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SFig. 1: Comparative results of cell type predictions on mouse somatosensory cortex simulated data using
different functional evaluation software. This simulation was constructed based on seqFISH+ sequencing data of the
mouse somatosensory cortex, merging cell counts within small square regions measuring around 5lum per side to obtain 72

spot microregions.

Genes were randomly selected in three groups (3000, 6000, and 10000 genes), resulting in three sets of

simulated spatial transcriptome data with 72 spots but varying gene numbers. (A), (B), and (C) show pie charts of actual
cell types and those predicted by different software for data sets with different gene counts, respectively. (D), (E), and (F)
represent evaluation results of predicted versus actual cell abundance across different gene numbers. The dot plot below shows
comparisons at various cell type levels to actual data, while the bar chart above represents comparisons across all cell types. A
higher 1-JSD indicates a more consistent distribution of predicted and actual cell abundance, a higher 1-RMSE indicates closer
abundance levels, and a higher PCC signifies a stronger correlation between predicted and actual cell abundance, indicating

greater prediction accuracy.
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SFig. 2: SVP’s prediction results for local spatial clustering regions of SVGs across three type simulated
datasets. (A) The x-axis represents different evaluation metrics, with different colors showing repeat samples under the
same spot. Panels indicate data with varying spot numbers. The findings indicate that SVP provides good prediction of local
spatial clustering regions, with an average F1 score typically above 0.85. (B) The time and memory consumption for local
autocorrelation analysis of 1,000 variable features across varying cell counts.
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SFig. 3: Comparison of cell type activity predictions in the pancreatic ductal carcinoma microenvironment
(sample A) using different functional activity evaluation software. (A) The published HE-stained sections of pan-
creatic ductal carcinoma with annotations of tumor, ductal, acini, and stroma regions. (B) The clustering results of spatial
transcriptomic data. (C) The pie charts of cell types in the pancreatic ductal carcinoma tumor microenvironment predicted
by SVP and different evaluation software. (D) The spatial distribution of the first principal component from PCA analysis of
cell type activity result predicted by different software, with the bottom chart comparing the first principal component across
different annotated regions.
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SFig. 4: Comparison of cell type activity predictions in the pancreatic ductal carcinoma microenvironment
(sample B) using different scoring software. (A) The published HE-stained sections of pancreatic ductal carcinoma
with annotations of tumor, ductal, acini, and stroma regions. (B) The clustering results of spatial transcriptomic data from
sample B. (C) The pie charts of cell types in the pancreatic ductal carcinoma tumor microenvironment predicted by SVP and
different evaluation software. (D) The spatial distribution of the first principal component from PCA analysis of cell type
activity result predicted by different software, with the bottom chart comparing the first principal component across different
annotated regions.
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SFig. 5: SVP accurately predicts the co-localization of major cell types and their marker genes within the
PADC, as well as their functional states. (A) SVP predicts cell activity for Tumor Cell A, Tumor Cell B, four types of
ductal cells (hypoxic ductal cells, CRISP3 high-expressing pancreatic ductal cells, MHC pancreatic ductal cells, and terminal
pancreatic ductal cells), fibroblasts, and endothelial cells, along with the expression of their marker genes and significant
spatial co-clustering of cell activity and marker genes. The highlighted areas are regions of high clustering identified by local
spatial autocorrelation of respective features. (B) The CellChat analysis of the number of communications between cell types
in single-cell transcriptomics, with points representing different cell types, and line width indicating communication strength
between the cells. (C) The spatial clustering analysis of predicted cell type activity and CancerSEA tumor cell functions. The
dot plot indicates the co-distribution of cells and functions in space. The ribbon heatmaps on the left and top show clustering
of functions and cells in tumor, ductal, acini, and stroma regions. Bar charts on the left and top represent spatial clustering
of functions and cells, respectively. For detailed explanation, refer to Fig3 (F). (D) The spatial distribution of CancerSEA
tumor cell functions predicted by SVP, with highlighted areas indicating high clustering of the feature.
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SFig. 6: Single-cell transcriptome cell communication analysis results for pancreatic ductal carcinoma (sample
A). (A) The communication intensity between various cell types as predicted by single-cell transcriptomics, with ligand source
cells on the left and receptor source cells on the right. The x-axis represents cell types, and the y-axis represents different
ligand-receptor pairs. (B) The main significant ligand-receptor pairs involving fibroblasts and endothelial cells with hypoxic
ductal cells and tumor cells. The x-axis represents ligand-receptor pairs, the y-axis shows the direction of cell communication,
and the color and size of the dots indicate the strength and significance level of the communication, respectively. (C) The
spatial co-distribution of major ligand-receptors in the spatial transcriptome, where larger dots indicate greater co-clustering.
(D) The co-clustering distribution map of major ligand-receptors in the spatial transcriptome obtained through local bivariate
spatial autocorrelation analysis, with highlighted areas indicating primary co-clustering regions. Combining this with previous
HE staining annotations reveals that the main co-clustering areas of ligand-receptors are primarily in the tumor region.
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SFig. 7: Spatial distribution of fibroblasts and tumor cells predicted by SVP in PADC sample A, along with
differential gene enrichment analysis for high and low aggregation regions. (A) Spatial distribution of fibroblasts
and tumor cells predicted by SVP in PADC sample A, the red-highlighted areas represent the aggregation regions (High) of
both cell types, while the blue areas denote regions of near mutual exclusivity (Low). (B) Volcano plot showing differential
genes between the two regions, with red indicating genes upregulated in the high aggregation region and blue representing genes
upregulated in the low aggregation region. (C) The Gene Ontology (GO) enrichment results for differential genes between
the two regions indicate that genes in the red region are primarily enriched in pathways related to fibrosis, cell adhesion, and

the extracellular matrix. In contrast, genes in the blue region are mainly enriched in immune-related pathways, such as the
complement system.
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SFig. 8: SVP predicted immune function activity in the spatial and single-cell transcriptomes of pancreatic
ductal carcinoma (sample A). (A) Boxplots comparing different immune function activities between tumor and non-tumor
regions, showing higher immune function activity in the non-tumor regions. (B) Heatmap showing the spatial distribution of
immune function activities. Combining this with HE staining and pathology annotations reveals that immune function activity
is mainly concentrated in the lower-left non-tumor area, which includes regions rich in fibroblasts and endothelial cells. (C)
and (D) show activity scores of different immune functions across cell types in the single-cell transcriptome data of sample A,
indicating that immune function activity is significantly enriched in immune cells, consistent with expectations.
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dimensionality reduction space. The results indicate that tumor-related transcription factor activity is primarily activated in
tumor cells, fibroblasts, and endothelial cells.
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This can be used for comparison with the cell activity results predicted by the spatial transcriptome. Two types of blood cells
and immune cells have been removed.
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SFig. 14: Spatial co-distribution of different human heart cells at 6.5 PCW obtained by ISS sequencing and
comparison with spatial co-distribution results of different heart cells obtained from spatial transcriptomics.
(A) The spatial co-distribution of different human heart cells at 6.5 PCW as obtained by ISS sequencing. The dot plot
represents the degree of spatial co-distribution between cells, with an index ranging from -1 to 1. Larger positive values (bigger
dots) indicate a stronger spatial co-clustering of two features, values approaching zero suggest no spatial autocorrelation, while
larger negative values (bigger square dots) suggest mutual spatial exclusion between features. (B) The correlation between
the spatial distribution of human heart cells at 6.5 PCW obtained by ISS sequencing and spatial distribution across spatial
transcriptome samples at different developmental stages. (C) and (D) show correlation maps of different human heart cells at
6.5 PCW using traditional correlation analysis methods. The results indicate that spatial bivariate correlation analysis through
SVP reveals clear spatial co-clustering between MYOZ2 myocardial cells and ventricular cells, as well as between atrial cells
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SFig. 15: SVP accurately predicts the dynamic changes in cell functions during human heart development. (A)
The spatial distribution of extracellular matrix-related functional activity at different developmental stages of the human heart
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as those associated with the sinoatrial and atrioventricular nodes, across different developmental stages. (C) The heatmap of
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cells at different developmental stages.
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SFig. 21: Cell type predictions using SVP on Slide-Tag spatial transcriptomic data from mouse hippocampus,
along with comparative results against other tools. (A) Cell type annotation results from the original publication.
(B) Cell type annotation results predicted by SVP, which show a high degree of consistency with the original results, while
distinguishing Oligodendrocyte into two cell types: Oligodendrocyte and Polydendrocyte. (C) Spatial distribution maps of
each cell type predicted by SVP, demonstrating accurate spatial placement for each predicted cell type. (D) Comparison of
prediction results between SVP and other scoring methods.
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SFig. 22: Spatial aggregation of A beta plaques with cell types predicted by SVP in hippocampal slices from all
AD model mice. Heatmap illustrating the spatial co-aggregation of A plaques and various cell types, alongside the enrichment
score F1 for each cell type within the A plaque aggregation area, as calculated by the local autocorrelation algorithm (refer to
the Methods section)
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SFig. 23: The abundance distribution of the main cell types predicted by SVP significantly co-aggregating with
A plaques from all AD model mice. red indicating spots where cells and A plaques co-aggregate, and blue indicating

spots where only cells aggregate.
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SFig. 24: Comparison of A plaque density between spots where cells and A plaques co-aggregate and spots
where only cells aggregate from all AD model mice. The x-axis represents the two regions, while the y-axis indicates
the density of A beta plaques.
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SFig. 25: Differentially expressed genes between spots co-aggregating with A plaques and spots aggregated

with each cell type alone from all AD model mice. Red indicates upregulated differential genes in the co-aggregation
spots of cells and A plaques, while blue represents upregulated differential genes found exclusively at the cell aggregation spots.
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