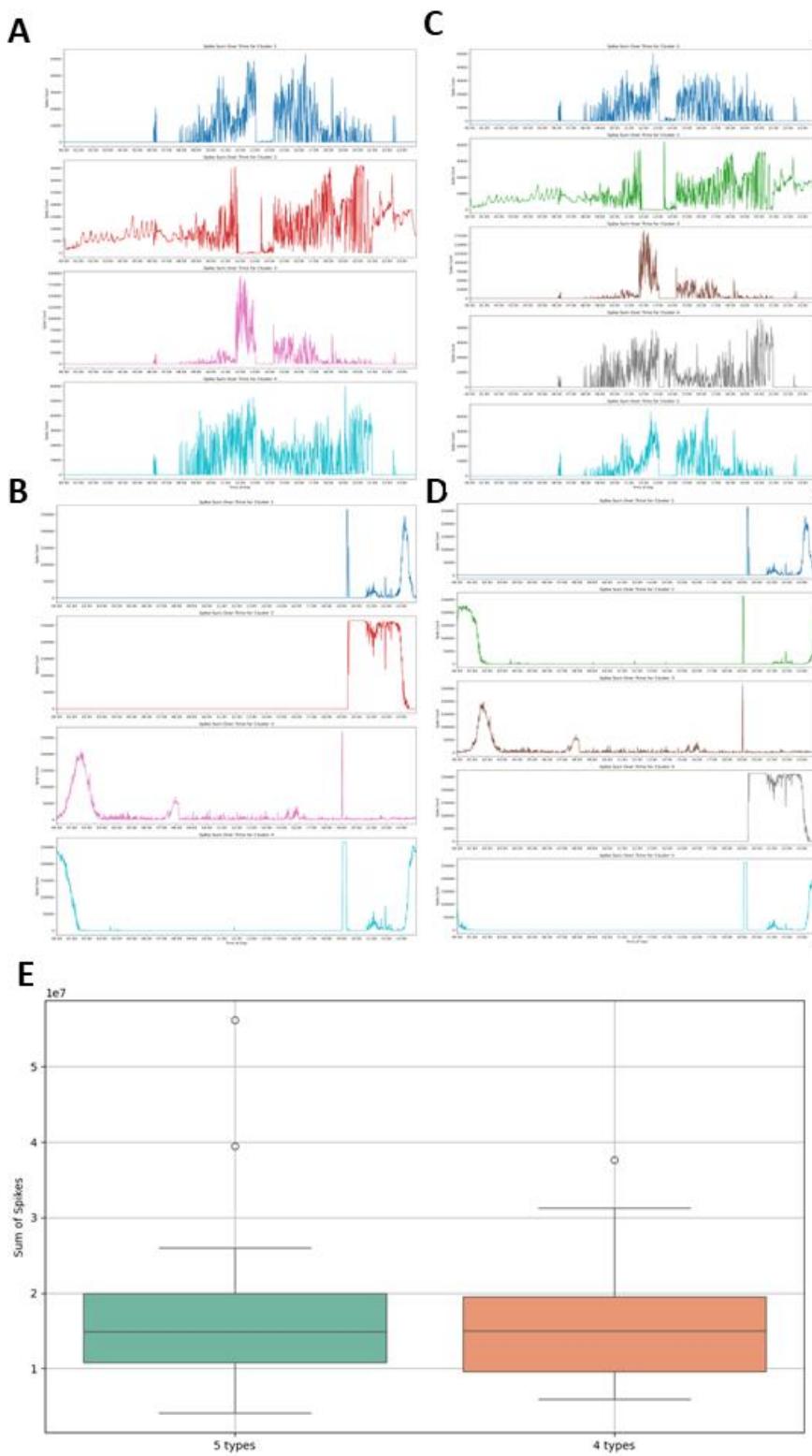
30


31 **Video S1.** An example of stimulating *S. plicata* while recording behavior and
32 electrophysiology (also be accessed via the following link:
33 <https://www.youtube.com/embed/IFIwt42Edg8?feature=oembed>).

34


35
36

37 **Video S2. Two-minute (downsampled) recording of siphon movement and**
38 **tracking.** The video was part of the baseline behavior recordings, and includes no
39 tactile stimulation in the experiment. The video includes a light transition, during
40 which no behavioral response is observed (also be accessed via the following link:
41 <https://youtu.be/MCawKs2iVSs>).


42

43 **Figure S1. Cosinor fitting for behavioral analysis.** Individuals normalized siphon
 44 opening of 1'-2',5'-9' are presented (black). Cosinor fitting is presented in blue. Gray
 45 shading indicates the night period
 46

47

48 **Figure S2. Cosinor fitting for spike analysis 24-hours.** Individuals 4-10 are
 49 presented with each point represents 1 hour bin and each panel A-D represents spike
 50 type 1-4 respectively. Gray shading indicates the night period

51

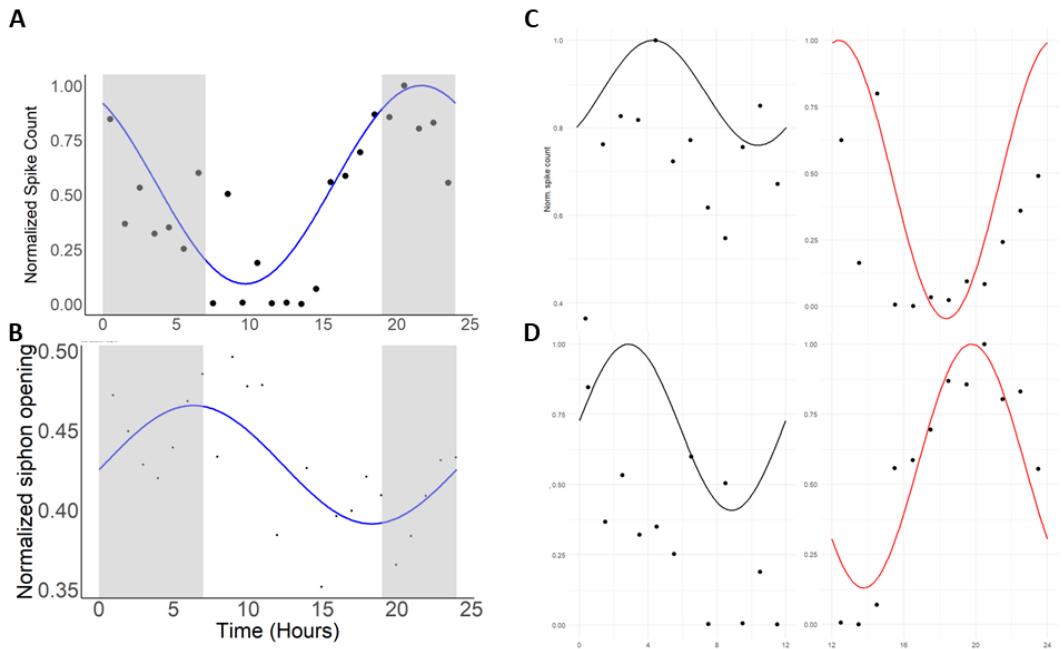
52

Figure S3. Comparison of raw spike counts using four- and five-type classifications. A&C): Spike count data from animal 4, displayed with four-type (A) and five-type (C) classifications. B&D) Spike count data from animal 5, divided into four types(B) and five-type (D) classifications. E) Total spike counts summed across all animals over a 24-hour period. While using a valley-seeking algorithm to decide how many spike types we have. This figure present visually that 5 types doesn't change the analysis significantly.

53

54

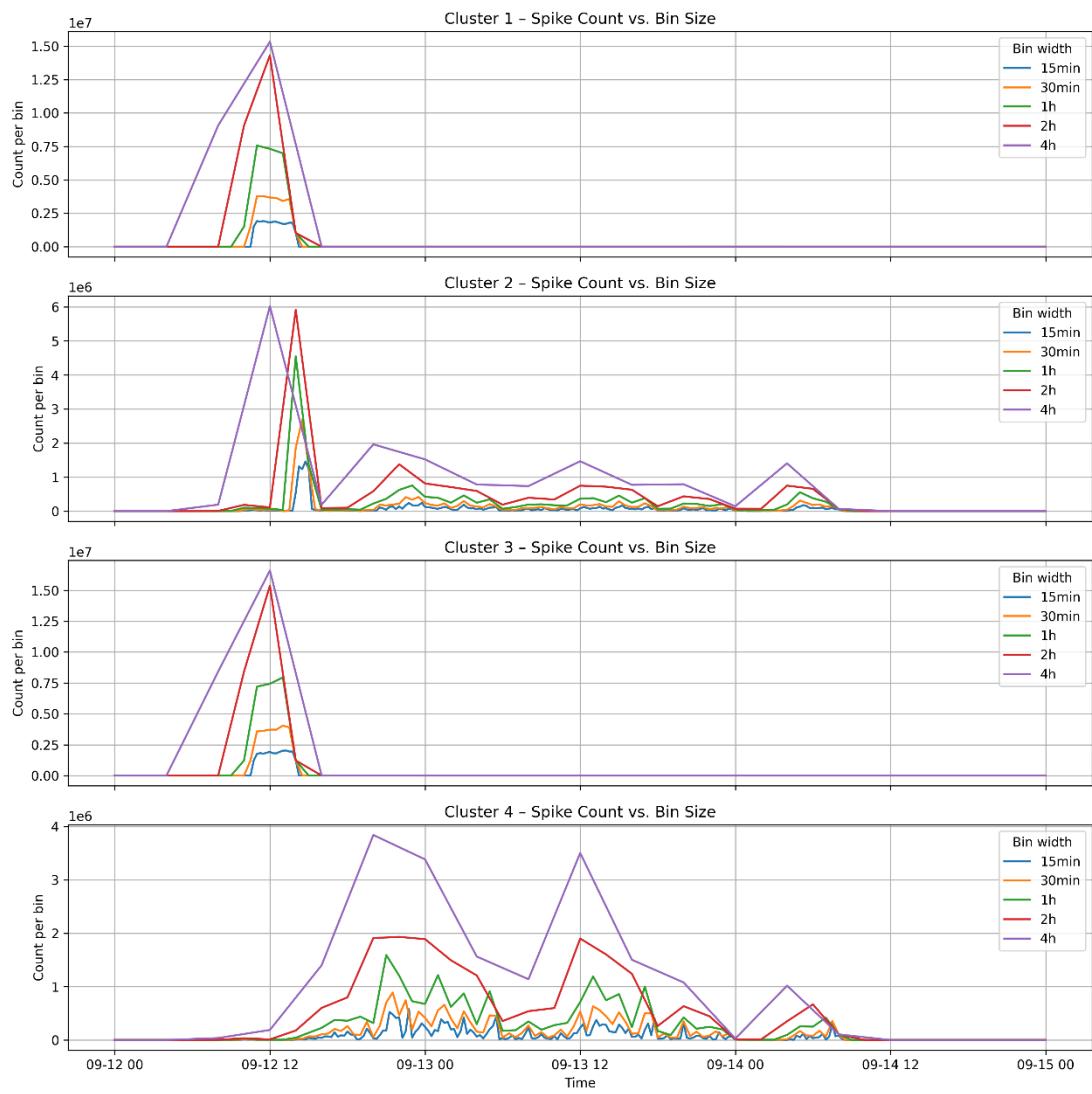
55


56

57

58

59


60

61

Figure S4. Comparison of 24-hour and 12-hour cycles in spike and behavioral data. A) Type 1 spike count from animal 4, analyzed over a 24-hour cycle. B) Behavioral data from animal 9, analyzed over a 24-hour cycle. C) Type 1 spike count from animal 4, analyzed over a 12-hour cycle (same data as in A). D) Behavioral data from animal 9, analyzed over a 12-hour cycle (same data as in B).

67

68

69

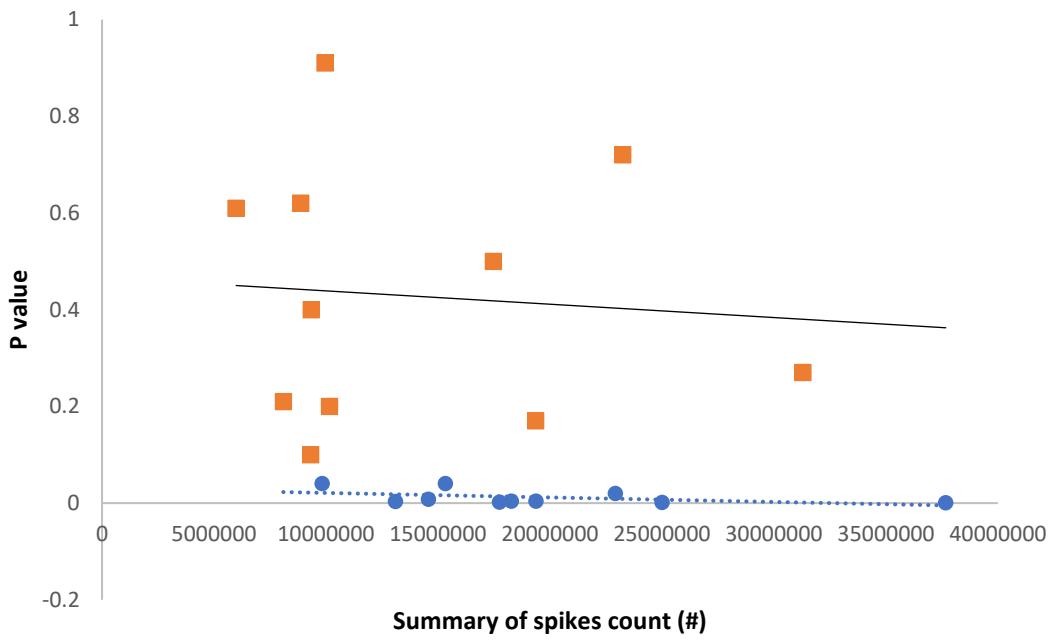
Figure S5. An example of bin-size sensitivity analysis across 48-hours recordings (experiment IV, animal 1) in the 4 spike types. We chose a 1-hour bin width for primary analyses, as it provided a balance between temporal resolution and noise reduction. Key trends were consistent across 1–2 hour bins, but smaller bins exhibited excessive variability and larger bins obscured event timing.

70

71

72

73


74

75

76

77

78

79

80 **Figure S6. Significance of cosinor analysis as a function of total spike count per**
81 **measurement.** In general, recordings with higher spike counts showed more
82 significant rhythmic trends. Orange indicates non-significant recordings ($p > 0.05$),
83 while blue indicates significant recordings ($p < 0.05$).

84